首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Upstream knickpoint propagation is an essential mechanism for channel erosion, carrying changes in base level, tectonics and climate across the landscape. Generally, the terraces on cross-sections at steady-state conditions have been widely reported. However, many landscapes in the field appear to be in a transient state. Here, we explore the mechanism of knickpoint initiation and fluvial evolution in a transient setting in the northeastern Tibetan Plateau. Analysis of channel profiles and terrace correlation indicates that the Yellow River is adjusted to match the increase in differentiated fault activity and climate change in a regional setting of continuous uplift. Consequently, a series of terraces were formed, and the number of terrace steps increased downstream, in the headwaters of the Yellow River. All terraces were dated using the optically stimulated luminescence method. The top terrace, distributed continuously in the whole basin with a gradient, was deposited during a cold period and abandoned at the climatic transition from cold to warm state, at approximately 14.6–9.5 ka. After that, one terrace formed at around 4.2 ka in the upper reach. In correlation with the continuous topographic gradient surface of this terrace, three terrace steps were formed in the down reach during the period from 9.5 ka to 4.2 ka. This phenomenon might indicate multiple phases of continuous headward migration of fluvial knickpoint waves and terrace formation during the downcutting. It was caused by fault activity and tectonic uplift of the gorge at the outlet of the basin, under influence of the gradual integration of the Yellow River from downstream. This phenomenon shows that the fluvial incision in a transient state along the high relief margin of the orogenic plateau can be caused by fault activity, in addition to widespread surface uplift, climatically driven lake spillover and the establishment of external drainage.  相似文献   

2.
The incision rate and steepness of bedrock channels depend on water discharge, uplift rate, substrate lithology, sediment flux, and bedload size. However, the relative role of these factors and the sensitivity of channel steepness to rapid (>1 mm yr−1) uplift rates remain unclear. We conducted field and topographic analyses of fluvial bedrock channels with varying channel bed lithology and sediment source rock along the Coastal Range in eastern Taiwan, where uplift rates vary from 1.8 to 11.8 mm yr−1 and precipitation is relatively consistent (1.5–2.7 m yr−1), to evaluate the controls on bedrock channel steepness. We find that channel steepness is independent of rock uplift rate and annual precipitation but increases monotonically with sediment size and substrate strength. Furthermore, in reaches with uniform substrate lithology (mudstone and flysch), channel steepness systematically varies with sediment source rock but not with channel width. When applied to our data, a mechanistic incision model (saltation-abrasion model) suggests that the steepness of Coastal Range channels is set primarily by coarse-sediment supply. We also observe that larger particles are mainly composed of resistant lithologies derived from volcanic rocks and conglomerates. This result implies that hillslope bedrock properties in the source area exert a dominant control on the steepness of proximal channels through coarse-sediment production in this setting. We propose that channel steepness may be insensitive to uplift rate and flow discharge in fast-uplifting landscapes where incision processes are set by coarse sediment size and supply. Models assuming a proportionality between incision rate and basal shear stress (stream power) may not fully capture controls on fluvial channel profiles in landslide-dominated landscapes. Processes other than channel steepening, such as enhanced bedload impacts and debris-flow scour, may be required to balance rock uplift and incision in these transport-limited systems.  相似文献   

3.
Mountainous river basins are one of the main sources of sediment. Over long time scales, sediment production is sustained by the persistent dissection of river basins, which is promoted by tectonic activity. The response or adjustment of rivers to forcing factors such as uplift is based on the concept of the graded river and a feedback mechanism between the incision and uplift. Although the development of graded rivers under natural circumstances has been discussed for a long time, knowledge about the transition of river basins under heterogeneous uplift is not enough. To understand the development of a river basin with a non‐uniform uplift rate, two simple cases are examined: landward and seaward tilting uplift, where the uplift rate varies linearly in space. For our study, laboratory experiments were conducted and the results were compared with those of natural river basins; two river basins in Yakushima Island were selected for this purpose. In both the laboratory and Yakushima, the longitudinal profile of the river basin under landward‐tilting uplift has a convex‐up zone and a specific knickpoint is formed at the upstream end of this zone. This knickpoint is inactive with respect to migration and incision owing to the insufficient cumulative uplift to the equilibrium state. It was also observed in both the experimental and natural cases that the profile of the river basin under seaward tilting is unlikely to have such a convex‐up zone in the long term, and will instead have a smooth concave profile. Therefore, the spatiotemporal pattern of dissection differs depending on the type of tilting uplift, which suggests that sediment production also varies in time and space according to the type of uplift.  相似文献   

