首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
ONE D AND TWO D COMBINED MODEL FOR ESTUARY SEDIMENTATION   总被引:3,自引:0,他引:3  
1INTRODUCTIONThefluvialprocesinanestuaryiscomplicatedundertheactionofrunof,tidalflow,windinducedcurentandwaveetc.Especialy,...  相似文献   

2.
This study investigates the relation between channel changes, as mapped from aerial photography, and bed‐material transport along Chilliwack River, British Columbia. Detailed mapping of channel features was completed for five dates between 1952 and 1991 using an analytical stereoplotter. Data were transferred to a geographic information system (GIS) to analyse changes during four consecutive periods. Erosion and deposition volumes along channel reaches were estimated by multiplying measured areal changes by the bed‐material depth along each reach. Bed‐material transport rates are related to morphologic changes using a sediment budget approach. The highest rate of transport for the four study periods is estimated as 55 000 ± 10 000 m3 a−1 between 1983 and 1991. These rates are compared with estimates from short‐term (1–2 year) changes along the lower reach to investigate variations in sediment flux that may otherwise remain undetected. Significant morphologic change occurs roughly once every 5 years when flows are large enough to erode and entrain large volumes of bed material stored within the contemporary floodplain. In the absence of large floods, transport rates decline and vegetation begins to establish new floodplain. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

3.
A 2D depth‐averaged model has been developed for simulating water flow, sediment transport and morphological changes in gravel‐bed rivers. The model was validated with a series of laboratory experiments and then applied to the Nove reach of the Brenta River (Northern Italy) to assess its bed material transport, interpret channel response to a series of intensive flood events (R.I. ≈ 10 years) and provide a possible evolutionary scenario for the medium term. The study reach is 1400 m long with a mean slope of 0.0039 m m?1. High‐resolution digital terrain models were produced combining LiDAR data with colour bathymetry techniques. Extensive field sedimentological surveys were also conducted for surface and subsurface material. Data were uploaded in the model and the passage of two consecutive high intensity floods was simulated. The model was run under several hypotheses of sediment supply: one considering substantial equilibrium between sediment input and transport capacity, and the others reducing the sediment supply. The sediment supply was then calibrated comparing channel morphological changes as observed in the field and calculated by the model. Annual bed material transport was assessed and compared with other techniques. Low‐frequency floods (R.I. ≈ 1.5 years) are expected to produce negligible changes in the channel while high floods may erode banks rather than further incising the channel bed. Location and distribution of erosion and deposition areas within the Nove reach were predicted with acceptable biases stemming from imperfections of the model and the specified initial, boundary and forcing conditions. A medium‐term evolutionary scenario simulation underlined the different response to and impact of a consecutive sequence of floods. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
Hyperconcentrated floods, with sediment concentrations higher than 200 kg/m3, occur frequently in the Yellow River and its tributaries on the Loess Plateau. This paper studies the fluvial hydraulics of hyperconcentrated floods by statistical analysis and comparison with low sediment concentration floods. The fluvial process induced by hyperconcentrated floods is extremely rapid. The river morphology may be altered more at a faster rate by one hyperconcentrated flood than by low sediment concentration floods over a decade. The vertical sediment concentration distribution in hyperconcentrated floods is homogeneous. The Darcy–Weisbach coefficient of hyperconcentrated floods varies with the Reynolds number in the same way as normal open channel flows but a representative viscosity is used to replace the viscosity, η. If the concentration is not extremely high and the Reynolds number is larger than 2000, the flow is turbulent and the Darcy–Weisbach coefficient for the hyperconcentrated floods is almost the same as low sediment concentration floods. Serious channel erosion, which is referred to as ‘ripping up the bottom’ in Chinese, occurs in narrow‐deep channels during hyperconcentrated floods. However, in wide‐shallow channels, hyperconcentrated floods may result in serious sedimentation. Moreover, a hyperconcentrated flood may cause the channel to become narrower and deeper, thus, reducing the flood stage by more than 1 m if the flood event lasts longer than one day. The fluvial process during hyperconcentrated floods also changes the propagation of flood waves. Successive waves may catch up with and overlap the first wave, thus, increasing the peak discharge of the flood wave during flood propagation along the river course. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
Most rivers in Taiwan are intermittent rivers with relatively steep slopes and carry rapid sediment‐laden flows during typhoon or monsoon seasons. A series of field experiments was conducted to collect suspended load data at the Tzu‐Chiang Bridge hydrological station of the lower Cho‐Shui River, which is a major river with the highest sediment yield in Taiwan. The river reach was aggrading with a high aspect ratio during the 1980s. Because of sand mining and extreme floods, it was incised and has had a relatively narrow main channel in recent years. The experimental results indicated that typical sediment transport equations can correctly predict the bed material load for low or medium sediment transport rates (e.g. less than about 1000 tons/day‐m). However, these equations far underestimate the bed material load for high sediment transport rates. The effects of cross‐sectional geometry change (i.e. river incision) and earthquakes on the sediment load were investigated in this study. An empirical sediment transport equation with consideration of the aspect ratio was also derived using the field data collected before and after river incision. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
The response of the Yalu River Estuary to human activities was investigated.Changes of sediment dynamics during the past 10 years were explored through hydrodynamic calculation,as well as heavy mineral...  相似文献   

