首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
    
In semi‐arid environments, the characteristics of the land surface determine how rainfall is transformed into surface runoff and influences how this runoff moves from the hillslopes into river channels. Whether or not water reaches the river channel is determined by the hydrological connectivity. This paper uses a numerical experiment‐based approach to systematically assess the effects of slope length, gradient, flow path convergence, infiltration rates and vegetation patterns on the generation and connectivity of runoff. The experiments were performed with the Connectivity of Runoff Model, 2D version distributed, physically based, hydrological model. The experiments presented are set within a semi‐arid environment, characteristic of south‐eastern Spain, which is subject to low frequency high rainfall intensity storm events. As a result, the dominant hydrological processes are infiltration excess runoff generation and surface flow dynamics. The results from the modelling experiments demonstrate that three surface factors are important in determining the form of the discharge hydrograph: the slope length, the slope gradient and the infiltration characteristics at the hillslope‐channel connection. These factors are all related to the time required for generated runoff to reach an efficient flow channel, because once in this channel, the transmission losses significantly decrease. Because these factors are distributed across the landscape, they have a fundamental role in controlling the landscape hydrological response to storm events. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
  总被引:6,自引:0,他引:6  
Soil erosion hinders the recovery and development of ecosystems in semiarid regions. Rainstorms, coupled with the absence of vegetation and improper land management, are important causes of soil erosion in such areas. Greater effort should be made to quantify the initial erosion processes and try to find better solutions for soil and water conservation. In this research, 54 rainfall simulations were performed to assess the impacts of vegetation patterns on soil erosion in a semiarid area of the Loess Plateau, China. Three rainfall intensities (15 mm h‐1, 30 mm h‐1 and 60 mm h‐1) and six vegetation patterns (arbors‐shrubs‐grass ‐A‐S‐G‐, arbors‐grass‐shrubs ‐A‐G‐S‐, shrubs‐arbors‐grass ‐S‐A‐G‐, shrubs‐grass‐arbors ‐S‐G‐A‐, grass‐shrubs‐arbors ‐G‐S‐A‐ and grass‐arbors‐shrubs ‐G‐A‐S‐) were examined at different slope positions (summits, backslopes and footslopes) in the plots (33.3%, 33.3%, 33.3%), respectively. Results showed that the response of soil erosion to rainfall intensity differed under different vegetation patterns. On average, increasing rainfall intensity by 2 to 4 times induced increases of 3.1 to 12.5 times in total runoff and 6.9 to 46.4 times in total sediment yield, respectively. Moreover, if total biomass was held constant across the slope, the patterns of A‐G‐S and A‐S‐G (planting arbor at the summit position) had the highest runoff (18.34 L m‐2 h‐1) and soil losses (197.98 g m‐2 h‐1), while S‐A‐G had the lowest runoff (5.51 L m‐2 h‐1) and soil loss (21.77 g m‐2 h‐1). As indicated by redundancy analysis (RDA) and Pearson correlation results, a greater volume of vegetation located on the back‐ and footslopes acted as effective buffers to prevent runoff generation and sediment yield. Our findings indicated that adjusting vegetation position along slopes can be a crucial tool to control water erosion and benefit ecosystem restoration on the Loess Plateau and other similar regions of the world. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

3.
    
