首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
A typical agricultural water reservoir (AWR) of 2400 m2 area and 5 m depth, located in a semi‐arid area (southern Spain), was surveyed on a daily basis for 1 year. The annual evaporation flux was 102·7 W m?2, equivalent to an evaporated water depth of 1310 mm year?1. The heat storage rate G exhibited a clear annual cycle with a peak gain in April (G ~ 45 W m?2) and a peak loss in November (G ~ 40 W m?2), leading to a marked annual hysteretic trend when evaporation (λE) was related to net radiation (Rn). λE was strongly correlated with the available energy A, representing 91% of the annual AWR energy loss. The sensible heat flux H accounted for the remaining 9%, leading to an annual Bowen ratio in the order of 0·10. The equilibrium and advective evaporation terms of the Penman formula represented 76 and 24%, respectively, of the total evaporation, corresponding to a annual value of the Priestley–Taylor (P–T) coefficient (α) of 1·32. The P–T coefficient presented a clear seasonal pattern, with a minimum of 1·23 (July) and a maximum of 1·65 (December), indicating that, during periods of limited available energy, AWR evaporation increased above the potential evaporation as a result of the advection process. Overall, the results stressed that accurate prediction of monthly evaporation by means of the P–T formula requires accounting for both the annual cycle of storage and the advective component. Some alternative approaches to estimating Rn, G and α are proposed and discussed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
The eddy covariance and energy balance method was employed to determine evapotranspiration (LE) over a wet temperate C3–C4 co‐existing grassland in Japan. After sensible heat flux (H) was estimated via the eddy covariance technique, LE was calculated as the residual of the energy budget with calibration against the direct measurements of LE by a lysimeter. Daily mean LE varied from 0·8 to 10·5 MJ d−1, with a peak at 16·5 MJ d−1 in late July to early August. Day‐to‐day and seasonal variability in LE was affected appreciably by net radiation (Rn), atmospheric vapour pressure deficit (VPD), canopy surface conductance (gc) and leaf area index (LAI). Before the canopy closure, LE responded to LAI in a linear manner. However, LE decreased with increasing LAI later in summer. Daytime variation in the decoupling coefficient (Ω) demonstrates that the canopy decoupled from the atmosphere in the morning and LE was primarily driven by the available energy, while in the afternoon the canopy partially coupled to the atmosphere so that LE was sensitive to VPD and gc. Throughout the whole measurement period, Ω was generally larger than 0·5, suggesting that the available energy contributes more to LE than VPD. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

