首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Non‐linear dynamic time‐history analyses conducted as part of a performance‐based seismic design approach often require that the ground motion records are scaled to a specified level of seismic intensity. Recent research has demonstrated that certain ground motion scaling methods can introduce a large scatter in the estimated seismic demands. The resulting demand estimates may be biased, leading to designs with significant uncertainty and unknown margins of safety, unless a relatively large ensemble of ground motion records is used. This paper investigates the effectiveness of seven ground motion scaling methods in reducing the scatter in estimated peak lateral displacement demands. Non‐linear single‐degree‐of‐freedom systems and non‐linear multi‐degree‐of‐freedom systems are considered with different site conditions (site soil profile and epicentral distance) and structural characteristics (yield strength, period, and hysteretic behavior). It is shown that scaling methods that work well for ground motions representative of stiff soil and far‐field conditions lose their effectiveness for soft soil and near‐field conditions for a wide range of structural characteristics. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

2.
This paper examines four methods by which ground motions can be selected for dynamic seismic response analyses of engineered systems when the underlying seismic hazard is quantified via ground motion simulation rather than empirical ground motion prediction equations. Even with simulation‐based seismic hazard, a ground motion selection process is still required in order to extract a small number of time series from the much larger set developed as part of the hazard calculation. Four specific methods are presented for ground motion selection from simulation‐based seismic hazard analyses, and pros and cons of each are discussed via a simple and reproducible illustrative example. One of the four methods (method 1 ‘direct analysis’) provides a ‘benchmark’ result (i.e., using all simulated ground motions), enabling the consistency of the other three more efficient selection methods to be addressed. Method 2 (‘stratified sampling’) is a relatively simple way to achieve a significant reduction in the number of ground motions required through selecting subsets of ground motions binned based on an intensity measure, IM. Method 3 (‘simple multiple stripes’) has the benefit of being consistent with conventional seismic assessment practice using as‐recorded ground motions, but both methods 2 and 3 are strongly dependent on the efficiency of the conditioning IM to predict the seismic responses of interest. Method 4 (‘generalized conditional intensity measure‐based selection’) is consistent with ‘advanced’ selection methods used for as‐recorded ground motions and selects subsets of ground motions based on multiple IMs, thus overcoming this limitation in methods 2 and 3. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
The calculated nonlinear structural responses of a building can vary greatly, even if recorded ground motions are scaled to the same spectral acceleration at a building's fundamental period. To reduce the variation in structural response at a particular ground‐motion intensity, this paper proposes an intensity measure (IMcomb) that accounts for the combined effects of spectral acceleration, ground‐motion duration, and response spectrum shape. The intensity measure includes a new measure of spectral shape that integrates the spectrum over a period range that depends on the structure's ductility. The new IM is efficient, sufficient, scalable, transparent, and versatile. These features make it suitable for evaluating the intensities of measured and simulated ground motions. The efficiency and sufficiency of the new IM is demonstrated for the following: (i) elastic‐perfectly plastic single‐degree‐of‐freedom (SDOF) oscillators with a variety of ductility demands and periods; (ii) ductile and brittle deteriorating SDOF systems with a variety of periods; and (iii) collapse analysis for 30 previously designed frames. The efficiency is attributable to the inclusion of duration and to the ductility dependence of the spectral shape measure. For each of these systems, the transparency of the intensity measure made it possible to identify the sensitivity of structural response to the various characteristics of the ground motion. Spectral shape affected all structures, but in particular, ductile structures. Duration only affected structures with cyclic deterioration. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
Amplitude scaling is commonly used to select ground motions matching a target response spectrum. In this paper, the effect of scaling limits on ground motion selection, based on the conditional spectrum framework, is investigated. Target spectra are computed for four probabilistic seismic hazard cases in Western United States, and 16 ground motion suites are selected using different scaling limits (ie, 2, 5, 10, and 15). Comparison of spectral acceleration distributions of the selected ground motion suites demonstrates that the use of a scaling limit of 2 yields a relatively poor representation of the target spectra, because of the small limit leading to an insufficient number of available ground motions. It is also shown that increasing scaling limit results in selected ground motions with generally increased distributions of Arias intensity and significant duration Ds5-75, implying that scaling limit consideration can significantly influence the cumulative and duration characteristics of selected ground motions. The ground motion suites selected are then used as input for slope displacement and structural dynamic analyses. Comparative results demonstrate that the consideration of scaling limits in ground motion selection has a notable influence on the distribution of the engineering demand parameters calculated (ie, slope displacement and interstory drift ratio). Finally, based on extensive analyses, a scaling limit range of 3 to 5 is recommended for general use when selecting ground motion records from the NGA-West2 database.  相似文献   

5.
