首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Climate factors play critical roles in controlling chemical weathering, while chemically weathered surface material can regulate climate change. To estimate global chemical weathering fluxes and CO2 balance, it is important to identify the characteristics and driving factors of chemical weathering and CO2 consumption on the Tibetan Plateau, especially in glaciated catchments. The analysis of the hydro-geochemical data indicated that silicate weathering in this area was inhibited by low temperatures, while carbonate weathering was promoted by the abundant clastic rocks with fresh surfaces produced by glacial action. Carbonate weathering dominated the riverine solute generation (with a contribution of 58%, 51%, and 43% at the QiangYong Glacier (QYG), the WengGuo Hydrological Station (WGHS), and the lake estuary (LE), respectively). The oxidation of pyrite contributed to 35%, 42%, and 30% of the riverine solutes, while silicate weathering contributed to 5%, 6%, and 26% of the riverine solutes at the QYG, WGHS, and LE, respectively. The alluvial deposit of easily weathering fine silicate minerals, the higher air temperature, plant density, and soil thickness at the downstream LE in comparison to upstream and midstream may lead to longer contact time between pore water and mineral materials, thus enhancing the silicate weathering. Because of the involvement of sulfuric acid produced by the oxidation of pyrite, carbonate weathering in the upstream and midstream did not consume atmospheric CO2, resulting in the high rate of carbonate weathering (73.9 and 75.6 t km−2 yr−1, respectively, in maximum) and potential net release of CO2 (with an upper constraint of 35.6 and 35.2 t km−2 yr−1, respectively) at the QYG and WGHS. The above results indicate the potential of the glaciated area of the Tibetan Plateau with pyrite deposits being a substantial natural carbon source, which deserves further investigation.  相似文献   

2.
Waters were sampled from 17 boreholes at Haut Glacier d'Arolla during the 1993 and 1994 ablation seasons. Three types of concentrated subglacial water were identified, based on the relative proportions of Ca2+, HCO3? and SO42? to Si. Type A waters are the most solute rich and have the lowest relative proportion of Si. They are believed to form in hydrologically inefficient areas of a distributed drainage system. Most solute is obtained from coupled sulphide oxidation and carbonate dissolution (SO–CD). It is possible that there is a subglacial source of O2, perhaps from gas bubbles released during regelation, because the high SO42? levels found (up to 1200 µeq/L) are greater than could be achieved if sulphides are oxidized by oxygen in saturated water at 0 °C (c.414 µeq/L). A more likely alternative is that sulphide is oxidized by Fe3+ in anoxic environments. If this is the case, exchange reactions involving FeIII and FeII from silicates are possible. These have the potential to generate relatively high concentrations of HCO3? with respect to SO42?. Formation of secondary weathering products, such as clays, may explain the low Si concentrations of Type A waters. Type B waters were the most frequently sampled subglacial water. They are believed to be representative of waters flowing in more efficient parts of a distributed drainage system. Residence time and reaction kinetics help determine the solute composition of these waters. The initial water–rock reactions are carbonate and silicate hydrolysis, and there is exchange of divalent cations from solution for monovalent cations held on surface exchange sites. Hydrolysis is followed by SO–CD. The SO42? concentrations usually are <414 µeq/L, although some range up to 580 µeq/L, which suggests that elements of the distributed drainage system may become anoxic. Type C waters were the most dilute, yet they were very turbid. Their chemical composition is characterized by low SO42? : HCO3? ratios and high pH. Type C waters were usually artefacts of the borehole chemical weathering environment. True Type C waters are believed to flow through sulphide‐poor basal debris, particularly in the channel marginal zone. The composition of bulk runoff was most similar to diluted Type B waters at high discharge, and was similar to a mixture of Type B and C waters at lower discharge. These observations suggest that some supraglacial meltwaters input to the bed are stored temporarily in the channel marginal zone during rising discharge and are released during declining flow. Little of the subglacial chemical weathering we infer is associated with the sequestration of atmospheric CO2. The progression of reactions is from carbonate and silicate hydrolysis, through sulphide oxidation by first oxygen and then FeIII, which drives further carbonate and silicate weathering. A crude estimate of the ratio of carbonate to silicate weathering following hydrolysis is 4 : 1. We speculate that microbial oxidation of organic carbon also may occur. Both sulphide oxidation and microbial oxidation of organic carbon are likely to drive the bed towards suboxic conditions. Hence, we believe that subglacial chemical weathering does not sequester significant quantities of atmospheric CO2 and that one of the key controls on the rate and magnitude of solute acquisition is microbial activity, which catalyses the reduction of FeIII and the oxidation of FeS2. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

3.