3.
Measurements of water vapour flux from semi‐arid perennial woodland (mallee) were made for 3 years using eddy covariance instrumentation. There have been no previous long‐term, detailed measures of water use in this ecosystem. Latent energy flux (LE) on a half hourly basis was the measure of the combined soil and plant evaporation, ‘evapotranspiration’ (ELE) of the site. Aggregation over 3 years of the site measured rain (1136 mm) and the estimated evaporation (794 mm) suggests that 342 mm or 30% of rain had moved into or past the root zone of the vegetation. Above average rainfall during 2011 and the first quarter of 2012 (633 mm, 15 months) would likely have been the period during which significant groundwater recharge occurred. At times immediately after rainfall, ELE rates were the same or exceeded estimates of potential E calculated from a suitably parameterized Penman–Monteith (EPMo) equation. Apparent free water E from plant interception and soil evaporation was about 2.3 mm and lasted for 1.3 days following rainfall in summer, while in autumn, E was 5.1 mm that lasted over 5.4 days. The leaf area index (LAI) needed to adjust a wind function calibrated Penman equation (EPMe) to match the ELE values could be back calculated to generate seasonal change in LAI from 0.12 to 0.46 and compared well with normalized difference vegetation index; r = 0.38 and p = 0.0213* and LAI calculated from digital cover photography. The apparently conservative response of perennial vegetation evaporation to available water in these semi‐arid environments reinforces the conclusion that these ecosystems use this mechanism to survive the reasonably common dry periods. Plant response to soil water availability is primarily through gradual changes in leaf area. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
Evaluating performances of four commonly used evaporation estimate methods, namely; Bowen ratio energy balance (BREB), mass transfer (MT), Priestley–Taylor (PT) and pan evaporation (PE), based on 4 years experimental data, the most effective and the reliable evaporation estimates model for the semi‐arid region of India has been derived. The various goodness‐of‐fit measures, such as; coefficient of determination (R2), index of agreement (D), root mean square error (RMSE), and relative bias (RB) have been chosen for the performance evaluation. Of these models, the PT model has been found most promising when the Bowen ratio, β is known a priori, and based on its limited data requirement. The responses of the BREB, the PT, and the PE models were found comparable to each other, while the response of the MT model differed to match with the responses of the other three models. The coefficients, β of the BREB, µ of the MT, α of the PT and KP of the PE model were estimated as 0·07, 2·35, 1·31 and 0·65, respectively. The PT model can successfully be extended for free water surface evaporation estimates in semi‐arid India. A linear regression model depicting relationship between daily air and water temperature has been developed using the observed water temperatures and the corresponding air temperatures. The model helped to generate unrecorded water temperatures for the corresponding ambient air temperatures. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
Understanding the effects of hydrological processes on solute dynamics is critical to interpret biogeochemical processes. Water chemistry and isotopic compositions of surface water (δ18Ow and δDw) were investigated in rivers from Southwest China to study the effects of hydrological variability on biogeochemical processes. The inverse relationship between deuterium excess (d-excess) and δ18Ow could be ascribed to non-equilibrium fractionation processes, and the slope of the Local River Water Line was much lower than the Local Meteoric Water Line, suggesting the post-precipitation evaporation pattern. The evaporation fraction (1–f) was estimated by the d-excess method, varying from 0.01 to 0.18. (1–f), was a function of water temperature and drainage mean elevation, indicating that evaporation easily occurs at high temperatures in low-elevation regions. The hydrological processes co-varied with solute dynamics in the river network, and fluid transit time and temperature were likely responsible for the co-variations. Also, we found that hydrological processes played an important role in solute dynamics through shifting the geochemical processes (e.g., enrichment, water-rock reaction, photosynthesis, and secondary mineral precipitation). This study highlights that biogeochemical processes co-vary with hydrological processes, and we suggest that investigating hydrological processes can help to understand biogeochemical processes.  相似文献   

6.
Is the total evaporation from a wetland surface (including: open water evaporation, plant transpiration and wet/dry soil evaporation) similar, lower, or higher than evaporation from an open water surface under the same climatic conditions? This question has been the subject of long debate; the literature does not show a consensus. In this paper we contribute to the discussion in two steps. First, we analyse the evaporation from a wetland with emergent vegetation (Ea) versus open water evaporation (Ew) by applying the Penman–Monteith equation to identical climate input data, but with different biophysical characteristics of each surface. Second, we assess the variability of measured Ea/Ew through a literature review of selected wetlands around the globe.We demonstrate that the ratio Ea/Ew is site-specific, and a function of the biophysical properties of the wetland surface, which can also undergo temporal variability depending on local hydro-climate conditions. Second, we demonstrate that the Penman–Monteith model provides a suitable basis to interpret Ea/Ew variations. This implies that the assumption of wetland evaporation to behave similar to open water bodies is not correct. This has significant implications for the total water consumption and water allocation to wetlands in river basin management.  相似文献   

7.
Eight radiation‐based equations for determining evaporation were evaluated and expressed in five generalized forms. Five evaporation equations (Abtew, Hargreaves, Makkink, Priestley and Taylor and Turc), where each represents one generalized form, were then compared with pan evaporation measured at Changins station in Switzerland. The comparison was first made using the original constant values involved in each equation, and then using the recalibrated constant values. Evaluation of the Priestley and Taylor equation requires net radiation data as input, in this study, net radiation was estimated using Equation (16) owing to the lack of observation data. The results showed that when the original constant values were used, large errors resulted for most of the equations. When recalibrated constant values were substituted for the original constant values, four of the five equations improved greatly, and all five equations performed well for determining mean annual evaporation. For seasonal and monthly evaporation, the Hargreaves and Turc equations showed a significant bias, especially for cold months. With properly determined constant values, the Makkink and modified Priestley and Taylor equations resulted in monthly evaporation values that agreed most closely with pan evaporation in the study region. The simple Abtew equation can also be used when other meteorological data except radiation are not available. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