Soil organic carbon (SOC) is an important component of the global carbon cycle yet is rarely quantified adequately in terms of its spatial variability resulting from losses of SOC due to erosion by water. Furthermore, in drylands, little is known about the effect of widespread vegetation change on changes in SOC stores and the potential for water erosion to redistribute SOC around the landscape especially during high‐magnitude run‐off events (flash floods). This study assesses the change in SOC stores across a shrub‐encroachment gradient in the Chihuahuan Desert of the south‐west USA. A robust estimate of SOC storage in surface soils is presented, indicating that more SOC is stored beneath vegetation than in bare soil areas. In addition, the change in SOC storage over a shrub‐encroachment gradient is shown to be nonlinear and highly variable within each vegetation type. Over the gradient of vegetation change, the heterogeneity of SOC increases, and newer carbon from C3 plants becomes dominant. This increase in the heterogeneity of SOC is related to an increase in water erosion and SOC loss from inter‐shrub areas, which is self‐reinforcing. Shrub‐dominated drylands lose more than three times as much SOC as their grass counterparts. The implications of this study are twofold: (1) quantifying the effects of vegetation change on carbon loss via water erosion and the highly variable effects of land degradation on soil carbon stocks is critical. (2) If landscape‐scale understanding of carbon loss by water erosion in drylands is required, studies must characterize the heterogeneity of ecosystem structure and its effects on ecosystem function across ecotones subject to vegetation change. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
    
Hydraulic connectivity on hillslopes and the existence of preferred soil moisture states in a catchment have important controls on runoff generation. In this study we investigate the relationships between soil moisture patterns, lateral hillslope flow, and streamflow generation in a semi‐arid, snowmelt‐driven catchment. We identify five soil moisture conditions that occur during a year and present a conceptual model based on field studies and computer simulations of how streamflow is generated with respect to the soil moisture conditions. The five soil moisture conditions are (1) a summer dry period, (2) a transitional fall wetting period, (3) a winter wet, low‐flux period, (4) a spring wet, high‐flux period, and (5) a transitional late‐spring drying period. Transitions between the periods are driven by changes in the water balance between rain, snow, snowmelt and evapotranspiration. Low rates of water input to the soil during the winter allow dry soil regions to persist at the soil–bedrock interface, which act as barriers to lateral flow. Once the dry‐soil flow barriers are wetted, whole‐slope hydraulic connectivity is established, lateral flow can occur, and upland soils are in direct connection with the near‐stream soil moisture. This whole‐slope connectivity can alter near‐stream hydraulics and modify the delivery of water, pressure, and solutes to the stream. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
    
Eight runoff plots, located within a small catchment within the Walnut Gulch Experimental Watershed, southern Arizona, were constructed to test the argument that sediment yield (kg m?2) decreases as plot length increases. The plots ranged in length from 2 m to 27·78 m. Runoff and sediment loss from these plots were obtained for ten natural storm events. The pattern of sediment yield from these plots conforms to the case in which sediment yield first increases as plot length increases, but then subsequently decreases. Data from the present experiment indicate that maximum sediment yield would occur from a plot 7 m long. Analysis of both runoff and sediment yield from the plots indicates that the relationship of sediment yield to plot length derives both from the limited travel distance of individual entrained particles and from a decline in runoff coefficient as plot length increases. Particle‐size analysis of eroded sediment confirms the role of travel distance in controlling sediment yield. Whether in response to the finite travel distance of entrained particles or the relationship of runoff coefficient to plot length, the experiment clearly demonstrates that the erosion rates for hillslopes and catchments cannot be simply extrapolated from plot measurements, and that alternative methods for estimating large‐area erosion rates are required. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
  总被引:2,自引:0,他引:2  
This study analyses some hydrological driving forces and their interrelation with surface‐flow initiation in a semiarid Caatinga basin (12 km2), Northeastern Brazil. During the analysis period (2005 – 2014), 118 events with precipitation higher than 10 mm were monitored, providing 45 events with runoff, 25 with negligible runoff and 49 without runoff. To verify the dominant processes, 179 on‐site measurements of saturated hydraulic conductivity (Ksat) were conducted. The results showed that annual runoff coefficient lay below 0.5% and discharge at the outlet has only occurred four days per annum on average, providing an insight to the surface‐water scarcity of the Caatinga biome. The most relevant variables to explain runoff initiation were total precipitation and maximum 60‐min rainfall intensity (I60). Runoff always occurred when rainfall surpassed 31 mm, but it never occurred for rainfall below 14 mm or for I60 below 12 mm h?1. The fact that the duration of the critical intensity is similar to the basin concentration time (65 min) and that the infiltration threshold value approaches the river‐bank saturated hydraulic conductivity support the assumption that Hortonian runoff prevails. However, none of the analysed variables (total or precedent precipitation, soil moisture content, rainfall intensities or rainfall duration) has been able to explain the runoff initiation in all monitored events: the best criteria, e.g. failed to explain 27% of the events. It is possible that surface‐flow initiation in the Caatinga biome is strongly influenced by the root‐system dynamics, which changes macro‐porosity status and, therefore, initial abstraction. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
    
