首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents a model that simulates the size distribution and erosivity of raindrops and throughfall drops. It utilizes existing models of rainfall drop size distribution and fall velocity and combines them with newly collated evidence of throughfall drop size distributions. A sensitivity analysis reveals that the model is sensitive to parameters that are easily measured or estimated: rainfall intensity, the mean volume drop diameter of the intercepted throughfall, canopy cover, and canopy height. The results of the model may be used at two levels. Firstly, to calculate specifically the size and fall velocity of individual drops, parameters that are needed in studies examining the response of soil surfaces to forces applied by rainfall. Secondly, to produce erosivity indices, based on rainfall intensity but which take account of the effects of a vegetation canopy. The paper shows that while the kinetic energy of rainfall (E(0), J mm?1 m?2) may be calculated from an equation of the familiar form: the kinetic energy of throughfall under any canopy may be calculated by combining this equation with another that relates the energy of drops under a 100 per cent canopy cover (E(100)) and the canopy height: .  相似文献   

2.
Stable isotopes of water can give clues to the physical processes of forest canopy interception. We examined whether fine‐scale canopy structure is related to throughfall amount and isotopic variation by intensively quantifying both throughfall and canopy structure in a broadleaf, deciduous forest in Louisiana, USA. Local throughfall amount was correlated with canopy structure quantified as distance to the nearest tree, local crown coverage, and local crown length; isotopic composition was also correlated with the same variables but weakly. Spatial patterns of throughfall amount showed some consistency across storms, but spatial patterns of stable isotopes were much weaker and inconsistent. Spatial autocorrelation was consistent in throughfall amount across events, which suggests fixed controls over patterning of throughfall to the forest floor by the canopy. In contrast, lower spatial and temporal autocorrelation in isotopic composition suggested temporally varying controls over patterning, and that routing through the canopy, intra‐storm isotopic variation of rainfall, isotopic exchange, and evaporation interacted to affect the stable isotopic composition. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
The aim of this study is to understand the canopy interception of Qinghai spruce forest under conditions of different precipitation characteristics and canopy structures in the upper reach of Heihe River basin, northwestern China. On the basis of a continuous record covering our investigating period by an automatic throughfall‐collecting system, we analysed the relationships between the canopy interception and the precipitation characteristics. Our results support the well‐established exponential decay relationship between the gross precipitation and the interception percentage after the canopy is saturated. But our results sufficiently illustrate a notable point that the variations in the interception percentage are almost independent from the variations in the gross precipitation before the canopy is saturated. Our examination into the relationship between the interception and the 10‐min average intensity of precipitation demonstrates a divergent relationship, and the divergent relationship is bracketed by an upper ‘dry line’ indicating that 100% of gross precipitation was intercepted before saturation and by a lower ‘wet line’ suggesting that the actual canopy storage capacity reached the maximum and evaporation was the only component of the interception. To search for the relationship between canopy structures and interception, we grouped the canopy covers over the 90 throughfall‐collecting tanks into ten categories ranging from 0 (no cover) to 0.9 (nearly completely covered), and the corresponding canopy interception was calculated by subtracting the averaged throughfall of each canopy‐cover category from the gross precipitation. The results show that the interception percentage increases faster with increasing canopy cover under intermediate rainfall conditions than that under heavy rainfall conditions. Unexpectedly, under light rainfall conditions the increasing rate of interception percentage with increasing canopy cover and also with increasing plant area index is not faster than that under the intermediate rainfall conditions simply because the tank‐measured percentage of interception was extremely high at near‐zero canopy cover conditions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
A rainfall interception measuring system was developed and tested for open‐grown trees. The system includes direct measurements of gross precipitation, throughfall and stemflow, as well as continuous collection of micrometeorological data. The data were sampled every second and collected at 30‐s time steps using pressure transducers monitoring water depth in collection containers coupled to Campbell CR10 dataloggers. The system was tested on a 9‐year‐old broadleaf deciduous tree (pear, Pyrus calleryana ‘Bradford’) and an 8‐year‐old broadleaf evergreen tree (cork oak, Quercus suber) representing trees having divergent canopy distributions of foliage and stems. Partitioning of gross precipitation into throughfall, stemflow and canopy interception is presented for these two mature open‐grown trees during the 1996–1998 rainy seasons. Interception losses accounted for about 15% of gross precipitation for the pear tree and 27% for the oak tree. The fraction of gross precipitation reaching the ground included 8% by stemflow and 77% by throughfall for the pear tree, as compared with 15% and 58%, respectively, for the oak tree. The analysis of temporal patterns in interception indicates that it was greatest at the beginning of each rainfall event. Rainfall frequency is more significant than rainfall rate and duration in determining interception losses. Both stemflow and throughfall varied with rainfall intensity and wind speed. Increasing precipitation rates and wind speed increased stemflow but reduced throughfall. Analysis of rainfall interception processes at different time‐scales indicates that canopy interception varied from 100% at the beginning of the rain event to about 3% at the maximum rain intensity for the oak tree. These values reflected the canopy surface water storage changes during the rain event. The winter domain precipitation at our study site in the Central Valley of California limited our opportunities to collect interception data during non‐winter seasons. This precipitation pattern makes the results more specific to the Mediterranean climate region. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