8.
The aim of this study was to validate evaporation models that can be used for palaeo‐reconstructions of large lake water levels. Lake Titicaca, located in a high‐altitude semi‐arid tropical area in the northern Andean Altiplano, was the object of this case study. As annual evaporation is about 90% of lake output, the lake water balance depends heavily on the yearly and monthly evaporation flux. At the interannual scale, evaporation estimation presents great variability, ranging from 1350 to 1900 mm year?1. It has been found that evaporation is closely related to lake rainfall by a decreasing relationship integrating the implicit effect of nebulosity and humidity. At the seasonal scale, two monthly evaporation data sets were used: pan observations and estimations derived from the lake energy budget. Comparison between these data sets shows that (i) there is one maximum per year for pan evaporation and two maxima per year for lake evaporation, and (ii) pan evaporation is greater than lake evaporation by about 100 mm year?1. These differences, mainly due to a water depth scale factor, have been simulated with a simple thermal model θw(h, t) of a free‐surface water column. This shows that pan evaporation (h = 0·20 m) is strongly correlated with direct solar radiation, whereas the additional maximum of lake evaporation (h = 40 m) is related to the heat restitution towards the atmosphere from the water body at the end of summer. Finally, five monthly evaporation models were tested in order to obtain the optimal efficiency/complexity ratio. When the forcing variables are limited to those that are most readily available in the past, i.e. air temperature and solar radiation, the best results are obtained with the radiative Abtew model (r = 0·70) and with the Makkink radiative/air temperature model (r = 0·67). Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
The scenario assumed for this study was that of a region with a complete or first‐order weather station surrounded by a network of second‐order stations, where only monthly air temperature data were available. The objective was to evaluate procedures to estimate the monthly α parameter of the Priestley–Taylor equation in the second‐order stations by adjusting and extrapolating α values determined at the first‐order station. These procedures were applied in two climatic zones of north‐east Spain with semi‐arid continental and semi‐arid Mediterranean climates, respectively. Procedure A assumed α to be constant over each zone for each month (direct extrapolation). Procedure B accounted for differences in vapour pressure deficit and available energy for evapotranspiration between the first‐ and second‐order stations. Procedure C was based on equating the Penman–Monteith (P–M) and Priestley–Taylor (P–T) equations on a monthly basis to solve for α. Methods to estimate monthly mean vapour pressure deficit, net radiation and wind speed were developed and evaluated. A total of 11 automated first‐order weather stations with a minimum period of record of 6 years (ranging from 6 to 10 years) were used for this study. Six of these stations were located in the continental zone and five in the Mediterranean zone. One station in each zone was assumed to be first‐order whereas the remainder were taken as second‐order stations. Monthly α parameters were calibrated using P–M reference crop evapotranspiration (ET0) values, calculated hourly and integrated for monthly periods, which were taken as ‘true’ values of ET0. For the extrapolation of monthly α parameters, procedure A was found to perform slightly better than procedure B in the Mediterranean zone. The opposite was true in the continental zone. Procedure C had the worst performance owing to the non‐linearity of the P–M equation and errors in the estimation of monthly available energy, vapour pressure deficit and wind speed. Procedures A and B are simpler and performed better. Overall, monthly P–T ET0 estimates using extrapolated α parameters and Rn?G values were in a reasonable agreement with P–M ET0 calculated on an hourly basis and integrated for monthly periods. The methods presented for the spatial extrapolation of monthly available energy, vapour pressure deficit and wind speed from first‐ to second‐order stations could be useful for other applications. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

10.
We present the results of a 3‐year monitoring programme of the stable isotope composition of lake water and precipitation at Taozi Lake, in the East Asian monsoon region of China. Our aims were to reveal the spatiotemporal pattern of variation of stable isotopes in a small closed‐basin lake and to quantitatively determine the impacts of precipitation and evaporation on the stable isotope composition of lake water under a humid monsoon climate. In the time domain, the stable oxygen isotopic ratio of the lake water (δ18OL) exhibited substantial seasonal and interannual variations, but the isotope variations between different precipitation events substantially exceeded seasonal and interannual variations. Compared with the stable isotopes in precipitation, δ18OL was substantially positive and dL was negative. In the space domains, the lake water was homogeneously mixed. Indicated by statistic analyses, precipitation plays a dominant role in dynamic of the lake stable isotope during precipitation events of relatively large magnitude, whereas the effect of evaporation is dominant during smaller precipitation events. Results advance our understanding of the stable isotope change rule in the process of lake water evaporation, and it is helpful to identify the climatic significance recorded in stable isotopic compositions of lake bottom sediments.  相似文献   