4.
The most compelling phenomena for transverse drainage in active fold belt are lateral diversion of channels and development of water/wind gaps. This phenomenon is the result of competition between uplift and erosion, which is controlled by fault vertical/lateral propagation and segment linkage, fault geometry, climate condition and lithology. Previous studies found that the higher the uplift rate is, the greater number of wind gaps form, and the variation of the uplift rate is also critical to the sustainability of transverse rivers. Lateral propagation and linkage of several separate folds in fold-and-thrust belts will lead to defeat of streams and diversion into a trunk drainage; if the trunk is still unable to keep pace with uplift, water gap will be abandoned and left as a wind gap. For lateral propagation of an anticline associated with development of tear faults, the locations of wind/water gaps are likely to coincide with the trace of tear fault and it's not quite clear about the relation between tear faulting and stream deflection. Nonzero dip of the underlying detachment induces a lateral surface slope in the direction of fault propagation, which in turn makes rivers deflection more efficient. Climate and rock erodibility control the water/sediment discharge, and further influence river transport/incision capacity. The changing climate and rock erodibility conditions enable river to abandon the current waterway to create a wind gap unless they could down-cut through a growing fold. However, the role of climate cycle in the formation of wind gap is still controversial. In addition, wind gaps are commonly developed along the divides where parts of longitudinal river have been captured by transverse catchments. Generally, the development of transverse drainages and the formation of wind gaps in nature are result from a combination of tectonic and fluvial process. The wind gap pattern and transverse drainage evolution in fold-and-thrust belts contain plenty of information on fault growth, interaction between tectonic uplift and fluvial erosion, and development of sedimentary basin. Such researches have significant implications in geomorphology, seismic hazard assessment and hydrocarbon exploration. However, there are still many knowledge gaps on the study of transverse river evolution in active fold areas. First, adequate chronology and geomorphic/strata mark to quantify fold growth and erosion is commonly not available, which leads to a poorly constrained rate in both river incision and lateral propagation of growing folds. In addition, more geological and geomorphological processes could influence the evolution of transverse drainages. For examples, (1)during the formation of a young range or anticline, the mechanism of fault-related folding may change over time, e.g. from fault-propagation folding to surface breaking; (2)Besides the knickpoint retreat in downstream, efficient lateral planation and downstream sweep erosion are also important in understanding the erosion of folds by rivers flowing through it. These processes make the development of transverse drainage across folds more complex and should be considered in more comprehensive models. There are lots of rivers originating from the Tibetan plateau and cutting through young surrounding mountains. These surrounding mountains, such as Qilian Mountains, Tianshan Mountains and Longmen Mountains, are ideal areas for the study of transverse river evolution and wind gap formation. In the end, combining with the geological and geomorphological features of the Heli Shan-Jintanan Shan, north of Hexi Corridor, we propose that the Heihe River has experienced deflection, beveling and incision since Mid Pleistocene. These processes have led to 1)the formation of a wind gap on the western Heli Shan, 2)a layer of fluvial gravels from the Qilian Shan preserved on the top surface of the Jintanan Shan, and overlying angular unconformity upon older strata, and 3)the incision of the Heihe River to form the Zhengyi Gorge through the linked structure between Heli Shan and Jintanan Shan. Thus, we propose a general model for the development of transverse drainages in the central Hexi Corridor: deflection-beveling-incision.  相似文献   