A. Montenegro  R. Ragab 《水文研究》2010,24(19):2705-2723
Brazilian semi‐arid regions are characterized by water scarcity, vulnerability to desertification, and climate variability. The investigation of hydrological processes in this region is of major interest not only for water planning strategies but also to address the possible impact of future climate and land‐use changes on water resources. A hydrological distributed catchment‐scale model (DiCaSM) has been applied to simulate hydrological processes in a small representative catchment of the Brazilian northeast semi‐arid region, and also to investigate the impact of climate and land‐use changes, as well as changes associated with biofuel/energy crops production. The catchment is part of the Brazilian network for semi‐arid hydrology, established by the Brazilian Federal Government. Estimating and modelling streamflow (STF) and recharge in semi‐arid areas is a challenging task, mainly because of limitation in in situ measurements, and also due to the local nature of some processes. Direct recharge measurements are very difficult in semi‐arid catchments and contain a high level of uncertainty. The latter is usually addressed by short‐ and long‐time‐scale calibration and validation at catchment scale, as well as by examining the model sensitivity to the physical parameters responsible for the recharge. The DiCaSM model was run from 2000 to 2008, and streamflow was successfully simulated, with a Nash–Sutcliffe (NS) efficiency coefficient of 0·73, and R2 of 0·79. On the basis of a range of climate change scenarios for the region, the DiCaSM model forecasted a reduction by 35%, 68%, and 77%, in groundwater recharge (GWR), and by 34%, 65%, and 72%, in streamflow, for the time spans 2010–2039, 2040–2069, and 2070–2099, respectively, could take place for a dry future climate scenario. These reductions would produce severe impact on water availability in the region. Introducing castor beans to the catchment would increase the GWR and streamflow, mainly if the caatinga areas would be converted into castor beans production. Changing an area of 1000 ha from caatinga to castor beans would increase the GWR by 46% and streamflow by 3%. If the same area of pasture is converted into castor beans, there would be an increase in GWR and streamflow by 24% and 5%, respectively. Such results are expected to contribute towards environmental policies for north‐east Brazil (NEB), and to biofuel production perspectives in the region. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
    
Soil surface roughness not only delays overland flow generation but also strongly affects the spatial distribution and concentration of overland flow. Previous studies generally aimed at predicting the delay in overland flow generation by means of a single parameter characterizing soil roughness. However, little work has been done to find a link between soil roughness and overland flow dynamics. This is made difficult because soil roughness and hence overland flow characteristics evolve differently depending on whether diffuse or concentrated erosion dominates. The present study examined whether the concept of connectivity can be used to link roughness characteristics to overland flow dynamics. For this purpose, soil roughness of three 30‐m2 tilled plots exposed to natural rainfall was monitored for two years. Soil micro‐topography was characterized by means of photogrammetry on a monthly basis. Soil roughness was characterized by the variogram, the surface stream network was characterized by network‐based indices and overland flow connectivity was characterized by Relative Surface Connection function (RSCf) functional connectivity indicator. Overland flow hydrographs were generated by means of a physically‐based overland flow model based on 1‐cm resolution digital elevation models. The development of eroded flow paths at the soil surface not only reduced the delay in overland flow generation but also resulted in a higher continuity of high flow velocity paths, an increase in erosive energy and a higher rate of increase of the overland flow hydrograph. Overland flow dynamics were found to be highly correlated to the RSCf characteristic points. By providing information regarding overland flow dynamics, the RSCf may thus serve as a quantitative link between soil roughness and overland flow generation in order to improve the overland flow hydrograph prediction. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
    