11.
Long-term atmospheric water vapour hydrogen (δ2H), oxygen (δ18O) and deuterium excess (d-excess) can provide unique insights into the land-atmosphere coupling processes. The in-situ measurements of atmospheric water vapour δ2H, δ18O and d-excess were conducted above a reed wetland of Liaodong Bay (2019–2020). We found significant inter-annual variations in atmospheric water vapour isotopes between the two growing (May–September) seasons. The δ2H, δ18O and d-excess of atmospheric water vapour exhibited different seasonal and diurnal cycles concerning the vertical measurement heights, especially in 2019. The isotopic differences of atmospheric water vapour among vertical measurement heights were more evident in the daytime. Rainfall events directly impacted the diurnal patterns of water vapour isotopes, and the influences depended on rainfall intensities. However, only weak correlations existed between water vapour isotopes and local meteorological factors (R2 = 0.01–0.16, p < 0.001), such as water vapour concentration (w), Relative Humidity (RH) and surface air temperature (Ta). Based on the back-air trajectory analyses, the spatial–temporal dynamics of atmospheric water vapour isotopes are highly synchronized with monsoon activities. Different water vapour sources influence the water vapour isotope in this region and the higher d-excess value is related to the intense convection brought by the monsoon. High-resolution measurements of atmospheric water vapour isotopes will improve our understanding of the hydrological cycles in coastal areas.  相似文献   

12.
During the last decade, the widely distributed shrublands in northern China have shown significant signs of recovery from desertification, the result of widespread conservation practices. However, to support the current efforts in conservation, more knowledge is needed on surface energy partitioning and its biophysical controls. Using eddy‐covariance measurements made over a semi‐arid shrubland in northwest China in 2012, we examined how surface energy‐balance components vary on diurnal and seasonal scales, and how biophysical factors control bulk surface parameters and energy exchange. Sensible heat flux (H) exceeded latent heat flux (λE) during most of the year, resulting in an annual Bowen ratio (β, i.e. H/λE) of 2.0. λE exceeded H only in mid‐summer when frequent rainfall co‐occurred with the seasonal peak in leaf area index (LAI). Evapotranspiration reached a daily maximum of 3.3 mm day?1, and summed to 283 mm yr?1. The evaporative fraction (EF, i.e. λE/Rn), Priestley–Taylor coefficient (α), surface conductance (gs) and decoupling coefficient (Ω) were all positively correlated with soil water content (SWC) and LAI. The direct enhancement of λE by high vapour pressure deficit (VPD) was buffered by a concurrent suppression of gs. The gs played a direct role in controlling EF and α by mediating the effects of LAI, SWC and VPD. Our results highlight the importance of adaptive plant responses to water scarcity in regulating ecosystem energy partitioning, and suggest an important role for revegetation in the reversal of desertification in semi‐arid areas. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
This study investigates water vapor isotopic patterns and controls over China using high-quality water vapor δD data retrieved from the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography(SCIAMACHY) observations.The results show that water vapor δD values on both annual and seasonal time-scales broadly exhibit a continental effect,with values largely decreasing northwestward from coastal lowlands to high-elevation mountainous regions.However,region-specific analysis reveals spatially distinct patterns of water vapor δD between seasons.In the monsoon domain(e.g.,China south of 35°N),depletion in D in the summer and fall seasons is closely tied to monsoon moisture sources(the Indian and Pacific oceans) and subsequent amount effect,but higher δD values in winter and spring are a result of isotopically-enriched continental-sourced moisture proceeded by less rainout.In contrast,farther inland in China(non-monsoon domain),moisture is derived overwhelmingly from the dry continental air masses and local evaporation,and δD values are largely controlled by the temperature effect,exhibiting a seasonality with isotopically enriched summer and depleted winter/spring.The observation that the spatial pattern of water vapor δD is the opposite to that of precipitation δD in the summer season also suggests that partial evaporation of falling raindrops is a key driver of water vapor isotope in the non-monsoon domain.This study highlights the importance of non-Rayleigh factors in governing water vapor isotope,and provides constraints on precipitation isotope interpretation and modern isotope hydrological processes over China.  相似文献   