5.
Knickpoints in bedrock streams are often interpreted as transient features generated by a change in boundary conditions. It is typically assumed that knickpoints propagate upstream with constant vertical velocities, though this relies on a stream being in erosional steady state (erosion rate equals rock uplift rate) prior to the knickpoint's formation. Recent modeling and field studies suggest that along-stream contrasts in rock erodibility perturb streams from erosional steady state. To evaluate how contrasts in rock erodibility might impact knickpoint interpretations, we test parameter space (rock erodibility, rock contact dip angle, change in rock uplift rate) in a one-dimensional (1D) bedrock stream model that has variable rock erodibility and produces a knickpoint with a sudden change in rock uplift rate. Upstream of a rock contact, the vertical velocity of a knickpoint generated by a change in rock uplift rate is strongly correlated with how the rock contact has previously perturbed erosion rates. These knickpoints increase vertical velocity upon propagating upstream of a hard over soft contact and decrease vertical velocity upon propagating upstream of a soft over hard contact. However, interactions with other transient perturbations produced by rock contacts make for nuances in knickpoint behavior. Rock contacts also influence the geometry of knickpoints, which can become particularly difficult to identify upstream of soft over hard rock contacts. Using our simulations, we demonstrate how a contact's along-stream horizontal migration rate and cross-contact change in rock strength control how much an upstream reach is perturbed from erosional steady state. When simulations include multiple contacts, the knickpoint is particularly prone to colliding with other transient perturbations and can even disappear altogether if rock contact dips are sufficiently shallow. Caution should be taken when analyzing stream profiles in areas with significant changes in rock strength, especially when rock contact dip angles are near the stream's slope.  相似文献   

6.
Quantifying rates of river incision and continental uplift over Quaternary timescales offer the potential for modelling landscape change due to tectonic and climatic forcing. In many areas, river terraces form datable archives that help constrain the timing and rate of valley incision. However, old river terraces, with high-level deposits, are prone to weathering and often lack datable material. Where valleys are incised through karst areas, caves and sediments can be used to reconstruct the landscape evolution because they can record the elevation of palaeo-water tables and contain preserved datable material. In Normandy (N. France), the Seine River is entrenched into an extensive karstic chalk plateau. Previous estimates of valley incision were hampered by the lack of preserved datable fluvial terraces. A stack of abandoned phreatic cave passages preserved in the sides of the Seine valley can be used to reconstruct the landscape evolution of the region. Combining geomorphological observations, palaeomagnetic and U/Th dating of speleothem and sediments in eight caves along the Lower Seine valley, we have constructed a new age model for cave development and valley incision. Six identified cave levels up to ∼100 m a.s.l. were formed during the last ~1 Ma, coeval with the incision of the Seine River. Passage morphologies indicate that the caves formed in a shallow phreatic/epiphreatic setting, modified by sediment influxes. The valley's maximum age is constrained by the occurrence of late Pliocene marine sand. Palaeomagnetic dating of cave infills indicates that the highest-level caves were being infilled prior to 1.1 Ma. The evidence from the studied caves, complemented by fluvial terrace sequences, indicates that rapid river incision occurred during marine isotope stage (MIS) 28 to 20 (0.8–1 Ma), with maximal rates of ~0.30 m ka−1, dropping to ~0.08 m ka−1 between MIS 20–11 (0.8–0.4 Ma) and 0.05 m ka−1 from MIS 5 to the present time. © 2020 John Wiley & Sons, Ltd.  相似文献   