The purpose of this paper is to investigate the ground motion characteristics of the Chi‐Chi earthquake (21 September 1999) as well as the interpretation of structural damage due to this earthquake. Over 300 strong motion records were collected from the strong motion network of Taiwan for this earthquake. A lot of near‐field ground motion data were collected. They provide valuable information on the study of ground motion characteristics of pulse‐like near‐field ground motions as well as fault displacement. This study includes: attenuation of ground motion both in PGA and spectral amplitude, principal direction, elastic and inelastic response analysis of a SDOF system subjected to near‐field ground motion collected from this event. The distribution of spectral acceleration and spectral velocity along the Chelungpu fault is discussed. Based on the mode decomposition method the intrinsic mode function of ground acceleration of this earthquake is examined. A long‐period wave with large amplitude was observed in most of the near‐source ground acceleration. The seismic demand from the recorded near‐field ground motion is also investigated with an evaluation of seismic design criteria of Taiwan Building Code. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

6.
The conditional spectrum (CS, with mean and variability) is a target response spectrum that links nonlinear dynamic analysis back to probabilistic seismic hazard analysis for ground motion selection. The CS is computed on the basis of a specified conditioning period, whereas structures under consideration may be sensitive to response spectral amplitudes at multiple periods of excitation. Questions remain regarding the appropriate choice of conditioning period when utilizing the CS as the target spectrum. This paper focuses on risk‐based assessments, which estimate the annual rate of exceeding a specified structural response amplitude. Seismic hazard analysis, ground motion selection, and nonlinear dynamic analysis are performed, using the conditional spectra with varying conditioning periods, to assess the performance of a 20‐story reinforced concrete frame structure. It is shown here that risk‐based assessments are relatively insensitive to the choice of conditioning period when the ground motions are carefully selected to ensure hazard consistency. This observed insensitivity to the conditioning period comes from the fact that, when CS‐based ground motion selection is used, the distributions of response spectra of the selected ground motions are consistent with the site ground motion hazard curves at all relevant periods; this consistency with the site hazard curves is independent of the conditioning period. The importance of an exact CS (which incorporates multiple causal earthquakes and ground motion prediction models) to achieve the appropriate spectral variability at periods away from the conditioning period is also highlighted. The findings of this paper are expected theoretically but have not been empirically demonstrated previously. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
This study presents a ground-motion selection and scaling methodology that preserves the basic seismological features of the scaled records with reduced scatter in the nonlinear structural response. The methodology modifies each strong-motion recording with known fundamental seismological parameters using the estimations of ground-motion prediction equations for a given target hazard level. It provides robust estimations on target building response through scaled ground motions and calculates the dispersion about this target. This alternative procedure is not only useful for record scaling and selection but, upon its further refinement, can also be advantageous for the probabilistic methods that assess the engineering demand parameters for a given target hazard level. Case studies that compare the performance of the proposed procedure with some other record selection and scaling methods suggest its usefulness for building performance assessment and loss models. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
The recent concerns regarding the seismic safety of the existing building stock have highlighted the need for an improvement of current seismic assessment procedures. Alongside with the development of more advanced commercial software tools and computational capacities, nonlinear dynamic analysis is progressively becoming a common and preferable procedure in the seismic assessment of buildings. Besides the complexity associated with the formulation of the mathematical model, major issues arise related with the definition of the seismic action, which can lead to different levels of uncertainty in terms of local and global building response. Aiming to address this issue, a comparative study of different code‐based record selection methods proposed by Eurocode 8, ASCE41‐13 and NZS1170.5:2004 is presented herein. The various methods are employed in the seismic assessment of four steel buildings, designed according to different criteria, and the obtained results are compared and discussed. Special attention is devoted to the influence of the number of real ground motion records selected on the estimation of the mean seismic response and, importantly, to the efficiency that is achieved when an additional selection criteria, based on the control of the spectral mismatch of each individual record with respect to the reference response spectrum, is adopted. The sufficiency of the methods with respect to the pairs of M–R of the selected group of records and the robustness of the scaling procedure are also examined. The paper closes with a study which demonstrates the suitability of a simplified probability‐based approach recently proposed for estimating mean seismic demands. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