14.
湖泊水面与大气之间垂直方向的动量、水汽和热量通量与风速、湿度和温度梯度之间存在比例关系,因此在湖泊水-气相互作用研究中,这比例系数(交换系数)是关键因子.在以往的研究中,交换系数通常直接采用水面梯度观测法或海洋大气近地层的参数化方案进行计算.本文采用涡度相关系统和小气候系统仪器在太湖平台上直接观测的通量和气象要素,对上述交换系数(最小均方差原则)进行优化,结果为:动量交换系数CD10N=1.52×10-3、水汽交换系数CE10N=0.82×10-3、热量交换系数CH10N=1.02×10-3,与其他内陆湖泊涡度相关观测数据的推导结果一致.本文的研究结果表明:与海洋参数化方案相比,在相同的风速条件下,湖面的空气动力学粗糙度比海洋高,这可能是由于受到水深的影响;如果采用海洋参数化方案,会导致湖泊年蒸发量的估算值偏大40%.太湖的动量、水汽和热量交换系数可以视为常数,可以不考虑稳定度和风速的影响.这是因为本文中83%的数据为近中性条件.敏感性分析表明:如果考虑稳定度的影响,LE模拟值的平均误差降低了0.5 W/m2,H的平均误差降低了0.4 W/m2,u*的计算值没有变化;如果考虑风速的影响,u*模拟值的平均误差降低了0.004 m/s,LE的平均误差升高了1.3 W/m2,H的模拟结果几乎不受影响.这一结果能为湖气相互作用研究提供参考.  相似文献   

15.
Evaporation dominates the water balance in arid and semi‐arid areas. The estimation of evaporation by land‐cover type is important for proper management of scarce water resources. Here, we present a method to assess spatial and temporal patterns of actual evaporation by relating water balance evaporation estimates to satellite‐derived radiometric surface temperature. The method is applied to a heterogeneous landscape in the Krishna River basin in south India using 10‐day composites of NOAA advanced very high‐resolution radiometer satellite imagery. The surface temperature predicts the difference between reference evaporation and modelled actual evaporation well in the four catchments (r2 = 0·85 to r2 = 0·88). Spatial and temporal variations in evaporation are linked to vegetation type and irrigation. During the monsoon season (June–September), evaporation occurs quite uniformly over the case‐study area (1·7–2·1 mm day?1), since precipitation is in excess of soil moisture holding capacity, but it is higher in irrigated areas (2·2–2·7 mm day?1). In the post‐monsoon season (December–March) evaporation is highest in irrigated areas (2·4 mm day?1). A seemingly reasonable estimate of temporal and spatial patterns of evaporation can be made without the use of more complex and data‐intensive methods; the method also constrains satellite estimates of evaporation by the annual water balance, thereby assuring accuracy at the seasonal and annual time‐scales. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
Lake E?irdir is located in the Lakes District in southwestern Turkey and it is the second largest freshwater resource lake. Evaporation is an important parameter in hydrological and meteorological practical studies. This study has three objectives: (1) to develop models for the estimation of daily evaporation using measured data from the automated GroWeather meteorological station located near Lake E?irdir; (2) to compare the evaporation models with the classical Penman approach; (3) to evaluate the potential of each model. The comparisons are based on daily and monthly available data from 2001 and 2002. The evaporation estimation models (EEMs) developed in this paper have lower mean absolute errors and higher coefficient of determination R2 values than the Penman method. In order to evaluate the potential of the EEMs, daily evaporation values are calculated by the Priestley–Taylor, Brutsaert–Stricker, de Bruin, Makkink and Hamon methods. The EEMs are statistically indistinguishable from the classical methods on the basis of the parameters of mean, standard deviation, etc. In the evaluation of daily and monthly values, the relative error percentage for daily evaporation has lower values than for monthly evaporation. It can be seen that the EEMs help in calculating daily evaporation rather than monthly. Final evaluation and comparison indicate that there is a good agreement between the results of EEMs and the Penman approach than with the classical methods. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
The combination of tree canopy cover and a free water surface makes the subcanopy environment of flooded forested wetlands unlike other aquatic or terrestrial systems. Subcanopy vapour fluxes and energy budgets represent key controls on water level and understorey climate but are not well understood. In a permanently flooded forest in south‐eastern Louisiana, USA, an energy balance approach was used to address (a) whether evaporation from floodwater under a forest canopy is solely energy limited and (b) how energy availability was modulated by radiation and changes in floodwater heat storage. A 5‐month continuous measurement period (June–November) was used to sample across seasonal changes in canopy activity and temperature regimes. Over this period, the subcanopy airspace was humid, maintaining saturation vapour pressure for 28% of the total record. High humidity coupled with the thermal inertia of surface water altered both seasonal and diel energy exchanges, including atypical phenomena such as frequent day‐time vapour pressure gradients towards the water surface. Throughout the study period, nearly all available energy was partitioned to evaporation, with minimal sensible heat exchange. Monthly mean evaporation ranged from 0.7 to 1.7 mm/day, peaking in fall when canopy senescence allowed greater radiation transmission; contemporaneous seasonal temperature shifts and a net release of stored heat from the surface water resulted in energy availability exceeding net radiation by 30% in October and November. Relatively stable energy partitioning matches Priestley–Taylor assumptions for a general model of evaporation in this ecosystem.  相似文献   

