首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
    
Amplitude scaling is commonly used to select ground motions matching a target response spectrum. In this paper, the effect of scaling limits on ground motion selection, based on the conditional spectrum framework, is investigated. Target spectra are computed for four probabilistic seismic hazard cases in Western United States, and 16 ground motion suites are selected using different scaling limits (ie, 2, 5, 10, and 15). Comparison of spectral acceleration distributions of the selected ground motion suites demonstrates that the use of a scaling limit of 2 yields a relatively poor representation of the target spectra, because of the small limit leading to an insufficient number of available ground motions. It is also shown that increasing scaling limit results in selected ground motions with generally increased distributions of Arias intensity and significant duration Ds5-75, implying that scaling limit consideration can significantly influence the cumulative and duration characteristics of selected ground motions. The ground motion suites selected are then used as input for slope displacement and structural dynamic analyses. Comparative results demonstrate that the consideration of scaling limits in ground motion selection has a notable influence on the distribution of the engineering demand parameters calculated (ie, slope displacement and interstory drift ratio). Finally, based on extensive analyses, a scaling limit range of 3 to 5 is recommended for general use when selecting ground motion records from the NGA-West2 database.  相似文献   

2.
    
The calculated nonlinear structural responses of a building can vary greatly, even if recorded ground motions are scaled to the same spectral acceleration at a building's fundamental period. To reduce the variation in structural response at a particular ground‐motion intensity, this paper proposes an intensity measure (IMcomb) that accounts for the combined effects of spectral acceleration, ground‐motion duration, and response spectrum shape. The intensity measure includes a new measure of spectral shape that integrates the spectrum over a period range that depends on the structure's ductility. The new IM is efficient, sufficient, scalable, transparent, and versatile. These features make it suitable for evaluating the intensities of measured and simulated ground motions. The efficiency and sufficiency of the new IM is demonstrated for the following: (i) elastic‐perfectly plastic single‐degree‐of‐freedom (SDOF) oscillators with a variety of ductility demands and periods; (ii) ductile and brittle deteriorating SDOF systems with a variety of periods; and (iii) collapse analysis for 30 previously designed frames. The efficiency is attributable to the inclusion of duration and to the ductility dependence of the spectral shape measure. For each of these systems, the transparency of the intensity measure made it possible to identify the sensitivity of structural response to the various characteristics of the ground motion. Spectral shape affected all structures, but in particular, ductile structures. Duration only affected structures with cyclic deterioration. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
    
The last decade of performance‐based earthquake engineering (PBEE) research has seen a rapidly increasing emphasis placed on the explicit quantification of uncertainties. This paper examines uncertainty consideration in input ground‐motion and numerical seismic response analyses as part of PBEE, with particular attention given to the physical consistency and completeness of uncertainty consideration. It is argued that the use of the commonly adopted incremental dynamic analysis leads to a biased representation of the seismic intensity and that when considering the number of ground motions to be used in seismic response analyses, attention should be given to both reducing parameter estimation uncertainty and also limiting ground‐motion selection bias. Research into uncertainties in system‐specific numerical seismic response analysis models to date has been largely restricted to the consideration of ‘low‐level’ constitutive model parameter uncertainties. However, ‘high‐level’ constitutive model and model methodology uncertainties are likely significant and therefore represent a key research area in the coming years. It is also argued that the common omission of high‐level seismic response analysis modelling uncertainties leads to a fallacy that ground‐motion uncertainty is more significant than numerical modelling uncertainty. The author's opinion of the role of uncertainty analysis in PBEE is also presented. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
    
Nonlinear response history analysis is the primary tool for risk-targeted design and seismic performance evaluation of structures. These analyses require the selection of a set of ground motions that satisfy predetermined conditions such as spectral acceleration. Numerous efforts have been made so far to obtain ground motion records which are expected to represent possible earthquakes. Even though spectral acceleration-based ground motion scaling is a common procedure, recent studies showed that structural response can be better represented through the energy content of the records. To this end, this study aims to develop an energy and acceleration spectra-compatible record selection and scaling methodology to achieve higher efficiency and lower bias in the predicted structural response. The efficiency of the proposed method is evaluated through the standard deviations of the computed story drifts of benchmark structures resulting from the records processed by either the proposed or commonly used methods. The results demonstrated that considering input energy together with spectral acceleration for the selection and scaling of the records can considerably reduce the bias in structural response, especially for structures located on stiff soils.  相似文献   

5.
    