This paper deals with seismic analysis of plan‐asymmetric r/c frame multi‐storey buildings. Non‐linear numerical analyses are carried out by using a lumped plasticity model for beams and a multi‐spring model for columns, the latter one introduced to account for axial force–biaxial bending moment interaction. A comparison between numerical analyses and experimental test results is reported in order to calibrate the numerical model, showing that the adopted model is very suitable. In order to study the effects of the earthquake orthogonal component, the seismic response of the modelled structure under uni‐directional excitation is compared to the one under bi‐directional excitation. Such comparison shows that the maximum base shear and the top displacement are not very sensitive to the presence of the orthogonal component, which, conversely, leads to large increase in the column plastic excursions. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
The efficacy of various ground motion intensity measures (IMs) in the prediction of spatially distributed seismic demands (engineering demand parameters, (EDPs)) within a structure is investigated. This has direct implications to building‐specific seismic loss estimation, where the seismic demand on different components is dependent on the location of the component in the structure. Several common IMs are investigated in terms of their ability to predict the spatially distributed demands in a 10‐storey office building, which is measured in terms of maximum interstorey drift ratios and maximum floor accelerations. It is found that the ability of an IM to efficiently predict a specific EDP depends on the similarity between the frequency range of the ground motion that controls the IM and that of the EDP. An IMs predictability has a direct effect on the median response demands for ground motions scaled to a specified probability of exceedance from a ground motion hazard curve. All of the IMs investigated were found to be insufficient with respect to at least one of magnitude, source‐to‐site distance, or epsilon when predicting all peak interstorey drifts and peak floor accelerations in a 10‐storey reinforced concrete frame structure. Careful ground motion selection and/or seismic demand modification is therefore required to predict such a spatially distributed demands without significant bias. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
This paper develops a novel ground motion selection procedure for nonlinear time history analysis of critical structures. The skyline query originated from computer science is first introduced, including its concept and related algorithms. Then, the ground motion selection procedure based on skyline query is developed. Meanwhile, a new five‐dimensional vector‐valued intensity measure is defined as a critical ingredient of the selection procedure to measure the damage potential of ground motions. Finally, the process of the selection procedure is illustrated through examples of three shear models, and its efficiency is also validated. Through the examples of three shear models, the ground motion selection procedure based on skyline query proposed in this paper is proven to be capable of selecting a limited set of ground motions with high damage potentials for the nonlinear time history analysis purpose. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
This paper demonstrates the effectiveness of utilizing advanced ground motion intensity measures (IMs) to evaluate the seismic performance of a structure subject to near‐source ground motions. Ordinary records are, in addition, utilized to demonstrate the robustness of the advanced IM with respect to record selection and scaling. To perform nonlinear dynamic analyses (NDAs), ground motions need to be selected; as a result, choosing records that are not representative of the site hazard can alter the seismic performance of structures. The median collapse capacity (in terms of IM), for example, can be systematically dictated by including a few aggressive or benign pulse‐like records into the record set used for analyses. In this paper, the elastic‐based IM such as the pseudo‐spectral acceleration (Sa) or a vector of Sa and epsilon has been demonstrated to be deficient to assess the structural responses subject to pulse‐like motions. Using advanced IMs can be, however, more accurate in terms of probabilistic response prediction. Scaling earthquake records using advanced IMs (e.g. inelastic spectral displacement, Sdi, and IM 1I&2E; the latter is for the significant higher‐mode contribution structures) subject to ordinary and/or pulse‐like records is efficient, sufficient, and robust relative to record selection and scaling. As a result, detailed record selection is not necessary, and records with virtually any magnitude, distance, epsilon and pulse period can be selected for NDAs. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