7.
A review of 112 years of change in the channel of the Salt River, central Arizona, U.S.A., shows that this arid-region river has a main-flow channel that has migrated laterally up to 1.6 km (1 mi) in response to floor events. Maps showing locational probabilities indicate that along the channel zones of relative locational stability alternate with zones of relative instability at a 3.2 km (2 mi) interval. Construction of upstream reservoirs has reduced sediment input into the main river but has not controlled floods. The channel width has not changed except for moderate fluctuations around mean values; the main-flow channel has incised approximately 6 m (20 ft) over most of the 48 km (30 mi) study reach during six recent floods. Gradient has remained unchanged. During floods bed material was mobilized to a depth below the original bed level that was greater than the height of the water surface above the original bed. Calculations based on tractive force indicate a threshold discharge of instability that is equal to the flow with a five-year return interval. The river exhibits remarkable stability with respect to gradient and sinuosity, irrespective of water and sediment discharges, but horizontal channel location exhibited selective instability. Over the record period of more than a century, the channel appears not to have been in equilibrium considering geometry, discharge, and sediment.  相似文献   

8.
This paper presents a field investigation on river channel storage of fine sediments in an unglaciated braided river, the Bès River, located in a mountainous region in the southern French Prealps. Braided rivers transport a very large quantity of bedload and suspended sediment load because they are generally located in the vicinity of highly erosive hillslopes. Consequently, these rivers play an important role because they supply and control the sediment load of the entire downstream fluvial network. Field measurements and aerial photograph analyses were considered together to evaluate the variability of fine sediment quantity stored in a 2·5‐km‐long river reach. This study found very large quantities of fine sediment stored in this reach: 1100 t per unit depth (1 dm). Given that this reach accounts for 17% of the braided channel surface area of the river basin, the quantities of fine sediment stored in the river network were found to be approximately 80% of the mean annual suspended sediment yields (SSYs) (66 200 t year?1), comparable to the SSYs at the flood event scale: from 1000 t to 12 000 t depending on the flood event magnitude. These results could explain the clockwise hysteretic relationships between suspended sediment concentrations and discharges for 80% of floods. This pattern is associated with the rapid availability of the fine sediments stored in the river channel. This study shows the need to focus on not only the mechanisms of fine sediment production from hillslope erosion but also the spatiotemporal dynamics of fine sediment transfer in braided rivers. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
The transfer of sediment through a highly regulated large fluvial system (lower Ebro River) was analysed during two consecutive floods by means of sediment sampling. Suspended sediment and bedload transport were measured upstream and downstream of large reservoirs. The dams substantially altered flood timing, particularly the peaks, which were advanced downstream from the dams for flood control purposes. The suspended sediment yield upstream from the dams was 1 700 000 tonnes, which represented nearly 99 per cent of the total solid yield. The mean concentrations were close to 0·5 g l?1. The sediment yield downstream from the dams was an order of magnitude lower (173 000 tonnes), showing a mean concentration of 0·05 g l?1. The dams captured up to 95 per cent of the fine sediment carried in suspension in the river channel, preventing it from reaching the lowermost reaches of the river and the delta plain. Total bedload transport upstream from the dams was estimated to be about 25 000 tonnes, only 1·5 per cent of the total load. The median bedload rate was 100 gms?1. Below the dams, the river carried 178 000 tonnes, around 51 per cent of the total load, at a mean rate of 250 g ms?1. The results of sediment transport upstream and downstream from the large dams illustrate the magnitude of the sediment deficit in the lower Ebro River. The river mobilized a total of 350 000 tonnes in the downstream reaches, which were not replaced by sediment from upstream. Therefore, sediment was necessarily entrained from the riverbed and channel banks, causing a mean incision of 33 mm over the 27 km long study reach, altogether a significant step towards the long‐term degradation of the lower Ebro River. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