In the Youngcheon Diversion Tunnel area, South Korea, 46 samples of tunnel seepage water (TSW) and borehole groundwater were collected from areas with sedimentary rocks (mainly sandstone and shale) and were examined for hydrogeochemical characteristics. The measured SO4 concentrations range widely from 7·7 to 942·0 mg/l, and exceed the Korean Drinking Water Standard (200 mg/l) in about half the samples. The TDS (total dissolved solid) content generally is high (171–1461 mg/l) from more shale‐rich formations and also reflects varying degrees of water–rock interaction. The water is classified into three groups: Ca? SO4 type (61% of the samples collected), Ca? SO4? HCO3 type (15%) and Ca? HCO3 type (24%). The Ca? HCO3 type water (mean concentrations=369 mg/l Ca, 148 mg/l HCO3 and 23 mg/l SO4) reflected the simple reaction between CO2‐recharged water and calcite, whereas the more SO4‐rich nature of Ca? SO4 type water (mean concentrations=153 mg/l Ca, 66 mg/l HCO3 and 416 mg/l SO4) reflected the oxidation of pyrite in sedimentary rocks and fracture zones. Pyrite oxidation resulted in precipitation of amorphous iron hydroxide locally within the tunnel as well as in high concentrations of Ca (mean 153 mg/l) and Na (mean 49 mg/l) for TSW, and is associated with calcite dissolution resulting in pH buffering. The pyrite oxidation required for the formation of Ca? SO4 type water was enhanced by the diffusion of oxygenated air through the fractures related to the tunnel's construction. The subsequent outgassing of CO2 into the tunnel resulted in precipitation of iron‐bearing carbonate. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

4.
We present a statistical model of soil and rock weathering in deep profiles to expand the capacity to assess weathering to heterogeneous bedrock types, which are common at the Earth's surface. We developed the Weathering Trends (WT) model by extending the fractional mass change calculation (tau) of the geochemical mass balance model in two important ways. First, WT log transforms the elemental ratio data, to discern the log‐linear patterns that naturally develop from thermodynamic and kinetic laws of chemistry. Second, WT statistically fits log‐transformed element concentration ratio data – log(cj/ci), the only depth‐varying term in tau – as a function of depth to determine characteristic depths of transitions in weathering processes, along with confidence intervals. With no prior assumptions, WT estimates average parent material composition, average composition of the upper weathered zone and mean fractional mass change of each element over the entire weathering profile. WT displays the mean shape of weathering profiles of log‐transformed geochemical data bounded by calculated confidence intervals. We share the WT model code as an open‐source R package ( https://github.com/fisherba/WeatheringTrends ). The WT model was designed to interpret two 21 m cores from the Laurels Schist bedrock in the Christina River Basin Critical Zone Observatory in the Pennsylvania Piedmont, where our morphological and elemental data provided inconclusive estimates of bedrock depth. The WT model differentiated between rock variability and weathering to delineate the maximum extent of weathering at 12.3 m (CI 95% [9.2, 21.3]) in Ridge Well 1 and 7.2 m (CI 95% [4.3, 13.0]) in Interfluve Well 2. The water table was 5–8 m below fresh rock at Ridge Well 1, but at the same depth as fresh rock at the lower elevation interfluve. We assess statistical approaches to identify the best immobile element for use in WT and tau calculations. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

5.