The concept of intensity‐based assessment for risk‐based decision‐making is introduced. It is realized by means of the so‐called 3R method (response analysis, record selection and risk‐based decision‐making), which can be used to check the adequacy of design of a new building or of the strengthening of an existing building by performing conventional pushover analysis and dynamic analysis for only a few ground motions, which are termed characteristic ground motions. Because the objective of the method is not a precise assessment of the seismic risk, a simple decision model for risk acceptability can be introduced. The engineer can decide that the reliability of a no‐collapse requirement is sufficient when collapse is observed in the case of less than half of, for example, seven characteristic ground motions. From the theoretical point of view, it is shown that the accuracy of the method is acceptable if the non‐linear response history analyses are performed at a low percentile of limit‐state intensity, which is also proven by means of several examples of multi‐storey reinforced concrete frame buildings. The 3R method represents a compromise between the exclusive use of either pushover analysis or dynamic analysis and can be easily introduced into building codes provided that its applicability is further investigated (e.g. asymmetric structures and other performance objectives) and that the procedure for the selection of characteristic ground motions is automated and readily available to engineers (www.smartengineering.si).  相似文献   

14.
A formulation is developed for modal response analysis of multi‐support structures using a random vibration approach. The spectral moments of the structural response are rigorously decomposed into contributions from spectral moments of uncoupled modal responses. An advantage of the proposed formulation is that the total dynamic response can be obtained on the basis of mode by mode uncoupled analyses. The contributions to the total response from modal responses under individual support ground motions and under cross‐correlated pairs of support ground motions can be recognized explicitly. The application and performance of the formulation is illustrated by means of an example using a well‐established coherency spectrum model and widely known power spectra models, such as white noise and Kanai–Tajimi. The first three spectral moments of displacement, shear, and bending moment responses are computed, showing that the formulation produces the same results as the exact solution. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
In a companion paper, an overview and problem definition was presented for ground motion selection on the basis of the conditional spectrum (CS), to perform risk‐based assessments (which estimate the annual rate of exceeding a specified structural response amplitude) for a 20‐story reinforced concrete frame structure. Here, the methodology is repeated for intensity‐based assessments (which estimate structural response for ground motions with a specified intensity level) to determine the effect of conditioning period. Additionally, intensity‐based and risk‐based assessments are evaluated for two other possible target spectra, specifically the uniform hazard spectrum (UHS) and the conditional mean spectrum (CMS, without variability).It is demonstrated for the structure considered that the choice of conditioning period in the CS can substantially impact structural response estimates in an intensity‐based assessment. When used for intensity‐based assessments, the UHS typically results in equal or higher median estimates of structural response than the CS; the CMS results in similar median estimates of structural response compared with the CS but exhibits lower dispersion because of the omission of variability. The choice of target spectrum is then evaluated for risk‐based assessments, showing that the UHS results in overestimation of structural response hazard, whereas the CMS results in underestimation. Additional analyses are completed for other structures to confirm the generality of the conclusions here. These findings have potentially important implications both for the intensity‐based seismic assessments using the CS in future building codes and the risk‐based seismic assessments typically used in performance‐based earthquake engineering applications. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
A probabilistic representation of the entire ground‐motion time history can be constructed based on a stochastic model that depends on seismic source parameters. An advanced stochastic simulation scheme known as Subset Simulation can then be used to efficiently compute the small failure probabilities corresponding to structural limit states. Alternatively, the uncertainty in the ground motion can be represented by adopting a parameter (or a vector of parameters) known as the intensity measure (IM) that captures the dominant features of the ground shaking. Structural performance assessment based on this representation can be broken down into two parts, namely, the structure‐specific part requiring performance assessment for a given value of the IM, and the site‐specific part requiring estimation of the likelihood that ground shaking with a given value of the IM takes place. The effect of these two alternative representations of ground‐motion uncertainty on probabilistic structural response is investigated for two hazard cases. In the first case, these two approaches are compared for a scenario earthquake event with a given magnitude and distance. In the second case, they are compared using a probabilistic seismic hazard analysis to take into account the potential of the surrounding faults to produce events with a range of possible magnitudes and distances. The two approaches are compared on the basis of the probabilistic response of an existing reinforced‐concrete frame structure, which is known to have suffered shear failure in its columns during the 1994 Northridge Earthquake in Los Angeles, California. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
合理的地震动强度指标是预测和评价结构抗震响应的重要基础.选取24个周期点的单自由度体系和一个高层框架核心筒长周期结构,基于不同震源机制的100条地震动记录时程分析结果,研究16种地震动强度指标与结构地震响应的相关性,并提出考虑高阶振型影响的改进反应谱相关型地震动强度指标.研究表明:(1)不同地震动强度指标与结构地震响应...  相似文献   

18.