This paper analyzes the relationship between bank sediment storage and radionuclide content in six alluvial sites located in different geomorphic contexts along the lower Rh?ne River. The 137Cs, 238Pu, 239+240Pu, 241Am and 210Pb profiles show different patterns, which indicates a differential storage of contaminated sediment in the banks. Three sites record historical nuclear releases in the river and give evidence for long-term retention of particle-reactive long-lived radionuclides. Two sites record only atmospheric global fallout. Only one site, connected to the river groundwater, provides some evidence for desorption of particle-bound contaminants, with a low and constant 137Cs activity profile. The history of the releases from the Marcoule spent-fuel reprocessing plant—the main source of artificial radioactivity—provides a reliable chronology of the last 50?years. Sediment grain size and bank topography are important factors in determining where artificial radionuclides are stored, but these two parameters cannot be used alone to determine variations in high concentrations of radionuclides. The chronology of fluvial geomorphic “metamorphosis” during the twentieth Century, especially after 1960, is also a critical factor affecting the spatial variability in sedimentation rates and artificial radionuclide storage; the timing of channel deepening and bank sedimentary accretion interfere with the chronology of major floods and the short period of low discharge during the height of contamination from nuclear liquid effluents. The reach-scale adjustment described in this paper can contribute to determining what the local history may have been. This result has important implications for river management decisions.  相似文献   

11.
This paper reports on a first attempt of using the virtual velocity approach to assess sediment mobility and transport in two wide and complex gravel‐bed rivers of northern Italy. Displacement length and virtual velocity of spray‐painted tracers were measured in the field. Also, the thickness of the sediment active layer during floods was measured using scour chains and post‐flood morphological changes as documented by repeated survey of channel cross‐sections. The effects of eight and seven floods were studied on the Tagliamento and Brenta Rivers, where 259 and 277 spray‐painted areas were surveyed, respectively. In the Tagliamento River 36% of the spray‐painted areas experienced partial transport, whereas in the Brenta River this accounted for 20%. Whereas, full removal/gravel deposition was observed on 37% and 26% of these areas on the Tagliamento and Brenta Rivers, respectively. The mean displacement length of particles, the thickness of the active layer and the extent of partial transport are well correlated with the dimensionless shear stress. The virtual velocity approach allowed calculation of bed material transport over a wide range of flood magnitudes. Annual coarse sediment transport was calculated up to 150 for the Tagliamento, and 30 × 103  m3 yr?1 for the Brenta. The outcomes of this work highlight the relevance of partial transport condition, as it could represent more than 70% of the total bed material transported during low‐magnitude floods, and up to 40% for near‐bankfull events. Results confirm that bed material load tends to be overestimated by traditional formulas. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
Redwood Creek, north coastal California, USA, has experienced dramatic changes in channel configuration since the 1950s. A series of large floods (in 1955, 1964, 1972 and 1975) combined with the advent of widespread commercial timber harvest and road building resulted in extensive erosion in the basin and contributed high sediment loads to Redwood Creek. Since 1975, no peak flows have exceeded a 5 year recurrence interval. Twenty years of cross-sectional survey data document the downstream movement of a ‘sediment wave’ in the lower 26 km of this gravel-bedded river at a rate of 800 to 1600 m a−1 during this period of moderately low flows. Higher transit rates are associated with reaches of higher unit stream power. The wave was initially deposited at a site with an abrupt decrease in channel gradient and increase in channel width. The amplitude of the wave has attenuated more than 1 m as it moved downstream, and the duration of the wave increased from eight years upstream to more than 20 years downstream. Channel aggradation and subsequent degradation have been accommodated across the entire channel bed. Channel width has not decreased significantly after initial channel widening from large (>25 year recurrence interval) floods. Three sets of longitudinal surveys of the streambed showed the highest increase in pool depths and frequency in a degrading reach, but even the aggrading reach exhibited some pool development through time. The aggraded channel bed switched from functioning as a sediment sink to a significant sediment source as the channel adjusted to high sediment loads. From 1980 to 1990, sediment eroded from temporary channel storage represented about 25 per cent of the total sediment load and 95 per cent of the bedload exported from the basin.  相似文献   