5.
Forest canopies present irregular surfaces that alter both the quantity and spatiotemporal variability of precipitation inputs. The drop size distribution (DSD) of rainfall varies with rainfall event characteristics and is altered substantially by the forest stand properties. Yet, the influence of two major European tree species, European beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) H. Karst), on throughfall DSD is largely unknown. In order to assess the impact of these two species with differing canopy structures on throughfall DSD, two optical disdrometers, one above and one below the canopy of each European beech and Norway spruce, measured DSD of both incident rainfall and throughfall over 2 months at a 10‐s resolution. Fractions of different throughfall categories were analysed for single‐precipitation events of different intensities. While penetrating the canopies, clear shifts in drop size and temporal distributions of incoming rainfall were observed. Beech and spruce, however, had different DSD, behaved differently in their effect on diameter volume percentiles as well as width of drop spectrum. The maximum drop sizes under beech were higher than under spruce. The mean ± standard deviation of the median volume drops size (D50) over all rain events was 2.7 ± 0.28 mm for beech and 0.80 ± 0.04 mm for spruce, respectively. In general, there was a high‐DSD variability within events indicating varying amounts of the different throughfall fractions. These findings help to better understand the effects of different tree species on rainfall partitioning processes and small‐scale variations in subcanopy rainfall inputs, thereby demonstrating the need for further research in high‐resolution spatial and temporal properties of rainfall and throughfall.  相似文献   