7.
The use of cosmogenic isotopes to determine surface exposure ages has grown rapidly in recent years. The extent to which cosmogenic nuclides can distinguish between mechanistic hypotheses of landscape evolution is an important issue in geomorphology. We present a case study to determine whether surface exposure dating techniques can elucidate the role knickpoint propagation plays in longitudinal profile evolution. Cosmogenically produced 10Be, 26Al, 36Cl, 3He and 21Ne were measured in olivines collected from 5·2 Ma basalt flows on Kauai, Hawaii. Several obstacles had to be overcome prior to the measurement of In situ-produced radionuclides, including removal of meteoric 10Be from the olivine grains. Discrepancies between the radionuclide and noble gas data may suggest limits for exposure dating. Approximate surface exposure ages calculated from the nuclide concentrations indicate that large boulders may remain in the Hawaiian valley below the knickpoint for hundreds of thousands of years. The ages of samples collected above the knickpoint are consistent with estimates of erosion based on the preservation of palaeosurfaces. Although the exposure ages can neither confirm nor reject the nickpoint hypothesis, boulder ages downstream of the knickpoint are consistent with a wave of incision passing upvalley. The long residence time off the coarse material in the valley bottom further suggests that knickpoint propagation beneath a boulder pile is necessary for incision of the bedrock underlying the boulders to occur. © 1997 by John Wiley & Sons, Ltd.  相似文献   

8.
Combining field reconstruction and landscape evolution modelling can be useful to investigate the relative role of different drivers on catchment response. The Geren Catchment (~45 km2) in western Turkey is suitable for such a study, as it has been influenced by uplift, climate change and lava damming. Four Middle Pleistocene lava flows (40Ar/39Ar‐ dated from 310 to 175 ka) filled and dammed the Gediz River at the Gediz–Geren confluence, resulting in base‐level fluctuations of the otherwise uplift‐driven incising river. Field reconstruction and luminescence dating suggest fluvial terraces in the Geren Catchment are capped by Middle Pleistocene aggradational fills. This showed that incision of the Geren trunk stream has been delayed until the end of MIS 5. Subsequently, the catchment has responded to base‐level lowering since MIS 4 by 30 m of stepped net incision. Field reconstruction left us with uncertainty on the main drivers of terrace formation. Therefore, we used landscape evolution modelling to investigate catchment response to three scenarios of base‐level change: (i) uplift with climate change (rainfall and vegetation based on arboreal pollen); (ii) uplift, climate change and short‐lived damming events; (iii) uplift, climate and long‐lived damming events. Outputs were evaluated for erosion–aggradation evolution in trunk streams at two different distances from the catchment outlet. Climate influences erosion–aggradation activity in the catchment, although internal feedbacks influence timing and magnitude. Furthermore, lava damming events partly control if and where these climate‐driven aggradations occur. Damming thus leaves a legacy on current landscape evolution. Catchment response to long‐duration damming events corresponds best with field reconstruction and dating. The combination of climate and base level explains a significant part of the landscape evolution history of the Geren Catchment. By combining model results with fieldwork, additional conclusions on landscape evolution could be drawn. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
The Huashan piedmont fault, forming a part of the southern margin of the Weihe graben, is one of the important normal faults that control the subsidence of the intracontinental rift. Developing on the footwall of the fault, the Huashan block has experienced rapid cooling during the Cenozoic, especially since the early-middle Miocene. Mountain exhumation causes and transports a great amount of sediments to the adjacent hanging wall, setting a typical case of mountain-basin coupling system. Studies on active tectonics, historical and paleo earthquakes and field investigations reveal that the middle section(Huaxian-Huayin)of the fault is much more active than the west(Lantian-Huaxian)and east(Huayin-Lingbao)sections.
We extracted channel profiles of rivers that originate from the main water divide of the northern flank of the Huashan Mountain. Based on the method of slope-area analysis and the integral approach, we identified knickpoints, calculated channel concavity and steepness indices, and constructed paleo river profiles. Of most rivers, the concavities are within a relatively narrow range of 0.3~0.6, with no obvious correlation with tectonics. However, channel steepness and knickpoint distribution vary spatially. In the east section, rivers are under steady-state with smooth, concave-up channels and lower steepness((104±30)m0.9). In the other two sections, rivers are mainly under transient state with slope-break knickpoints. For the channel segments below knickpoints, steepness indices are much higher in the middle section((230±92)m0.9)than in the west((152±53)m0.9). Thus, the variance of fault activity can be reflected by channel steepness pattern. Above the knickpoints, channel steepness indices are much lower(middle(103±23)m0.9, west(60±14)m0.9). What's more, we found a statistically significant power-law scaling between knickpoint retreat distance and catchment drainage area. Thus, we attributed these knickpoints to be the results of recent rapid uplift of the Huashan block. The relief of paleo channels(middle(1000±153)m, west(751±170)m)accounts for~60%~80% of the relief of modern rivers(middle(1323±249)m, west(1057±231)m), which means that ~20%~40% of modern channel relief was caused by the episode of the rapid uplift. Assuming a balance between the rates of rock uplift and downstream river incision, a power-law function between uplift rates and channel steepness can be derived. According to the fault throw rates of the middle section 1.5~3mm/a(since late Pleistocene), we constrained slope exponent n~0.5 and channel erodibility K~1.5×10-4m0.55/a. Combining the knickpoint age formula, we estimated that the rapid mountain uplift/fault throw began at ~(0.55±0.25)Ma BP. Therefore, the middle of the Huashan piedmont fault is more active than the west and east sections. The fast fault throw of the west and middle sections since the middle Pleistocene has caused rapid mountain uplift and high topographic relief.  相似文献   