The tunnel systems in a semi‐arid catchment of the Loess Plateau of China were repeatedly surveyed prior to the rainy seasons of 1989, 1999 and 2001. The surveys aimed to: (1) measure tunnel development over the 12 year period 1989–2001; (2) explore how the physiographical conditions affect the spatio‐temporal variability of tunnel development; and (3) to identify the geomorphic processes associated with tunnel development. The ultimate goal was to quantify the geomorphic significance of tunnel systems in the catchment. Over the 12 year period, the number of tunnel inlets was more than doubled and most of the newly increased inlets were initiated in the few catastrophic storm events. However, tunnel enlargement can occur in storm or inter‐storm periods, mainly through earth falls and slumps in inlets, and water erosion and roof cave‐in collapses in tunnel paths. Tunnel development varied with material properties, land uses and topographic conditions. Net tunnel erosion may contribute at least 25–30% of the catchment sediment yield and was mainly produced by the initiation and enlargement of tunnel inlets rather than tunnel paths. To protect the areas against tunnel erosion, terracing of the upper slopes seems to be more effective than planting vegetation on the lower slopes. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
    
This paper evaluates the Integrated BIosphere Simulator (IBIS) land surface model using daily soil moisture data over a 3‐year period (2005–2007) at a semi‐arid site in southeastern Australia, the Stanley catchment, using the Monte Carlo generalized likelihood uncertainty estimation (GLUE) approach. The model was satisfactorily calibrated for both the surface 30 cm and full profile 90 cm. However, full‐profile calibration was not as good as that for the surface, which results from some deficiencies in the evapotranspiration component in IBIS. Relatively small differences in simulated soil moisture were associated with large discrepancies in the predictions of surface runoff, drainage and evapotranspiration. We conclude that while land surface schemes may be effective at simulating heat fluxes, they may be ineffective for prediction of hydrology unless the soil moisture is accurately estimated. Sensitivity analyses indicated that the soil moisture simulations were most sensitive to soil parameters, and the wilting point was the most identifiable parameter. Significant interactions existed between three soils parameters: porosity, saturated hydraulic conductivity and Campbell ‘b’ exponent, so they could not be identified independent of each other. There were no significant differences in parameter sensitivity and interaction for different hydroclimatic years. Even though the data record contained a very dry year and another year with a very large rainfall event, this indicated that the soil model could be calibrated without the data needing to explore the extreme range of dry and wet conditions. IBIS was much less sensitive to vegetation parameters. The leaf area index (LAI) could affect the mean of daily soil moisture time series when LAI < 1, while the variance of the soil moisture time series was sensitive to LAI > 1. IBIS was insensitive to the Jackson rooting parameter, suggesting that the effect of the rooting depth distribution on predictions of hydrology was insignificant. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
  总被引:1,自引:0,他引:1  
UK peatlands are affected by severe gully erosion with consequent impacts on ecosystem services from these areas. Incision into the peat can damage the vegetation and hydrology and lead to increases in carbon loss and sediment transfer downstream. Gullies represent then a conduit for and a hotspot of carbon loss but the relatively high water tables of gullies have meant that they have been identified as areas with a high restoration potential because of easily restored peat‐forming conditions. This study uses a series of gully sites, subject to different restoration interventions, to investigate differences in carbon pathways (DOC, CO2) and hydrology between restoration strategies and gully position. The results show that the position within the gully (interfluve, gully side, or gully floor) does not significantly affect water quality but that it plays a significant role in CO2 exchange. Gully floors are areas of high photosynthesis and ecosystem respiration, though net ecosystem exchange is not significantly different across the gully. While gully position plays a role in the cycling of some carbon species, this study highlights the importance of vegetation as a key control on carbon cycling. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
    