6.
Large‐scale exotic pine plantations have been developed for timber production in subtropical Australia. Few studies investigate the spatial variability of both throughfall and stemflow in such managed pine plantations despite their acknowledged effects on the heterogeneity of hydrological and biochemical processes of forested ecosystems. To examine the spatial variability of rainfall under a 12‐year‐old pine plantation in a subtropical coastal area of Australia, we observed gross rainfall, throughfall and stemflow over a 1‐year period. Our results show that the spatial variability of gross rainfall within a 50 m × 50 m plot is minimal. Throughfall is significantly different among three tree zones (midway between rows, west and east side of trunks), particularly for rainfall <50 mm, with the highest throughfall on the east side of the tree trunks (sum = 85% of gross rainfall) and the lowest in the midway between tree rows (sum = 68% of gross rainfall). These spatial patterns persist among 84% of recorded rainfall events. Spatial variability and time stability of throughfall are better explained by canopy interception of the inclined rainfall resulting from the prevailing easterly wind direction throughout the experiment. The annual stemflow is different among individual sample trees, which is mainly ascribed to the difference in tree size (e.g. projected canopy area and stem diameter). The outcomes of this study would help future investigators better design appropriate sampling strategies in these pine plantations under similar climate conditions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
While the hydrological balance of forest ecosystems has often been studied at the annual level, quantitative studies on the factors determining rainfall partitioning of individual rain events are less frequently reported. Therefore, the effect of the seasonal variation in canopy cover on rainfall partitioning was studied for a mature deciduous beech (Fagus sylvatica L.) tree over a 2‐year period. At the annual level, throughfall amounted to 71% of precipitation, stemflow 8%, and interception 21%. Rainfall partitioning at the event level depended strongly on the amount of rainfall and differed significantly (p < 0·001) between the leafed and the leafless period of the year. Therefore, water fluxes of individual events were described using a multiple regression analysis (ra2 > 0·85, n = 205) with foliation, rainfall characteristics and meteorological variables as predictor variables. For a given amount of rainfall, foliation significantly increased interception and decreased throughfall and stemflow amounts. In addition, rainfall duration, maximum rainfall rate, vapour pressure deficit, and wind speed significantly affected rainfall partitioning at the event level. Increasing maximum hourly rainfall rate increased throughfall and decreased stemflow generation, while higher hourly vapour pressure deficit decreased event throughfall and stemflow amounts. Wind speed decreased throughfall in the growing period only. Since foliation and the event rainfall amount largely determined interception loss, the observed net water input under the deciduous canopy was sensitive to the temporal distribution of rainfall. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
Estimating reference evapotranspiration using numerical weather modelling   总被引:3,自引:0,他引:3  
Evapotranspiration is an important hydrological process and its estimation usually needs measurements of many weather variables such as atmospheric pressure, wind speed, air temperature, net radiation and relative humidity. Those weather variables are not easily obtainable from in situ measurements in practical water resources projects. This study explored a potential application of downscaled global reanalysis weather data using mesoscale modelling system 5 (MM5). The MM5 is able to downscale the global data down to much finer resolutions in space and time for use in hydrological investigations. In this study, the ERA‐40 reanalysis data are downscaled to the Brue catchment in southwest England. The results are compared with the observation data. Among the studied weather variables, atmospheric pressure could be derived very accurately with less than 0·2% error. On the other hand, the error in wind speed is about 200–400%. The errors in other weather variables are air temperature (<10%), relative humidity (5–21%) and net radiation (4–23%). The downscaling process generally improves the data quality (except wind speed) and provides higher data resolution in comparison with the original reanalysis data. The evapotranspiration values estimated from the downscaled data are significantly overestimated across all the seasons (27–46%) based on the FAO Penman–Monteith equation. The dominant weather variables are net radiation (during the warm period) and relative humidity (during the cold period). There are clear patterns among some weather variables and they could be used to correct the biases in the downscaled data from either short‐term in situ measurements or through regionalization from surrounding weather stations. Artificial intelligence tools could be used to map the downscaled data directly into evapotranspiration or even river runoff if rainfall data are available. This study provides hydrologists with valuable information on downscaled weather variables and further exploration of this potentially valuable data source by the hydrological community should be encouraged. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
Measurements are reported of rainfall, throughfall, stemflow, and derived interception losses made on a daily basis during two consecutive rainy seasons in a 4–5 year old and rapidly growing plantation forest of Acacia auriculiformis in a humid tropical environment. During the first observation period throughfall, stemflow, and interception loss amounted to respectively 81, 8, and 11 per cent of gross precipitation, whilst corresponding values for the second observation period were 75, 7, and 18 per cent. All three components correlated strongly with amounts of daily rainfall, but slopes of linear regression equations differed significantly between seasons for each component. Such differences are thought to reflect a 20 per cent increase in foliar mass as well as a certain instrumental bias introduced by the use of a fixed grid of throughfall troughs that differed between seasons. Tests did not reveal any effects of differences in rainfall characteristics although the two observation periods differed markedly in this respect. Although the present results fell within the (lower part of the) range reported for other sites in Southeast Asia application of Gash's analytical model suggested the results obtained during the second observation period to be anomalous. The model was tested with data from the second halves of the two observation periods, using parameters derived from the corresponding first halves. Discrepancies between estimated and observed losses were +9·4 and ?14·3 per cent for the two periods respectively. The bulk of the interception loss consisted of evaporation from a saturated canopy (69–80 per cent) and of evaporation after rainfall had ceased (25 and 15 per cent for the two periods respectively). Although the results were encouraging it would seem that a major difficulty in applying the analytical model to the humid tropics lies in obtaining a reliable estimate of the evaporation rate from a saturated canopy.  相似文献   

10.
ABSTRACT

The interception process impacts rainfall magnitude and intensity under the canopy. In this study, the effect of plant interception on throughfall characteristics was assessed in the deciduous Caatinga vegetation, at different canopy development stages and for temporal scales ranging from seasonal to the intra-event scale. Throughfall and stemflow percentages were slightly higher at the onset of the rainy season, when leaf area density is low, with resulting lower interception losses. However, there was no statistical difference among the variables at the seasonal scale. At the intra-event scale, average and maximum throughfall intensity at different time intervals showed statistical difference between the stages of canopy development. Regardless of leaf area density and rainfall depth, vegetation is able to retain all the water up to 2 min in the beginning of each rainfall event with accumulated rainfall smaller than 0.6 mm. Furthermore, the Caatinga vegetation attenuates the rainfall intensity by 30–40%.  相似文献   