10.
The Chi‐Chi earthquake (MW = 7.6) took place in central western Taiwan in 1999. The earthquake caused reactivation of the Chelungpu Fault and resulted in 100‐km‐long surface ruptures. The fault strikes mostly north–south to NNE–SSW; however, the northern tip of the southern segment of the surface ruptures rotates clockwise to define an east–west trend, then jumps to a shorter NNW‐trending rupture. The largest vertical displacement is recorded in the Shihkang area of the Shihkang–Shangchi Fault Zone, where vertical slips are up to 8–10 m. The Shihkang–Shangchi Fault Zone displays a complex fault pattern as a linkage damage zone between two fault segments with the greatest concentration of faults and fractures. Our new interpretation, based on recent published geometric, kinematic, and geophysical studies on the Chi‐Chi earthquake fault, suggests that the Shihkang–Shangchi Fault Zone is not a simple termination zone, but may be an ‘overstep zone’ or a ‘transfer zone’. Slip analysis along the surface ruptures indicates that they are composed of three fault segments and the amount of slip partly depends on the intersection angle between slip direction and fault strike. Our numerical modeling for the area indicates that Coulomb stress changes are mainly concentrated on tips and bends of the surface ruptures. Slip patterns indicate that the fault propagates toward the northeast. Therefore, this study suggests high potential for future earthquake activity along the unruptured Shangchi segment. Hence, future geohazard studies should focus on the Shangchi segment to evaluate potential earthquakes, determine recurrence intervals, and reduce future earthquake hazards.  相似文献   

11.
The Guizhou Plateau represents a geomorphic transition between the Tibetan Plateau and the Yangtze River Plain. It likely formed in response to the propagation of surface uplift in southeastern Tibet during India-Eurasia continental collision. However, the uplift history of the region is unclear largely due to a lack of datable material. The bedrock geology is dominated by carbonate rocks, which contains numerous multi-level caves in the main river valleys that are linked to the river incision history. Cosmogenic 26Al and 10Be burial dating of sediments in caves and river terraces from the northwestern and southern plateau reveals the fluvial chronology and provides the first direct determination of long-term river incision rates. The caves and terraces on the Liuchong River in NW Guizhou yield burial ages of between 0.41 ± 0.12 Ma and 2.85 ± 0.21 Ma, indicating an average incision rate of 57 ± 3 m/Ma. Four level caves at Libo in southern Guizhou yield burial ages of between 0.56 ± 0.16 Ma and 3.54 (+0.25/-0.22) Ma, indicating slightly slower incision rate (47 ± 5 m/Ma). These new results imply that the high elevation of the Guizhou Plateau had developed before the Late Pliocene, and that surface uplift during the Late Cenozoic was largely uniform across the region.  相似文献   