The antecedent soil moisture status of a catchment is an important factor in hydrological modelling. Traditional Hortonian infiltration models assume that the initial moisture content is constant across the whole catchment, despite the fact that even in small catchments antecedent soil moisture exhibits tremendous spatial heterogeneity. Spatial patterns of soil water distribution across three transects (two in a burnt area and one in an unburnt area) in a semi‐arid area were studied. At the transect scale, when the factors affecting soil moisture were limited to topographical position or local topography, spatial patterns showed time stability, but when other factors, such as vegetation, were taken into account, the spatial patterns became time unstable. At the point scale, and in the same areas, topographical position was the main factor controlling time stability. Scale dependence of time stability was studied and local topography and vegetation presence were observed to play an important role for the correlation between consecutive measures depending on the scale. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

13.
  总被引:2,自引:0,他引:2  
The effect of erosional detachment, transport, and deposition of topsoil on the stock of soil organic matter (SOM) and its association with soil minerals has been a focus of a growing number of studies. A particularly lively debate is currently centered on the questions of whether terrestrial sedimentation of previously eroded SOM may constitute a relevant sink for atmospheric carbon dioxide (CO2), and how ‘stable’ such carbon (C) might be on multidecadal timescales. In this commentary, we illustrate how redistribution of eroded SOM within a landscape can create situations that are not adequately described by the jargon commonly used to characterize C turnover dynamics. We argue that more quantitative and scientifically rigorous categories are needed to describe soil C turnover and to promote the development of innovative, numerical models of C dynamics in landscapes characterized by significant mass movement. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
    
We quantify erosion rates in the higher sectors of the Huasco Valley, in the Main Cordillera of the semi‐arid Andes of Chile, using elevation differences between three successive geomorphic markers (pediments and paleo‐valleys) and the present day valley. Available Ar‐Ar ages of Neogene pediments are used to estimate mean erosion rates for the three periods (16 to 13 My, 13 to 8 My, and following 8 My). The landscape of the Huasco Valley is in a transient state, as indicated by well‐preserved pediment surfaces in interfluves, valleys deeply incised by fluvial and glacial erosion and scarped head‐valleys that represent the current knickzones. Higher erosion rates (45–75 m/My) are calculated for the more recent period (< 8 My) during which deep incision developed compared to previous periods (6–31 m/My). Quantitative data indicate that glaciers had a much higher erosional capability than fluvial activity in the higher sectors of the Main Cordillera. Comparison with erosion rates calculated in other drainage basins of the Chilean Andes suggests that the variability of erosion rates depends on the landscape's transient erosive state. The landscape's geomorphologic response to the uplift of the Main Cordillera results in the retreat of a knickzone, for which retreat velocity depends on precipitation rate pattern and glacial erosion intensity. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
    
The long‐term evolution of channel longitudinal profiles within drainage basins is partly determined by the relative balance of hillslope sediment supply to channels and the evacuation of channel sediment. However, the lack of theoretical understanding of the physical processes of hillslope–channel coupling makes it challenging to determine whether hillslope sediment supply or channel sediment evacuation dominates over different timescales and how this balance affects bed elevation locally along the longitudinal profile. In this paper, we develop a framework for inferring the relative dominance of hillslope sediment supply to the channel versus channel sediment evacuation, over a range of temporal and spatial scales. The framework combines distinct local flow distributions on hillslopes and in the channel with surface grain‐size distributions. We use these to compute local hydraulic stresses at various hillslope‐channel coupling locations within the Walnut Gulch Experimental Watershed (WGEW) in southeast Arizona, USA. These stresses are then assessed as a local net balance of geomorphic work between hillslopes and channel for a range of flow conditions generalizing decadal historical records. Our analysis reveals that, although the magnitude of hydraulic stress in the channel is consistently higher than that on hillslopes, the product of stress magnitude and frequency results in a close balance between hillslope supply and channel evacuation for the most frequent flows. Only at less frequent, high‐magnitude flows do channel hydraulic stresses exceed those on hillslopes, and channel evacuation dominates the net balance. This result suggests that WGEW exists mostly (~50% of the time) in an equilibrium condition of sediment balance between hillslopes and channels, which helps to explain the observed straight longitudinal profile. We illustrate how this balance can be upset by climate changes that differentially affect relative flow regimes on slopes and in channels. Such changes can push the long profile into a convex or concave condition. © 2018 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

16.
    