Recent work has suggested that weathering processes occurring in the subsurface produce the majority of silicate weathering products discharged to the world's oceans, thereby exerting a primary control on global temperature via the well‐known positive feedback between silicate weathering and CO2. In addition, chemical and physical weathering processes deep within the critical zone create aquifers and control groundwater chemistry, watershed geometry and regolith formation rates. Despite this, most weathering studies are restricted to the shallow critical zone (e.g. soils, outcrops). Here we investigate the chemical weathering, fracturing and geomorphology of the deep critical zone in the Bisley watershed in the Luquillo Critical Zone Observatory, Puerto Rico, from two boreholes drilled to 37.2 and 27.0 m depth, from which continuous core samples were taken. Corestones exposed aboveground were also sampled. Weathered rinds developed on exposed corestones and along fracture surfaces on subsurface rocks slough off of exposed corestones once rinds attain a thickness up to ~1 cm, preventing the corestones from rounding due to diffusion limitation. Such corestones at the land surface are assumed to be what remains after exhumation of similar, fractured bedrock pieces that were observed in the drilled cores between thick layers of regolith. Some of these subsurface corestones are massive and others are highly fractured, whereas aboveground corestones are generally massive with little to no apparent fracturing. Subsurface corestones are larger and less fractured in the borehole drilled on a road where it crosses a ridge compared with the borehole drilled where the road crosses the stream channel. Both borehole profiles indicate that the weathering zone extends to well below the stream channel in this upland catchment; hence weathering depth is not controlled by the stream level within the catchment and not all of the water in the watershed is discharged to the stream. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
We report the first measurements of CO2 solubility in molten basalt at pressures comparable to those at which submarine basalts erupt. A basalt from the Juan de Fuca ridge was equilibrated with CO2-rich vapor at 1200°C, 100–1500 bar for up to four hours. After quenching, the glass was analyzed for dissolved carbonate ions by infrared spectroscopy. No forms of dissolved CO2 other than carbonate were detected. CO2 solubility is roughly a linear function of pressure at these low pressures. The experimentally determined solubility differs from previous estimates based on CO2 concentrations of submarine glasses, on CO2 solubilities in basaltic liquids at significantly higher pressures, and on CO2 concentrations of glasses equilibrated with H2OCO2 vapor. Our results are compatible with those obtained previously at higher pressures on a molten Kilauea tholeiite only if there is a significant positive dependence of carbonate solubility on temperature.CO2 contents of mid-ocean ridge glasses measured by infrared spectroscopy are generally higher than would be expected based on solubilities at the hydrostatic pressures for the water depths from which the glasses were recovered, but the lowest dissolved CO2 contents agree with the experimentally determined solubilities. We propose that submarine glasses with low CO2 contents were quenched from magmas that were able to degas because they rose slowly from depth. The common occurrence of glasses with dissolved CO2 contents in excess of the experimentally determined solubility suggests they were quenched from magmas that ascended too rapidly to degas fully. In conjunction with our solubility data, the highest CO2 contents allow minimum estimates of depths to magma chambers. Depths of 2.3 km beneath the ridge are indicated for the East Pacific Rise at 21°N, in agreement with geophysical constraints.  相似文献   

7.
Quaternary sedimentation in the Moshaweng dry valley of southeastern Botswana is evaluated on the basis of geomorphological evolution and sedimentological analyses. Stratigraphic evidence reveals an upper surface (1095 m) containing abundant sil‐calcrete, an intermediate surface (1085 m) in which sil‐calcrete underlies nodular calcrete and lower (1075 m) surface in which sil‐calcrete and nodular calcrete are interbedded. This subdivision is reflected in the geochemical composition of the sediments which show an overall trend of decreasing SiO2 content (and increasing CaCO3 content) with depth from the highest to the lowest surface levels. The calcretes and sil‐calcretes represent modifications of pre‐existing detrital Kalahari Group sand and basal Kalahari pebbles which thinned over a Karoo bedrock high. Modification took place during wet periods when abundant Ca++‐rich groundwater flowed along the structurally aligned valley system. With the onset of drier conditions, water table fluctuations led to the precipitation of nodular calcretes in the phreatic layer to a depth of about 20 m. A major geochemical change resulted in the preferential silicification of the nodular calcrete deposits. Conditions for silica mobilization may be related to drying‐induced salinity and in situ geochemical differentiation brought about by pebble dissociation towards the top of the sediment pile. As calcretization and valley formation progressed to lower levels, silica release took place on a diminishing scale. Thermoluminescence dating infers a mid‐Pleistocene age for sil‐calcrete formation suggesting that valley evolution and original calcrete precipitation are much older. Late stage dissolution of CaCO3 from pre‐existing surface calcretes or sil‐calcretes led to the formation of pedogenic case‐hardened deposits during a time of reduced flow through the Moshaweng system possibly during the upper or late Pleistocene. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

8.