13.
14.
Abstract

The rivers Gard, Herault and Vidourle which go down very rapidly from the Cevennes into the Mediterranean sea, between very steep slopes, are particulary able to transport débris as a consequence of their very big floods. Nevertheless, during the floods of the autumn 1958, which were of a bi- or tricentenial frequency, only the loams, clays and sands were able to reach the sea during the flood. Shingle was transported in great quantities but only upon short distances, of no; more than 2 or 3 km. Even in such torrents, the transport of shingle is very long, and the greater part of the shingle actually present in the river bed was swept out from the foot of the slopes during the last cold period of the Quaternary, under periglacial conditions. The construction of a dam, at the Moulin de Bertrand in the Hérault valley, which does not allow the transit of shingle, did not result in the modifications in the conditions of transport of the pebbles downstream: the pebbles which are presently transported do not come from the upper valley, but are reworked from the accumulations built up in the bed before the construction of the dam.  相似文献   

15.
Sediment transport of four boulder bed rivers is studied using lichenometry. The presence of lichens on boulders in the river channel is used to date the last mobilization of the blocks. Using size frequency diagrams and regional growth curves calibrated with dated reference points it is possible to determine the flood event responsible for the last mobilization of each boulder with lichens present. The specific stream power of flood events over the last 60 years is then calculated, and thresholds of sediment transport based on the sediment size are calculated. The results from the four studied rivers are compared to similar relationships in the literature. Sediment motion thresholds appear to be very variable within the same type of river (mountainous boulder bed rivers). The critical specific stream power necessary to mobilize a particle of a given diameter may vary by up to 10 times from one river to the next. Bed sediment size and river slope may explain this large range of stream powers. Calculation of the relative size of the transported particles (Di/D50) also shows that both hiding and protrusion effects, as well as channels slope, are important factors in sediment transport. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
In mixed bedrock–alluvial rivers, the response of the system to a flood event can be affected by a number of factors, including coarse sediment availability in the channel, sediment supply from the hillslopes and upstream, flood sequencing and coarse sediment grain size distribution. However, the impact of along-stream changes in channel width on bedload transport dynamics remains largely unexplored. We combine field data, theory and numerical modelling to address this gap. First, we present observations from the Daan River gorge in western Taiwan, where the river flows through a 1 km long 20–50 m wide bedrock gorge bounded upstream and downstream by wide braidplains. We documented two flood events during which coarse sediment evacuation and redeposition appear to cause changes of up to several metres in channel bed elevation. Motivated by this case study, we examined the relationships between discharge, channel width and bedload transport capacity, and show that for a given slope narrow channels transport bedload more efficiently than wide ones at low discharges, whereas wider channels are more efficient at high discharges. We used the model sedFlow to explore this effect, running a random sequence of floods through a channel with a narrow gorge section bounded upstream and downstream by wider reaches. Channel response to imposed floods is complex, as high and low discharges drive different spatial patterns of erosion and deposition, and the channel may experience both of these regimes during the peak and recession periods of each flood. Our modelling suggests that width differences alone can drive substantial variations in sediment flux and bed response, without the need for variations in sediment supply or mobility. The fluctuations in sediment transport rates that result from width variations can lead to intermittent bed exposure, driving incision in different segments of the channel during different portions of the hydrograph. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   