Wildfires change the infiltration properties of soil, reduce the amount of interception and result in increased runoff. A wildfire at Northeast Attica, Central Greece, in August 2009, destroyed approximately one third of a study area consisting of a mixture of shrublands, pastures and pines. The present study simultaneously models multiple semi‐arid, shrubland‐dominated Mediterranean catchments and assesses the hydrological response (mean annual and monthly runoff and runoff coefficients) during the first few years following wildfires. A physically based, hydrological model (MIKE SHE) was chosen. Calibration and validation results of mean monthly discharge presented very good agreement with the observed data for the pre‐wildfire and post‐wildfire period for two subcatchments (Nash–Sutcliffe Efficiency coefficient of 79.7%). The model was then used to assess the pre‐wildfire and post‐wildfire runoff responses for each of seven catchments in the study area. Mean annual surface runoff increased for the first year and after the second year following the wildfires increased by 112% and 166%, respectively. These values are within the range observed in similar cases of monitored sites. This modelling approach may provide a way of prioritizing catchment selection with respect to post‐fire remediation activities. Additionally, this modelling assessment methodology would be valuable to other semi‐arid areas because it provides an important means for comprehensively assessing post‐wildfire response over large regions and therefore attempts to address some of the scaled issues in the specific literature field of research. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
    
We assess the relative merits of application of the most commonly used field methods (soil‐water balance (SWB), chloride mass balance (CMB) and soil moisture monitoring (NP)) to determine recharge rates in micro‐irrigated and non‐irrigated areas of a semi‐arid coastal orchard located in a relatively complex geological environment. Application of the CMB method to estimate recharge rates was difficult owing to the unusually high, variable soil‐water chloride concentrations. In addition, contrary to that expected, the chloride concentration distribution at depths below the root zone in the non‐irrigated soil profiles was greater than that in the irrigated profiles. The CMB method severely underestimated recharge rates in the non‐irrigated areas when compared with the other methods, although the CMB method estimated recharge rates for the irrigated areas, that were similar to those from the other methods, ranging from 42 to 141 mm/year. The SWB method, constructed for a 15‐year period, provided insight into the recharge process being driven by winter rains rather than summer irrigation and indicated an average rate of 75 mm/year and 164 mm/year for the 1984 – 98 and 1996 – 98 periods, respectively. Assuming similar soil‐water holding capacity, these recharge rates applied to both irrigated and non‐irrigated areas. Use of the long period of record was important because it encompassed both drought and heavy rainfall years. Successful application of the SWB method, however, required considerable additional field measurements of orchard ETc, soil‐water holding capacity and estimation of rainfall interception – runoff losses. Continuous soil moisture monitoring (NP) was necessary to identify both daily and seasonal seepage processes to corroborate the other recharge estimates. Measured recharge rates during the 1996 – 1998 period in both the orchards and non‐irrigated site averaged 180 mm/year. The pattern of soil profile drying during the summer irrigation season, followed by progressive wetting during the winter rainy season was observed in both irrigated and non‐irrigated soil profiles, confirming that groundwater recharge was rainfall driven and that micro‐irrigation did not ‘predispose’ the soil profile to excess rainfall recharge. The ability to make this recharge assessment, however, depended on making multiple field measurements associated with all three methods, suggesting that any one should not be used alone. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

18.
    