18.
Components of the energy budget were measured continuously above a 300‐year‐old temperate mixed forest at the Changbaishan site, northeastern China, from 1 January to 31 December 2003, as a part of the ChinaFlux programme. The albedo values above the canopy were lower than most temperate forests, and the values for snow‐covered canopy were over 50% higher than for the snow‐free canopy. In winter, net radiation Rn was generally less than 5% of the summer value due to high albedo and low incoming solar radiation. The annual mean latent heat LE was 37·5 W m?2, accounting for 52% of Rn. The maximum daily evaporation was about 4·6 mm day?1 in summer. Over the year, the accumulated precipitation was 578 mm; this compares with 493 mm of evapotranspiration, which shows that more than 85% of water was returned to the atmosphere through evapotranspiration. The LE was strongly affected by the transpiration activity and increased quickly as the broadleaved trees began to foliate. The sensible heat H dropped at that time, although Rn increased. Consequently, the seasonal variation in the Bowen ratio β was clearly U‐shaped, and the minimum value (0·1) occurred on a sunny day just after rain, when most of the available energy was used for evapotranspiration. Negative β values occurred occasionally in the non‐growing season as a result of intensive radiative cooling and the presence of water on the surface. The β was very high (up to 13·0) in snow‐covered winter, when evapotranspiration was small due to low surface temperature and available soil water. Vegetation phenology and soil moisture were the key variables controlling the available energy partitioning between H and LE. Energy budget closure averaged better than 86% on a half‐hourly basis, with slightly greater closure on a daily basis. The degree of closure showed a dependence on friction velocity u*. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
Precipitation δ 18O at Yushu, eastern Tibetan Plateau, shows strong fluctuation and lack of clear seasonality. The seasonal pattern of precipitation stable isotope at Yushu is apparently different from either that of the southwest monsoon region to the south or that of the inland region to the north. This different seasonal pattern probably reflects the shift of different moisture sources. In this paper, we present the spatial comparison of the seasonal patterns of precipitation δ 18O, and calculate the moisture transport flux by using the NCAR/NCEP reanalysis data. This allows us to discuss the relation between moisture transport flux and precipitation δ 18O. This study shows that both the southwest monsoon from south and inland air mass transport from north affected the seasonal precipitation δ 18O at Yushu, eastern Tibetan Plateau. Southwest monsoon brings the main part of the moisture, but southwest transport flux is weaker than in the southern part of the Tibetan Plateau. However, contribution of the inland moisture from north or local evaporation moisture is enhanced. The combined effect is the strong fluctuation of summer precipitation δ 18O at Yushu and comparatively poor seasonality.  相似文献   

20.
Abstract

Acceleration of the global water cycle over recent decades remains uncertain because of the high inter-annual variability of its components. Observations of pan evaporation (Epan), a proxy of potential evapotranspiration (ETp), may help to identify trends in the water cycle over long periods. The complementary relationship (CR) states that ETp and actual evapotranspiration (ETa) depend on each other in a complementary manner, through land–atmosphere feedbacks in water-limited environments. Using a long-term series of Epan observations in Australia, we estimated monthly ETa by the CR and compared our estimates with ETa measured at eddy covariance Fluxnet stations. The results confirm that our approach, entirely data-driven, can reliably estimate ETa only in water-limited conditions. Furthermore, our analysis indicated that ETa did not show any significant trend in the last 30 years, while short-term analysis may indicate a rapid climate change that is not perceived in a long-term perspective.

Editor Z.W. Kundzewicz; Associate editor D. Gerten

Citation Lugato, E., Alberti, G., Gioli. B., Kaplan, J.O., Peressotti, A., and Miglietta, F., 2013. Long-term pan evaporation observations as a resource to understand the water cycle trend: case studies from Australia. Hydrological Sciences Journal, 58 (6), 1287–1296.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号