17.
We investigate the use of the short‐lived fallout radionuclide beryllium‐7 (7Be; t1/2 = 53·4 days) as a tracer of medium and coarse sand (0·25–2 mm), which transitions between transport in suspension and as bed load, and evaluate the effects of impoundment on seasonal and spatial variations in bed sedimentation. We measure 7Be activities in approximately monthly samples from point bar and streambed sediments in one unregulated and one regulated stream. In the regulated stream our sampling spanned an array of flow and management conditions during the annual transition from flood control in the winter and early spring to run‐of‐the‐river operation from late spring to autumn. Sediment stored behind the dam during the winter quickly became depleted in 7Be activity. This resulted in a pulse of ‘dead’ sediment released when the dam gates were opened in the spring which could be tracked as it moved downstream. Measured average sediment transport velocities (30–80 metres per day (m d?1)) exceed those typically reported for bulk bed load transport and are remarkably constant across varied flow regimes, possibly due to corresponding changes in bed sand fraction. Results also show that the length scale of the downstream impact of dam management on sediment transport is short (c. 1 km); beyond this distance the sediment trapped by the dam is replaced by new sediment from tributaries and other downstream sources. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
As economic development upstream in the Yangtze River basin has progressed in recent decades,the demand for sediment has rapidly increased and contributed to an expansion in sediment excavation that may affect the river’s stability and navigation safety.In the current study,the distribution of gravel mining in the upstream reach of the Yangtze River was investigated using field measurements obtained from2008 to 2017.An experimental investigation was then done to analyze the bed load behavior in ...  相似文献   

19.
Salinity difference between terrestrial river discharge and oceanic tidal water plays a role in modifying the local flow field and, as a consequence, estuarine morphodynamics. Although widely recognized, recent numerical studies exploring the long-term morphological evolution of river-influenced estuaries with two-dimensional, depth-averaged models have mostly neglected salinity. Using a three-dimensional morphodynamic model, we aim to gain more insight into the effect of salinity on the morphodynamics of fluvio-deltaic systems. Model results indicate that the resultant estuarine morphology established after 600 years differs remarkably when a salinity gradient is included. A fan-shaped river-mouth delta exhibits less seaward expansion and is cut through by narrower channels when salinity is included. The inclusion of salinity tends to generate estuarine circulation, which favours landward sediment transport and hence limits the growth of the delta while enhancing the development of intertidal areas. The formation of deltaic channel–shoal patterns resulting from morphodynamic evolution tends to strengthen salinity stratification, which is characterized by an increased gradient Richardson number. The direction of the depth-averaged residual sediment transport over a tide may be opposite to the direction of residual velocity, indicating the significant influence of baroclinic effects on the net sediment transport direction (and hence morphological change). The effect of salinity on morphological evolution becomes less profound when the strength of tidal or fluvial forcing is dominant over the other. The effects of sediment type and flocculation, which are particularly important when salinity gradients are present, are also discussed. Overall, this study highlights that neglecting salinity to simulate long-term estuarine morphodynamics requires more careful justification, particularly when the environment is characterized by fine sediment types (favouring suspended transport), and relatively large river discharge and estuarine depth (favouring baroclinic effects). © 2020 John Wiley & Sons, Ltd.  相似文献   

20.
A system has been installed to automatically monitor rainfall, streamflow, bedload discharge and suspended sediment concentration in the arid to hyper‐arid setting of Nahal Rahaf, Southern Judean Desert in Israel. The Rahaf gauging station is located in a relatively steep, wide channel with an unsteady bed driven by flash floods. It is an attempt to deploy modern automatic equipment for continuous sediment transport monitoring in harsh, arid fluvial environments. Unit bedload discharges are the highest recorded hitherto, suggesting they may represent an upper end member in the worldwide climate–bedload discharge relationship. Suspended sediment concentration is much higher than is typical of perennial fluvial humid environments. There is high correlation between suspended sediment concentration and water discharge on an event scale, with diverse intra‐event relations. The sediment yield of individual events is large, but the small number of floods limits the mean annual sediment yield to low values in this arid environment. This also has environmental implications, as large‐scale quarrying requires a long period of self‐restoration in such an arid fluvial setting. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号