Modifications are made to the revised Morgan–Morgan–Finney erosion prediction model to enable the effects of vegetation cover to be expressed through measurable plant parameters. Given the potential role of vegetation in controlling water pollution by trapping clay particles in the landscape, changes are also made to the way the model deals with sediment deposition and to allow the model to incorporate particle‐size selectivity in the processes of erosion, transport and deposition. Vegetation effects are described in relation to percentage canopy cover, percentage ground cover, plant height, effective hydrological depth, density of plant stems and stem diameter. Deposition is modelled through a particle fall number, which takes account of particle settling velocity, flow velocity, flow depth and slope length. The detachment, transport and deposition of soil particles are simulated separately for clay, silt and sand. Average linear sensitivity analysis shows that the revised model behaves rationally. For bare soil conditions soil loss predictions are most sensitive to changes in rainfall and soil parameters, but with a vegetation cover plant parameters become more important than soil parameters. Tests with the model using field measurements under a range of slope, soil and crop covers from Bedfordshire and Cambridgeshire, UK, give good predictions of mean annual soil loss. Regression analysis of predicted against observed values yields an intercept value close to zero and a line slope close to 1·0, with a coefficient of efficiency of 0·81 over a range of values from zero to 38·6 t ha?1. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
    
The paper describes a hydrological model for agricultural water intervention in a community watershed at Kothapally in India, developed through integrated management and a consortium approach. The impacts of various soil and water management interventions in the watershed are compared to no‐intervention during a 30‐year simulation period by application of the calibrated and validated ARCSWAT 2005 (Version 2.1.4a) modelling tool. Kothapally receives, on average, 800 mm rainfall in the monsoon period. 72% of total rainfall is converted as evaporation and transpiration (ET), 20% is stored by groundwater aquifer, and 8% exported as outflow from the watershed boundary in current water interventions. ET, groundwater recharge and outflow under no‐intervention conditions are found to be 64, 9, and 19%, respectively. Check dams helped in storing water for groundwater recharge, which can be used for irrigation, as well minimising soil loss. In situ water management practices improved the infiltration capacity and water holding capacity of the soil, which resulted in increased water availability by 10–30% and better crop yields compared to no‐intervention. Water outflows from the developed watershed were more than halved compared to no‐intervention, indicating potentially large negative downstream impacts if these systems were to be implemented on a larger scale. On the other hand, in the watershed development program, sediment loads to the streams were less than one‐tenth. It can be concluded that the hydrological impacts of large‐scale implementation of agricultural water interventions are significant. They result in improved rain‐fed agriculture and improved productivity and livelihood of farmers in upland areas while also addressing the issues of poverty, equity, and gender in watersheds. There is a need for case‐specific studies of such hydrological impacts along with other impacts in terms of equity, gender, sustainability, and development at the mesoscale. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
    
Evaluating performances of four commonly used evaporation estimate methods, namely; Bowen ratio energy balance (BREB), mass transfer (MT), Priestley–Taylor (PT) and pan evaporation (PE), based on 4 years experimental data, the most effective and the reliable evaporation estimates model for the semi‐arid region of India has been derived. The various goodness‐of‐fit measures, such as; coefficient of determination (R2), index of agreement (D), root mean square error (RMSE), and relative bias (RB) have been chosen for the performance evaluation. Of these models, the PT model has been found most promising when the Bowen ratio, β is known a priori, and based on its limited data requirement. The responses of the BREB, the PT, and the PE models were found comparable to each other, while the response of the MT model differed to match with the responses of the other three models. The coefficients, β of the BREB, µ of the MT, α of the PT and KP of the PE model were estimated as 0·07, 2·35, 1·31 and 0·65, respectively. The PT model can successfully be extended for free water surface evaporation estimates in semi‐arid India. A linear regression model depicting relationship between daily air and water temperature has been developed using the observed water temperatures and the corresponding air temperatures. The model helped to generate unrecorded water temperatures for the corresponding ambient air temperatures. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号