12.
The sandstone peak‐forest landscape in Zhangjiajie UNESCO Global Geopark of Hunan Province, China, is characterized by >3000 vertical pillars and peak walls of up to 350 m height, representing a spectacular example of sandstone landform variety. Few studies have addressed the mechanisms and timescales of the longer‐term evolution of this landscape, and have focused on fluvial incision. We use in situ cosmogenic nuclides combined with GIS analysis to investigate the erosional processes contributing to the formation of pillars and peak‐forests, and discuss their relative roles in the formation and decay of the landscape. Model maximum‐limiting bedrock erosion rates are the highest along the narrow fluvial channels and valleys at the base of the sandstone pillars (~83–122 mm kyr?1), and lowest on the peak wall tops (~2.5 mm kyr?1). Erosion rates are highly variable and intermediate along vertical sandstone peak walls and pillars (~30 to 84 mm kyr?1). Catchment‐wide denudation rates from river sediment vary between ~26 and 96 mm kyr?1 and are generally consistent with vertical wall retreat rates. This highlights the importance of wall retreat for overall erosion in the sandstone peak‐forest. In combination with GIS‐derived erosional volumes, our results suggest that the peak‐forest formation in Zhangjiajie commenced in the Pliocene, and that the general evolution of the landscape followed our sequential refined model: (i) slow lowering rates following initial uplift; (ii) fast plateau dissection by headward knickpoint propagation along joints and faults followed by; (iii) increasing contribution of wall retreat in the well‐developed pillars and peak‐forests and a gradual decrease in overall denudation rates, leading to; (iv) the final consumption of pillars and peak‐forests. Our study provides an approach for quantifying the complex interplay between multiple geomorphic processes as required to assess the evolutionary pathways of other sandstone peak‐forest landscapes across the globe. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

13.
Mountain building and landscape evolution are controlled by interactions between river dynamics and tectonic forces. Such interactions have been extensively studied, however a quantitative evaluation of tectonic/geomorphic feedbacks, which is imperative for understanding sediments routing within orogens and fold‐and‐thrust belts, remains to be undertaken. Here, we employ numerical simulations to assess the conditions of uplift and river incision necessary to deflect an antecedent drainage network during the growth of one, or several, folds. We propose that a partitioning of the river network into internal (endorheic) and longitudinal drainage arises as a result of lithological differences within the deforming crustal sedimentary cover. Using examples from the Zagros Fold Belt (ZFB), we show that drainage patterns can be linked to the non‐dimensional incision ratio R between successive lithological layers, corresponding to the ratio between their relative erodibilities or incision coefficients. Transverse drainage networks develop for uplift rates smaller than 0.8 mm yr?1 and low incision ratios (?10 < R < 10). Intermediate drainage networks are obtained for uplift rates up to 2 mm yr?1 and large incision ratios (R > 20). Parallel drainage networks and the formation of sedimentary basins occur for large values of incision ratio (R > 20) and uplift rates between 1 and 2 mm yr?1. These results have implications for predicting the distribution of sediment depocenters in fold‐and‐thrust belts, which can be of direct economic interest for hydrocarbon exploration. They also put better constraints on the fluvial and geomorphic responses to fold growth induced by crustal‐scale tectonics. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
2010年智利马乌莱MW8.8地震发生在纳斯卡板块与南美板块的板块边界处,引起了显著的同震和震后效应.GPS台网数据显示记录到的同震海向位移最大约5 m,垂向沉降最大约50 cm.在经过对俯冲效应、季节变化等效应的校正后,震后6年的海向最大位移约68 cm,垂向抬升最大约20 cm.马乌莱地震显著的震后形变对该区域的地...  相似文献   