从新疆乌鲁木齐市2004—2015年得到的841个钻孔中选择深度达30 m以下且钻孔资料记录完整的有效钻孔123个,通过计算5~30 m范围内不同深度的等效剪切波速,分别利用线性拟合、二次拟合和三次拟合对各深度vSd)及其vS30进行拟合。通过对比发现,三个方程的拟合误差都随深度的增加而减少,且三次拟合方程的误差始终小于同深度的线性拟合和二次拟合方程,因此推荐使用三次拟合方程来估计新疆乌鲁木齐市钻孔的vS30值。同时将此结果和Boore的结果进行比较后发现,不同深度处的等效剪切波速vSd)和vS30具有地域差异性;Boore得到的结果在钻孔深度小于20 m时明显高估vS30值,拟合曲线偏离实际数据点较远,所以本文拟合结果更适用于新疆乌鲁木齐市。综合比较可知,三次拟合得到的研究结果可以为新疆乌鲁木齐市钻孔深度不足30 m的地区求解vS30值提供参考。最后,利用新疆克拉玛依市2004—2015年钻孔资料检验三个拟合公式对克拉玛依市的适用性,发现深度越接近30 m,误差越小;线性模型和二次模型相对来说比较可靠,平均误差接近于0,并且对深度大于10 m的钻孔有高估现象;三次模型相对来说误差比较大,并且几乎在所有深度都有低估现象。  相似文献   

9.
The transport of reactive iron (i.e. colloidal and dissolved) by a glacier‐fed stream system draining a high relief periglacial landscape in the high Arctic archipelago of Svalbard is described. A negative, non‐linear relationship between discharge and iron concentration is found, indicative of increased iron acquisition along baseflow pathways. Because the glaciers are cold‐based and there are no intra‐ or sub‐permafrost groundwater springs, baseflow is principally supplied by the active layer and the colluvial and alluvial sediments in the lower valley. Collectively, these environments increase the flux of iron in the stream by 40% over a floodplain length of just 8 km, resulting in 6 kg Fe km?2a?1 of reactive iron export for a 20% glacierized watershed. We show that pyrite oxidation in shallow‐groundwater flowpaths of the floodplain is the most important source of reactive iron, although it is far less influential in the upper parts of the catchment where other sources are significant (including ironstone and secondary oxide coatings). Microbial catalysis of the pyrite oxidation occurs in the floodplain, enabling rapid, hyporheic water exchange to enhance the iron fluxes at high discharge and cause the non‐linear relationship between discharge and reactive iron concentrations. Furthermore, because the pyrite oxidation is tightly coupled to carbonate and silicate mineral weathering, other nutrients such as base cations and silica are also released to the stream system. Our work therefore shows that high Arctic floodplains should be regarded as critically important regulators of terrestrial nutrient fluxes to coastal ecosystems from glacial and periglacial sources. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
Jun Xiao  Fei Zhang  Zhangdong Jin 《水文研究》2016,30(25):4855-4869
Hydrochemistry methods were used to decipher the weathering and geochemical processes controlling solute acquisition of river waters in the dry season in the middle Loess Plateau (MLP), one of the most severely eroded areas and turbid riverine systems in the world. River waters were neutral to slightly alkaline with pH varying from 7.6 to 9.6. The total dissolved solids decreased from northwest to southeast with a mean value of 804 mg/l, much higher than the global average and other large rivers in China. Ternary diagram showed that river waters were dominated by Na+, HCO3?, and Cl? with the main water‐type of HCO3?–Cl?–Na+. Saturation index values, Mg2+, Ca2+, and HCO3? analyses indicated the preferential Ca2+ removal by calcite precipitation. Gibbs plots and stoichiometry plots indicated that the dissolved solutes were mainly derived from rock weathering with minor anthropogenic and atmospheric inputs. Samples in the northwestern basin are also influenced by evaporation. A forward model of mass budget calculation showed that, owing to high soluble characteristics, evaporite dissolution was a major feature of river waters and contributed 41% to the total dissolved cations on average, while carbonate and silicate weathering contributed 28%,and 25% on average, respectively. Besides evaporite dissolution, cation exchange is also responsible for the high concentrations of Na+ in river water. Spatial variations showed that evaporite dissolution and silicate weathering were higher in the northern basin, whereas carbonate weathering was higher in the southern basin. Different from most rivers in the world, the physical erosion rates (varying from 117.7 to 4116.6 t/km2y) are much higher than the chemical weathering rates (varying from 3.54 to 6.76 t/km2y) in the MLP because of the loose structure of loess and poor vegetation in the basin. In the future, studies on comparison of water geochemistry in different seasons and on influence of different types of land use and soil salinization on water geochemistry, denudation rates, and water quality should be strengthened in the MLP. These results shed some lights on processes responsible for modern loess weathering and also indicate the importance of time‐series sampling strategy for river water chemistry. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
Knowing little about how porosity and permeability are distributed at depth, we commonly develop models of groundwater by treating the subsurface as a homogeneous black box even though porosity and permeability vary with depth. One reason for this depth variation is that infiltrating meteoric water reacts with minerals to affect porosity in localized zones called reaction fronts. We are beginning to learn to map and model these fronts beneath headwater catchments and show how they are distributed. The subsurface landscapes defined by these fronts lie subparallel to the soil-air interface but with lower relief. They can be situated above, below, or at the water table. These subsurface landscapes of reaction are important because porosity developed from weathering can control subsurface water storage. In addition, porosity often changes at the weathering fronts, and when this affects permeability significantly, the front can act like a valve that re-orients water flowing through the subsurface. We explore controls on the positions of reaction fronts under headwater landscapes by accounting for the timescales of erosion, chemical equilibration, and solute transport. One strong control on the landscape of subsurface reaction is the land surface geometry, which is in turn a function of the erosion rate. In addition, the reaction fronts, like the water table, are strongly affected by the lithology and water infiltration rate. We hypothesize that relationships among the land surface, reaction fronts, and the water table are controlled by feedbacks that can push landscapes towards an ‘ideal hill’. In this steady state, reaction-front valves partition water volumes into shallow and deep flowpaths. These flows dissolve low- and high-solubility minerals, respectively, allowing their reaction fronts to advance at the erosion rate. This conceptualization could inform better models of subsurface porosity and permeability, replacing the black box.  相似文献   

12.
Physical, chemical, and mineralogical analyses of undisturbed drill cores of pelitic schist from a landslide area in Japan clarified the mechanisms of chemical weathering of pelitic schist. Oxidizing surface water percolates downward and reaches an oxidation front, where chlorite is altered to Al‐vermiculite, graphite and pyrite are oxidized and depleted, and goethite precipitates. Oxidation of pyrite also occurs just below the oxidation front, probably by ferric iron. Pyrite oxidation yields sulphuric acid, which penetrates further downward, interacting with and weakening the rocks. In addition to this chemical weakening, stress release and shearing along schistosities form an incipient shear zone, which propagates to a sliding zone that forms the rupture surface of a landslide. Once a sliding zone has developed, it inhibits downward groundwater flow across it because of its low permeability, slowing the downward propagation of the weathering zone until this filtration barrier is broken by landslide movement. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