11.
In this article the effect of redistribution of rainfall by banana on local water fluxes and the possible impact of these fluxes on surface runoff has been studied. First the water redistribution by a banana canopy at three development stages (vegetative, flowering, and bunch stage) was measured. The results showed a considerable stemflow, proportional to the leaf area index (LAI), which represented 18 to 26% of the incident rainfall volume according to the age of the crop. Consequently, the rainfall rate was 28‐fold higher at the plant collar for a fully developed banana canopy. For the throughfall, on average, the higher the LAI, the lower the mean throughfall. In addition, the spatial distribution of the throughfall varied according to the distance from the pseudostem. Notably, for the earlier stages, the area between the pseudostem and 0·5 m from it received weak throughfall. Secondly, simulations were carried out with a simple two‐compartment model simulating the total surface runoff volume. The simulations showed stemflow combined with the agronomical practice of furrowing has an effect on runoff compared to bare soil. A relative increase in surface runoff volume of three‐fold was encountered on a plot with a fully developed banana and a infiltration rate of 60 mm h?1. However, the absolute increase was only a few percentage of the incident rainfall volume, although it represented large water volumes given the tropical rains. These features must be taken into account for hydrological management of such systems. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
Alpine shrub Quercus aquifolioides was selected to study the effects of shrub canopy on throughfall and phreatic water by analyzing the isotopic time series of precipitation, canopy throughfall and phreatic water and examining correlations among these series in Wolong Nature Reserve, Western China. Based on analysis of precipitation data in 2003, the local meteoric water line during the rainy season was δD = 8.28 × δ18O + 8.93, and the primary precipitation moisture in this region originated from the Pacific Ocean in the summer. Stable isotope analysis showed that the main supply of throughfall and phreatic water was from precipitation, and the shrub canopy has an important effect on the processes of rainwater transmuted into throughfall and phreatic water. Moreover, the differences of δD and δ18O values between rainwater and throughfall were relevant to rainfall. Due to interception of the shrub canopy, there had a response hysteresis of phreatic water to the various rainfall events, which was mostly 2 days, except that this hysteresis was ≤1 day when rainfall was >15 mm/day.  相似文献   

13.
Throughfall has been widely studied in forests but there is a scarcity of studies that focus on the spatial variability and temporal stability of throughfall in eucalyptus plantations. We examined throughfall in a daily basis in a 2·5‐year eucalyptus plantation in southeastern Brazil using three sample arrangements: (1) close to tree trunks (CT) and in the central point between trunks (BT), (2) four‐radial layout centred in tree trunk and (3) eight‐radial layout. Throughfall was spatially non‐uniform and varied according to the spatial monitoring arrangement: accumulated throughfall/precipitation ratio of 146% (CT) and 85% (BT) in arrangement 1, mean throughfall of 88% in arrangement 2, 84% (hilltop) and 85% (side slope) in arrangement 3. The highest throughfall values, spatial variability and persistence of dry and wet conditions were found close to eucalyptus trunks. Often accumulated throughfall close to trunks exceeded rainfall, especially for long‐duration rainfall > 5 mm. The ‘funnel effect’ was consistently observed in all three arrangements and we speculate that the high throughfall concentration and temporal stability are related to canopy structures of eucalyptus. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
Although we know that rainfall interception (the rain caught, stored, and evaporated from aboveground vegetative surfaces and ground litter) is affected by rain and throughfall drop size, what was unknown until now is the relative proportion of each throughfall type (free throughfall, splash throughfall, canopy drip) beneath coniferous and broadleaved trees. Based on a multinational data set of >120 million throughfall drops, we found that the type, number, and volume of throughfall drops are different between coniferous and broadleaved tree species, leaf states, and timing within rain events. Compared with leafed broadleaved trees, conifers had a lower percentage of canopy drip (51% vs. 69% with respect to total throughfall volume) and slightly smaller diameter splash throughfall and canopy drip. Canopy drip from leafless broadleaved trees consisted of fewer and smaller diameter drops (D50_DR, 50th cumulative drop volume percentile for canopy drip, of 2.24 mm) than leafed broadleaved trees (D50_DR of 4.32 mm). Canopy drip was much larger in diameter under woody drip points (D50_DR of 5.92 mm) than leafed broadleaved trees. Based on throughfall volume, the percentage of canopy drip was significantly different between conifers, leafed broadleaved trees, leafless broadleaved trees, and woody surface drip points (p ranged from <0.001 to 0.005). These findings are partly attributable to differences in canopy structure and plant surface characteristics between plant functional types and canopy state (leaf, leafless), among other factors. Hence, our results demonstrating the importance of drop‐size‐dependent partitioning between coniferous and broadleaved tree species could be useful to those requiring more detailed information on throughfall fluxes to the forest floor.  相似文献   