15.
How rock resistance or erodibility affects fluvial landforms and processes is an outstanding question in geomorphology that has recently garnered attention owing to the recognition that the erosion rates of bedrock channels largely set the pace of landscape evolution. In this work, we evaluate valley width, terrace distribution, and bedload provenance in terms of reach scale variation in lithology in the study reach and discuss the implications for landscape evolution in a catchment with relatively flat‐lying stratigraphy and very little uplift. A reach of the Buffalo National River in Arkansas was partitioned into lithologic reaches and the mechanical and chemical resistance of the main lithologies making up the catchment was measured. Valley width and the spatial distribution of terraces were compared among the different lithologic reaches. The surface grain size and provenance of coarse (2–90 mm) sediment of both modern gravel bars and older terrace deposits that make up the former bedload were measured and defined. The results demonstrate a strong impact of lithology upon valley width, terrace distribution, and bedload provenance and therefore, upon landscape evolution processes. Channel down‐cutting through different lithologies creates variable patterns of resistance across catchments and continents. Particularly in post‐tectonic and non‐tectonic landscapes, the variation in resistance that arises from the exhumation of different rocks in channel longitudinal profiles can impact local base levels, initiating responses that can be propagated through channel networks. The rate at which that response is transmitted through channels is potentially amplified and/or mitigated by differences between the resistance of channel beds and bedload sediment loads. In the study reach, variation in lithologic resistance influences the prevalence of lateral and vertical processes, thus producing a spatial pattern of terraces that reflects rock type rather than climate, regional base level change, or hydrologic variability. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

16.
Recent studies provide a theoretical framework for understanding the incision of bedrock rivers by plucking. These studies motivated the development of a numerical model that simulates plucking to explore the evolution of channel profiles in lithologically diverse terrain. In the main governing equation, the incision rate is calculated as a function of the difference between the boundary shear stress and a threshold shear stress needed to entrain blocks from the bed. Because an earlier study suggested that plucking is the primary incisional process in the northern Sierra Nevada (CA), the model was calibrated to approximate the conditions in the region. The profiles of the simulated rivers are stair-stepped, with sharp breaks-in-slope at lithological boundaries. This characteristic is common to rivers draining the northern Sierra Nevada, suggesting that the size of blocks available for plucking, as mediated by the fracture density, may be the primary control on their gradients. Moreover, the numerical experiments highlight the role of threshold shear stresses in the post-orogenic persistence of steep reaches and relict terrain. Finally, comparisons of profiles evolved under tilting or uniform uplift scenarios provide insights into how these different uplift modes affect profile evolution. For example, whereas uniform uplift generates a single migrating knickpoint at the range front, multiple migrating knickpoints can form simultaneously along a river in a tilting landscape. © 2020 John Wiley & Sons, Ltd.  相似文献   

17.
Much research has been devoted to the development of numerical models of river incision. In settings where bedrock channel erosion prevails, numerous studies have used field data to calibrate the widely acknowledged stream power model of incision and to discuss the impact of variables that do not appear explicitly in the model's simplest form. However, most studies have been conducted in areas of active tectonics, displaying a clear geomorphic response to the tectonic signal. Here, we analyze the traces left in the drainage network 0.7 My after the Ardennes region (western Europe) underwent a moderate 100–150 m uplift. We identify a set of knickpoints that have traveled far upstream in the Ourthe catchment, following this tectonic perturbation. Using a misfit function based on time residuals, our best fit of the stream power model parameters yields m = 0.75 and K = 4.63 × 10‐8 m‐0.5y‐1. Linear regression of the model time residuals against quantitative expressions of bedrock resistance to erosion shows that this variable does not correlate significantly with the residuals. By contrast, proxies for position in the drainage system prove to be able to explain 76% of the residual variance. High time residuals correlate with knickpoint position in small tributaries located in the downstream part of the Ourthe catchment, where some threshold was reached very early in the catchment's incision history. Removing the knickpoints stopped at such thresholds from the data set, we calculate an improved m = 0.68 and derive a scaling exponent of channel width against drainage area of 0.32, consistent with the average value compiled by Lague for steady state incising bedrock rivers. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
The relation between morphological change and patterns of variation in bedload transport rate in braided streams was observed by repeated, daily topographic surveys over a 25 day study period in a 60 m reach of the proglacial Sunwapta River, Alberta, Canada. There are two major periods of morphological change, each lasting several days and each involving the complete destruction and reconstruction of bar complexes. Bar complex destruction was caused by redirection of the flow and by downstream extension of the confluence scour zone upstream. Reconstruction involved accretion of unit bars on bar head, flank and tail and in one case was initiated by disection of a large, lobate unit bar. High rates of sediment movement, measured from net scour and fill of the cross-sections, coincided with these morphological changes. Sediment was supplied from both bed and bank erosion, and patterns and distances of transfer were highly variable. Rates of transport estimated by matching upstream erosional volumes with downstream deposition were much greater than those estimated from either a step-length approach or a sediment budget. Measurements of scour and fill and observations of morphological change indicate that step lengths (virtual transport distances) were typically 40–100m during a diurnal discharge cycle. Shorter step lengths occurred when transfer was confined to a single anabranch and longer steps involved channel changes at the scale of the entire reach. Sediment budgeting was used to describe the spatial patterns of sediment transport associated with the morphological changes and to estimate minimum daily reach-averaged transport rates. Mean bedload transport rates correlate with discharge, but with considerable scatter. The largest deviations from the mean relation can be tied to phases of channel incision, bank erosion, scour hole migration, bar deposition and channel filling apparently controlled by changes and fluctuations in sediment supply from upstream, independent of discharge. These are interpreted as field evidence of ‘autopulses’ or ‘macropulses’ in bedload transport, previously observed only in laboratory models of braided streams.  相似文献   