Major‐ion compositions of groundwater are employed in this study of the water–rock interactions and hydrogeochemical evolution within a carbonate aquifer system. The groundwater samples were collected from boreholes or underground tunnels in the Ordovician limestone of Yanzhou Coalfield where catastrophic groundwater inflows can be hazardous to mining and impact use of the groundwater as a water supply. The concentration of total dissolved solid (TDS) ranged from 961 to 3555 mg/l and indicates moderately to highly mineralized water. The main water‐type of the middle Ordovician limestone groundwater is Ca‐Mg‐SO4, with SO42‐ ranging from 537 to 2297 mg/l, and average values of Ca2+ and Mg2+ of 455.7 and 116.6 mg/l, respectively. The water samples were supersaturated with respect to calcite and dolomite and undersaturated or saturated with respect to gypsum. Along the general flow direction, deduced from increases of TDS and Cl, the main water–rock interactions that caused hydrogeochemical evolution of the groundwater within the aquifer were the dissolution of gypsum, the precipitation of calcite, the dissolution or precipitation of dolomite, and ion exchange. Ion exchange is the major cause for the lower mole concentration of Ca2+ than that of SO42‐. The groundwater level of Ordovician aquifer is much higher than that of C‐P coal‐bearing aquifers, so the potential flow direction is upward, and the pyrite in coal is not a possible source of sulfate; additional data on the stable sulfur and oxygen isotopic composition of the sulfate may be helpful to identify its origin. Although ion exchange probably accounts for the higher mole concentration of Na+ than that of Cl, the dissolution of aluminosilicate cannot be ruled out. The data evaluation methods and results of this study could be useful in other areas to understand flow paths in aquifers and to provide information needed to identify the origin of groundwater. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
Nearly 200 analyses of meltwaters, ice and snow from three alpine glacial sites in carbonate terrain are summarized and discussed in terms of sources of solutes and kinetic controls on the progress of weathering reactions. Most data derive from the Swiss Glacier de Tsanfleuron which is based on Cretaceous and Tertiary pure and impure limestones. Two other sites (Marmolada, Italian Dolomites and the Saskatchewan Glacier, Alberta) are based on a mixed calcitic-dolomitic substrate. Most solutes originate from carbonate dissolution; moreover, where pyrite is present its oxidation supplies significant sulphate and forces more dissolution of carbonate. The ratios Sr2+/Ca2+ and Mg2+/Ca2+ are much higher in Tsanfleuron melt-waters than local bedrock, a phenomenon that can be reproduced in the laboratory at small percentages of dissolution. These anomalous ratios are attributed to incongruent dissolution of traces of the metastable carbonates Mg-calcite and aragonite. These phases also provide Na+ to solution. K+ is argued to originate mainly by ion-exchange on clays with solute Ca2+. Quartz and very minor feldspar dissolution are also inferred. Locally enhanced input from atmospheric sources is recognized by high Cl? and associated Na+. The progress of weathering reactions has been evaluated by the trends in the data, computer modelling and some simple laboratory experiments. The most dilute samples show a trend towards removal of CO2 to low partial pressures (c. 10?5.5 atmospheres), reflecting initially rapid carbonate dissolution and relatively slow dissolution of gaseous CO2. Later addition of atmospheric CO2 or acid from pyrite oxidation allows further carbonate dissolution, but solutions show a wide range of saturations, and CO2 pressures as high as 10?2.2 where pyrite oxidation is important. In a carbonate terrain, measurement of electroconductivity (corrected to 25°C) and alkalinity in the field allows the following preliminary deductions (where meq stands for milliequivalents): where S is the minimum meq(Ca2+ + Mg2+) produced by simple dissolution of carbonate unconnected with pyrite oxidation. As with any proxy method, these deductions do not remove the need for chemical analysis of waters in a given study area.  相似文献   

15.