This paper examines four methods by which ground motions can be selected for dynamic seismic response analyses of engineered systems when the underlying seismic hazard is quantified via ground motion simulation rather than empirical ground motion prediction equations. Even with simulation‐based seismic hazard, a ground motion selection process is still required in order to extract a small number of time series from the much larger set developed as part of the hazard calculation. Four specific methods are presented for ground motion selection from simulation‐based seismic hazard analyses, and pros and cons of each are discussed via a simple and reproducible illustrative example. One of the four methods (method 1 ‘direct analysis’) provides a ‘benchmark’ result (i.e., using all simulated ground motions), enabling the consistency of the other three more efficient selection methods to be addressed. Method 2 (‘stratified sampling’) is a relatively simple way to achieve a significant reduction in the number of ground motions required through selecting subsets of ground motions binned based on an intensity measure, IM. Method 3 (‘simple multiple stripes’) has the benefit of being consistent with conventional seismic assessment practice using as‐recorded ground motions, but both methods 2 and 3 are strongly dependent on the efficiency of the conditioning IM to predict the seismic responses of interest. Method 4 (‘generalized conditional intensity measure‐based selection’) is consistent with ‘advanced’ selection methods used for as‐recorded ground motions and selects subsets of ground motions based on multiple IMs, thus overcoming this limitation in methods 2 and 3. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
本文以沈阳市世纪华丰文化广场工程场地为例,在地震危险性分析的基础上,进行土层地震反应分析,对超高层建筑设计地震动参数的确定进行研究,为抗震设计提供可靠依据。  相似文献   

7.
The correlation between ground motion intensity measures (IM) and single-degree-of-freedom (SDOF) deformation demands is described in this study. Peak ground acceleration (APG), peak ground velocity (VPG), peak ground displacement (DPG), spectral acceleration at the first-mode period of vibration [As(T1)] and ratio of VPG to APG are used as IM parameters, and the correlation is characterized by correlation coefficients p. The numerical results obtained by nonlinear dynamic analyses have shown good correlation between As(T1) or VPG and deformation demands. Furthermore, the effect of As(T1) and VPG as IM on the dispersion of the mean value of deformation demands is also investigated for SDOF systems with three different periods T=0.3 s, 1.0 s, 3.0 s respectively.  相似文献   

8.
    
Response spectrum matching is commonly used to generate ground motions with response spectra matching a scenario target spectrum. There is some debate in the literature about whether spectrum‐matched motions lead to biased structural analysis results. Furthermore, there are no objective, quantitative criteria available for deciding whether a ground motion has been manipulated excessively by spectrum matching, and whether large modification may also lead to bias. This study investigates both of these issues by presenting the results of structural analysis using two reinforced concrete moment frame models and two earthquake scenarios, with suites of unmatched and matched ground motions. Through comparison with a robust benchmark, it is shown that no significant bias is introduced by spectrum matching. The period range and target damping values for matching are also investigated, and matching up to three times the fundamental period is shown to be beneficial in reducing dispersion in the results. Finally, these analyses were also used to investigate whether large changes in the ground motion lead to biased analysis results. Several potential measures of change are investigated, including those based on peak absolute ground motion, cumulative squared ground motion (absolute or normalized), and input energy into single‐degree‐of‐freedom systems. Although no systematic, statistically significant correlation is found for the analysis results in terms of any of these measures of change, tentative criteria are proposed, which may be used by analysts to aid in the decision of whether to accept or reject a spectrum‐matched motion. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
    