19.
2011年日本MW9.0地震(简称日本地震)后沂沭断裂带及其两侧地区地震活动显著增强,研究日本地震对该地区地壳运动及地震潜势的影响十分必要.为此,本文通过112个连续GPS观测站获取了研究区高空间分辨率的日本地震同震形变场并得到如下认识:(1)8个定点地球物理观测的同震响应验证了本文同震形变场的可靠性;日本地震的东向拉张使研究区整体上处于张性同震应变状态,但存在局部挤压区域,其中莱州湾至海州湾的挤压条带穿过沂沭断裂带并对断裂带南北两段产生了不同的同震作用,对南段具有拉张作用,对北段产生挤压作用;(2)同震形变场在鲁东隆起和鲁西断块产生了显著的剪应变,地震b值显示上述区域的构造应力在日本地震后增强,因此同震形变场可能改变了这些区域的应力特征;(3)地震矩张量叠加分析显示,同震形变场短期内对鲁西断块、鲁东隆起区和沂沭断裂带南段累积了地震矩,可能有助于上述区域在日本地震以后的地震活动增强;日本地震对沂沭断裂带北段的地震矩具有释放作用,或许是该区域地震活动减弱的原因.  相似文献   

20.
The stream power incision model (SPIM) is a cornerstone of quantitative geomorphology. It states that river incision rate is the product of drainage area and channel slope raised to the power exponents m and n, respectively. It is widely used to predict patterns of deformation from channel long profile inversion or to model knickpoint migration and landscape evolution. Numerous studies have attempted to test its applicability with mixed results prompting the question of its validity. This paper synthesizes these results, highlights the SPIM deficiencies, and offers new insights into the role of incision thresholds and channel width. By reviewing quantitative data on incising rivers, I first propose six sets of field evidence that any long‐term incision model should be able to predict. This analysis highlights several inconsistencies of the standard SPIM. Next, I discuss the methods used to construct physics‐based long‐term incision laws. I demonstrate that all published incising river datasets away from knickpoints or knickzones are in a regime dominated by threshold effects requiring an explicit upscaling of flood stochasticity neglected in the standard SPIM and other incision models. Using threshold‐stochastic simulations with dynamic width, I document the existence of composite transient dynamics where knickpoint propagation locally obeys a linear SPIM (n=1) while other part of the river obey a non‐linear SPIM (n>1). The threshold‐stochastic SPIM resolves some inconsistencies of the standard SPIM and matches steady‐state field evidence when width is not sensitive to incision rate. However it fails to predict the scaling of slope with incision rate for cases where width decreases with incision rate. Recent proposed models of dynamic width cannot resolve these deficiencies. An explicit upscaling of sediment flux and threshold‐stochastic effects combined with dynamic width should take us beyond the SPIM which is shown here to have a narrow range of validity. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号