In order to investigate the response of structures to near‐fault seismic excitations, the ground motion input should be properly characterized and parameterized in terms of simple, yet accurate and reliable, mathematical models whose input parameters have a clear physical interpretation and scale, to the extent possible, with earthquake magnitude. Such a mathematical model for the representation of the coherent (long‐period) ground motion components has been proposed by the authors in a previous study and is being exploited in this article for the investigation of the elastic and inelastic response of the single‐degree‐of‐freedom (SDOF) system to near‐fault seismic excitations. A parametric analysis of the dynamic response of the SDOF system as a function of the input parameters of the mathematical model is performed to gain insight regarding the near‐fault ground motion characteristics that significantly affect the elastic and inelastic structural performance. A parameter of the mathematical representation of near‐fault motions, referred to as ‘pulse duration’ (TP), emerges as a key parameter of the problem under investigation. Specifically, TP is employed to normalize the elastic and inelastic response spectra of actual near‐fault strong ground motion records. Such normalization makes feasible the specification of design spectra and reduction factors appropriate for near‐fault ground motions. The ‘pulse duration’ (TP) is related to an important parameter of the rupture process referred to as ‘rise time’ (τ) which is controlled by the dimension of the sub‐events that compose the mainshock. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
This paper studies the effect of coherency loss and wave passage on the seismic torsional response of three‐dimensional, multi‐storey, multi‐span, symmetric, linear elastic buildings. A model calibrated against statistical analyses of ground motion records in Mexico City is used for the coherency function. The structural response is assessed in terms of shear forces in structural elements. Incoherence and wave passage effects are found to be significant only for columns in the ground level of stiff systems. The increase of column shears in the ground level is much higher for soft than for firm soil conditions. For the torsionally stiff systems considered, it is found that incoherent and phase‐delayed ground motions do not induce a significant rotational response of the structure. The use of a code eccentricity to account for torsion due to ground motion spatial variation is assessed. On firm soil, the use of a base shear along with an accidental eccentricity results in highly overestimated shear forces; however, for soft soil conditions, code formulations may result in underestimated shear forces. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

20.
Response spectrum matching is commonly used to generate ground motions with response spectra matching a scenario target spectrum. There is some debate in the literature about whether spectrum‐matched motions lead to biased structural analysis results. Furthermore, there are no objective, quantitative criteria available for deciding whether a ground motion has been manipulated excessively by spectrum matching, and whether large modification may also lead to bias. This study investigates both of these issues by presenting the results of structural analysis using two reinforced concrete moment frame models and two earthquake scenarios, with suites of unmatched and matched ground motions. Through comparison with a robust benchmark, it is shown that no significant bias is introduced by spectrum matching. The period range and target damping values for matching are also investigated, and matching up to three times the fundamental period is shown to be beneficial in reducing dispersion in the results. Finally, these analyses were also used to investigate whether large changes in the ground motion lead to biased analysis results. Several potential measures of change are investigated, including those based on peak absolute ground motion, cumulative squared ground motion (absolute or normalized), and input energy into single‐degree‐of‐freedom systems. Although no systematic, statistically significant correlation is found for the analysis results in terms of any of these measures of change, tentative criteria are proposed, which may be used by analysts to aid in the decision of whether to accept or reject a spectrum‐matched motion. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号