The recent concerns regarding the seismic safety of the existing building stock have highlighted the need for an improvement of current seismic assessment procedures. Alongside with the development of more advanced commercial software tools and computational capacities, nonlinear dynamic analysis is progressively becoming a common and preferable procedure in the seismic assessment of buildings. Besides the complexity associated with the formulation of the mathematical model, major issues arise related with the definition of the seismic action, which can lead to different levels of uncertainty in terms of local and global building response. Aiming to address this issue, a comparative study of different code‐based record selection methods proposed by Eurocode 8, ASCE41‐13 and NZS1170.5:2004 is presented herein. The various methods are employed in the seismic assessment of four steel buildings, designed according to different criteria, and the obtained results are compared and discussed. Special attention is devoted to the influence of the number of real ground motion records selected on the estimation of the mean seismic response and, importantly, to the efficiency that is achieved when an additional selection criteria, based on the control of the spectral mismatch of each individual record with respect to the reference response spectrum, is adopted. The sufficiency of the methods with respect to the pairs of M–R of the selected group of records and the robustness of the scaling procedure are also examined. The paper closes with a study which demonstrates the suitability of a simplified probability‐based approach recently proposed for estimating mean seismic demands. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
核电站抗震研究综述   总被引:6,自引:1,他引:5  
核电站抗震性一直是核电站设计的主要问题之一。随着此问题各方面研究的深入和研究手段的进步,核电站的抗震计算理论也在不断发展。本文试图根据已有的资料,在核电站抗震问题的一些主要方面(地震输入参数的确定,抗震计算理论,结构与地基的相互作用,逐层加速度谱及反应谱的确定,建筑物及设备的抗震计算,地基、基础及地下建筑的抗震计算等)研究状况作一些综述,并在此基础上展望一下需要解决的问题。  相似文献   

11.
    
This study presents a novel approach for evaluating ground motion selection and modification (GMSM) procedures in the context of probabilistic seismic demand analysis. In essence, synthetic ground motions are employed to derive the benchmark seismic demand hazard curve (SDHC), for any structure and response quantity of interest, and to establish the causal relationship between a GMSM procedure and the bias in its resulting estimate of the SDHC. An example is presented to illustrate how GMSM procedures may be evaluated using synthetic motions. To demonstrate the robustness of the proposed approach, two significantly different stochastic models for simulating ground motions are considered. By quantifying the bias in any estimate of the SDHC, the proposed approach enables the analyst to rank GMSM procedures in their ability to accurately estimate the SDHC, examine the sufficiency of intensity measures employed in ground motion selection, and assess the significance of the conditioning intensity measure in probabilistic seismic demand analysis. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
13.
本文根据保定市及周围地区的地震地质环境,在地震危险性分析的基础上,采用等效线性一维波动方程进行土层的地震反应分析.给出50年超越概率63%、10%、2%基岩和地面的水平向峰值加速度、反应谱(场址基本烈度Ⅶ度)和地震影响系数最大值.该结果为抗震设计提供了可靠依据,具有应用价值.  相似文献   

14.
    
Although for many years it was thought that amplitude scaling of acceleration time series to reach a target intensity did not introduce any bias in the results of nonlinear response history analyses, recent studies have showed that scaling can lead to an overestimation of deformation demands with increasing scale factors. Some studies have suggested that the bias can be explained by differences in spectral shape between the response spectra of unscaled and scaled records. On the basis of these studies, some record selection procedures assume that if records are selected using spectral-shape-matching procedures, amplitude scaling does not induce any bias on the structural response. This study evaluates if bias is introduced on lateral displacement demands and seismic collapse risk estimates even when spectral shape is carefully taken into consideration when selecting ground motions. Several single-degree-of-freedom and multiple-degree-of-freedom systems are analyzed when subjected to unscaled and scaled ground motions selected to approximately match the mean and the variance of the conditional spectrum at the target level of intensity. Results show that an explicit consideration of spectral shape is not enough to avoid a systematic overestimation of lateral displacement demands and collapse probabilities as the scale factor increases. Moreover, the bias is observed in practically all cases for systems with strength degradation and it increases with decreasing period and decreasing lateral strength relative to the strength required to remain elastic. Key reasons behind the bias are presented by evaluating input energy, causal parameters, and damaging pulse distributions in unscaled and scaled ground motion sets.  相似文献   