15.
Understanding the isotopic composition of precipitation in a forested catchment is critical for ecohydrological studies. Changes in the water isotopes of rainfall were assessed during its passage through the canopy in throughfall, and the effect of different forest stands on the isotope composition of throughfall. In a cool temperate forest in Korea, rainfall and throughfall samples collected under Pinus densiflora (red pine), Castanea crenata (chestnut), Robinia pseudoacacia (black locust) and mixed stands (mix of these three species) were analysed for oxygen and hydrogen isotopes. Throughfall δ18O and δD were enriched compared to rainfall. A difference of δ18O and δD among throughfall may be related to the difference in interception–storage capacity of different species due to dissimilar canopy characteristics. Since isotopic composition of throughfall and rainfall are different due to canopy isotopic effects, use of rainfall isotopic signatures for ecohydrological studies in forested ecosystem can lead to biases.  相似文献   

16.
The deposition of fog to a wind‐exposed 3 m tall Puerto Rican cloud forest at 1010 m elevation was studied using the water budget and eddy covariance methods. Fog deposition was calculated from the water budget as throughfall plus stemflow plus interception loss minus rainfall corrected for wind‐induced loss and effect of slope. The eddy covariance method was used to calculate the turbulent liquid cloud water flux from instantaneous turbulent deviations of the surface‐normal wind component and cloud liquid water content as measured at 4 m above the forest canopy. Fog deposition rates according to the water budget under rain‐free conditions (0·11 ± 0·05 mm h?1) and rainy conditions (0·24 ± 0·13 mm h?1) were about three to six times the eddy‐covariance‐based estimate (0·04 ± 0·002 mm h?1). Under rain‐free conditions, water‐budget‐based fog deposition rates were positively correlated with horizontal fluxes of liquid cloud water (as calculated from wind speed and liquid water content data). Under rainy conditions, the correlation became very poor, presumably because of errors in the corrected rainfall amounts and very high spatial variability in throughfall. It was demonstrated that the turbulent liquid cloud water fluxes as measured at 4 m above the forest could be only ~40% of the fluxes at the canopy level itself due to condensation of moisture in air moving upslope. Other factors, which may have contributed to the discrepancy in results obtained with the two methods, were related to effects of footprint mismatch and methodological problems with rainfall measurements under the prevailing windy conditions. Best estimates of annual fog deposition amounted to ~770 mm year?1 for the summit cloud forest just below the ridge top (according to the water budget method) and ~785 mm year?1 for the cloud forest on the lower windward slope (using the eddy‐covariance‐based deposition rate corrected for estimated vertical flux divergence). Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
Di Wang  Li Wang 《水文研究》2019,33(3):372-382
Canopy interception is one of the most important processes in an ecosystem, but it is still neglected when assessing evapotranspiration (ET) partitioning in apple orchards on the Loess Plateau in China. To explore the importance of canopy interception, we monitored two neighbouring apple orchards on the Loess Plateau in China, one 8‐year‐old and the other 18‐years old at the start of the study, from May to September for four consecutive years (2013–2016). We measured parameters of canopy interception (I) including precipitation, throughfall, stemflow, leaf area index, transpiration (T), and soil evaporation (S) to quantify ET. The importance of canopy interception was then assessed by comparing the relationship between water supply (precipitation) and water demand (ET), calculated with and without considering canopy interception (T + S and T + S + I, respectively). Tree age clearly influenced canopy interception, as estimates of annual canopy interception during the study years in the younger and older orchards amounted to 22.2–29.4 mm and 26.8–39.9 mm, respectively. Daily incident rainfall and rainfall intensity in both orchards were significantly positively correlated with daily canopy interception in each year. The relationship between annual precipitation and annual ET (calculated with and without consideration of canopy interception) in the younger orchard differed during 2015 and 2016. Ignoring canopy interception would result in underestimation of annual ET in both apple orchards and hence incorrect evaluation of the relationship between water supply and water demand, particularly for the younger orchard during 2015 and 2016. Thus, for a complete understanding of water consumption in apple orchards in this and similar regions, canopy interception should not be ignored when assessing ET partitioning.  相似文献   