15.
The purpose of this paper is to investigate the ground motion characteristics of the Chi‐Chi earthquake (21 September 1999) as well as the interpretation of structural damage due to this earthquake. Over 300 strong motion records were collected from the strong motion network of Taiwan for this earthquake. A lot of near‐field ground motion data were collected. They provide valuable information on the study of ground motion characteristics of pulse‐like near‐field ground motions as well as fault displacement. This study includes: attenuation of ground motion both in PGA and spectral amplitude, principal direction, elastic and inelastic response analysis of a SDOF system subjected to near‐field ground motion collected from this event. The distribution of spectral acceleration and spectral velocity along the Chelungpu fault is discussed. Based on the mode decomposition method the intrinsic mode function of ground acceleration of this earthquake is examined. A long‐period wave with large amplitude was observed in most of the near‐source ground acceleration. The seismic demand from the recorded near‐field ground motion is also investigated with an evaluation of seismic design criteria of Taiwan Building Code. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

16.
    
Rayleigh damping is commonly used to provide a source of energy dissipation in analyses of structures responding to dynamic loads such as earthquake ground motions. In a finite element model, the Rayleigh damping matrix consists of a mass‐proportional part and a stiffness‐proportional part; the latter typically uses the initial linear stiffness matrix of the structure. Under certain conditions, for example, a non‐linear analysis with softening non‐linearity, the damping forces generated by such a matrix can become unrealistically large compared to the restoring forces, resulting in an analysis being unconservative. Potential problems are demonstrated in this paper through a series of examples. A remedy to these problems is proposed in which bounds are imposed on the damping forces. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
    
A formulation is developed for modal response analysis of multi‐support structures using a random vibration approach. The spectral moments of the structural response are rigorously decomposed into contributions from spectral moments of uncoupled modal responses. An advantage of the proposed formulation is that the total dynamic response can be obtained on the basis of mode by mode uncoupled analyses. The contributions to the total response from modal responses under individual support ground motions and under cross‐correlated pairs of support ground motions can be recognized explicitly. The application and performance of the formulation is illustrated by means of an example using a well‐established coherency spectrum model and widely known power spectra models, such as white noise and Kanai–Tajimi. The first three spectral moments of displacement, shear, and bending moment responses are computed, showing that the formulation produces the same results as the exact solution. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
梁小华  蒋溥 《地震地质》2004,26(4):772-783
文中结合舟山市桃夭门大桥抗震设计在长周期频段的需要,研究分析了桃夭门大桥场地基本地震地质环境特点和长周期地面运动谱的研究现状,从强震记录长周期分量信息特点出发,以强震记录为基础,选用了11个有代表性的M≥65的强震,共72条强震地面运动记录,参照核法规HAF0101(1)特定场地谱的确定方法,通过统计分析建立了以均值反应谱为基础的长周期反应谱  相似文献   

19.
    
This paper deals with seismic analysis of plan‐asymmetric r/c frame multi‐storey buildings. Non‐linear numerical analyses are carried out by using a lumped plasticity model for beams and a multi‐spring model for columns, the latter one introduced to account for axial force–biaxial bending moment interaction. A comparison between numerical analyses and experimental test results is reported in order to calibrate the numerical model, showing that the adopted model is very suitable. In order to study the effects of the earthquake orthogonal component, the seismic response of the modelled structure under uni‐directional excitation is compared to the one under bi‐directional excitation. Such comparison shows that the maximum base shear and the top displacement are not very sensitive to the presence of the orthogonal component, which, conversely, leads to large increase in the column plastic excursions. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
    
This study presents a ground-motion selection and scaling methodology that preserves the basic seismological features of the scaled records with reduced scatter in the nonlinear structural response. The methodology modifies each strong-motion recording with known fundamental seismological parameters using the estimations of ground-motion prediction equations for a given target hazard level. It provides robust estimations on target building response through scaled ground motions and calculates the dispersion about this target. This alternative procedure is not only useful for record scaling and selection but, upon its further refinement, can also be advantageous for the probabilistic methods that assess the engineering demand parameters for a given target hazard level. Case studies that compare the performance of the proposed procedure with some other record selection and scaling methods suggest its usefulness for building performance assessment and loss models. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号