18.
Tim P. Duval 《水文研究》2019,33(11):1510-1524
Partitioning of rainfall through a forest canopy into throughfall, stemflow, and canopy interception is a critical process in the water cycle, and the contact of precipitation with vegetated surfaces leads to increased delivery of solutes to the forest floor. This study investigates the rainfall partitioning over a growing season through a temperate, riparian, mixed coniferous‐deciduous cedar swamp, an ecosystem not well studied with respect to this process. Seasonal throughfall, stemflow, and interception were 69.2%, 1.5%, and 29.3% of recorded above‐canopy precipitation, respectively. Event throughfall ranged from a low of 31.5 ± 6.8% for a small 0.8‐mm event to a high of 82.9 ± 2.4% for a large 42.7‐mm event. Rain fluxes of at least 8 mm were needed to generate stemflow from all instrumented trees. Most trees had funnelling ratios <1.0, with an exponential decrease in funnelling ratio with increasing tree size. Despite this, stand‐scale funnelling ratios averaged 2.81 ± 1.73, indicating equivalent depth of water delivered across the swamp floor by stemflow was greater than incident precipitation. Throughfall dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) averaged 26.60 ± 2.96 and 2.02 ± 0.16 mg L?1, respectively, which were ~11 and three times above‐canopy rain levels. Stemflow DOC averaged 73.33 ± 7.43 mg L?1, 35 times higher than precipitation, and TDN was 4.45 ± 0.56 mg L?1, 7.5 times higher than rain. Stemflow DOC concentration was highest from Populus balsamifera and TDN greatest from Thuja occidentalis trees. Although total below‐canopy flux of TDN increased with increasing event size, DOC flux was greatest for events 20–30 mm, suggesting a canopy storage threshold of DOC was readily diluted. In addition to documenting rainfall partitioning in a novel ecosystem, this study demonstrates the excess carbon and nitrogen delivered to riparian swamps, suggesting the assimilative capacity of these zones may be underestimated.  相似文献   

19.
Rain and throughfall drops were sampled during rain events in a New Zealand beech forest and the frequency distributions of drop mass and kinetic energy calculated. The kinetic energy of throughfall under the canopy was always greater than that of rainfall in the open, notwithstanding interception losses. During a typical rain event in which 51 mm fell in 36 h, the total kinetic energy of throughfail was 1.5 times greater than that of rainfall, and the mean amount of sand splashed from sample cups was 3.1 times greater under the canopy than in the open. It appears that where mineral soil is exposed at the surface, by animal trampling or burrowing for example, rates of soil detachment by splash under a forest canopy will probably exceed those in the open.  相似文献   

20.
Methods for measuring throughfall, stemflow and, hence, interception in the tropical rainforests of the Wet Tropics region of North Queensland, Australia, were tested at three sites for between 581 and 787 days. The throughfall system design was based on long troughs mounted beneath the canopy and worked successfully under a range of rainfall conditions. Comparison of replicated systems demonstrated that the methodology is capable of capturing the variability in throughfall exhibited beneath our tropical rainforest canopies. Similarly, the stemflow system design which used spiral collars attached to sample trees worked well under a range of rainfall conditions and also produced similar estimates of stemflow in replicated systems. Higher altitude rainforests (>1000 m) in North Queensland can receive significant extra inputs of water as the canopy intercepts passing cloud droplets. This additional source of water is referred to as ‘cloud interception’ and an instrument for detecting this is described. The results obtained from this gauge are compared with cloud interception estimates made using a canopy water balance method. This method is based on stemflow and throughfall measurements and provides an alternative means to fog or cloud interception gauge calibration techniques used in the literature. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号