Landscape curvature evolves in response to physical, chemical, and biological influences that cannot yet be quantified in models. Nonetheless, the simplest models predict the existence of equilibrium hillslope profiles. Here, we develop a model describing steady‐state regolith production caused by mineral dissolution on hillslopes which have attained an equilibrium parabolic profile. When the hillslope lowers at a constant rate, the rate of chemical weathering is highest at the ridgetop where curvature is highest and the ridge develops the thickest regolith. This result derives from inclusion of all the terms in the mathematical definition of curvature. Including these terms shows that the curvature of a parabolic hillslope profile varies with distance from the ridge. The hillslope model (meter‐scale) is similar to models of weathering rind formation (centimeter‐scale) where curvature‐driven solute transport causes development of the thickest rinds at highly curved clast corners. At the clast scale, models fit observations. Here, we similarly explore model predictions of the effect of curvature at the hillslope scale. The hillslope model shows that when erosion rates are small and vertical porefluid infiltration is moderate, the hill weathers at both ridge and valley in the erosive transport‐limited regime. For this regime, the reacting mineral is weathered away before it reaches the land surface: in other words, the model predicts completely developed element‐depth profiles at both ridge and valley. In contrast, when the erosion rate increases or porefluid velocity decreases, denudation occurs in the weathering‐limited regime. In this regime, the reacting mineral does not weather away before it reaches the land surface and simulations predict incompletely developed profiles at both ridge and valley. These predictions are broadly consistent with observations of completely developed element‐depth profiles along hillslopes denuding under erosive transport‐limitation but incompletely developed profiles along hillslopes denuding under weathering limitation in some field settings. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
Phreatic overgrowths on speleothems (POS) are carbonate formations deposited at the water table of caves in unique karstic coastal settings having morphologies that can be directly related to sea level at the time of formation. The U‐Th ages of calcite and aragonite overgrowths collected from the modern water table in coastal caves on Mallorca (Cova de Cala Varques A and Cova des Pas de Vallgornera) were determined using high‐precision MC‐ICPMS techniques. U‐Th ages indicate that phreatic carbonate deposition occurred between ca 2·8 and at least 0·6 ka BP and are in accord with an archeologically estimated age of 3·7–3·0 ka BP for a drowned prehistoric construction at a depth of 1 m below current sea level in a cave from the same area. Speleothem δ13C and δ18O and chemical composition of cave pools provide supportive evidence that POS reflect mixing between seawater and brackish water table. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
18.
Mineral weathering rates and a forest macronutrient uptake stoichiometry were determined for the forested, metabasaltic Hauver Branch watershed in north‐central Maryland, USA. Previous studies of Hauver Branch have had an insufficient number of analytes to permit determination of rates of all the minerals involved in chemical weathering, including biomass. More equations in the mass‐balance matrix were added using existing mineralogic information. The stoichiometry of a deciduous biomass term was determined using multi‐year weekly to biweekly stream‐water chemistry for a nearby watershed, which drains relatively unreactive quartzite bedrock. At Hauver Branch, calcite hosts ~38 mol% of the calcium ion (Ca2+) contained in weathering minerals, but its weathering provides ~90% of the stream water Ca2+. This occurs in a landscape with a regolith residence time of more than several Ka (kiloannum). Previous studies indicate that such old regolith does not typically contain dissolving calcite that affects stream Ca2+/Na+ ratios. The relatively high calcite dissolution rate likely reflects dissolution of calcite in fractures of the deep critical zone. Of the carbon dioxide (CO2) consumed by mineral weathering, calcite is responsible for approximately 27%, with the silicate weathering consumption rate far exceeding that of the global average. The chemical weathering of mafic terrains in decaying orogens thus may be capable of influencing global geochemical cycles, and therefore, climate, on geological timescales. Based on carbon‐balance calculations, atmospheric‐derived sulfuric acid is responsible for approximately 22% of the mineral weathering occurring in the watershed. Our results suggest that rising air temperatures, driven by global warming and resulting in higher precipitation, will cause the rate of chemical weathering in the Hauver Branch watershed to increase until a threshold temperature is reached. Beyond the threshold temperature, increased recharge would produce a shallower groundwater table and reduced chemical weathering rates. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
Emissions of CO2 have been known for more than a hundred years as fumarolic activity at the terminal crater of El Teide volcano and as diffuse emissions at numerous water prospection drillings in the volcanic island of Tenerife. Large concentrations of CO2 (>10% in volume) have been found inside galleries, long horizontal tunnels excavated for water mining. However, CO2 concentrations of only 2900 ppm have been observed at the surface of the central region of the island (Las Cañadas del Teide caldera). In this work we analysed CO2 concentrations in the subsurface of Las Cañadas caldera, in an attempt to study the vertical distribution of carbon dioxide and, in particular, the low emissions at the surface. This has been done through a series of 17 vertical profiles in two deep boreholes excavated in the Caldera. We found high levels of CO2, varying in time from 13 vol% up to 40 vol% in different profiles directly above the water table, while no significant concentrations were detected above the thermal inversion that takes places in both boreholes at approximately 100 m from the water table. Water analyses also showed high dissolved CO2 levels in equilibrium with the air, and an average 13C value in DIC of +4.7 (PDB), apparently induced by fast CO2 degassing in the bicarbonated water.  相似文献   

20.
Current velocity and hydrographic profiles obtained for the first time in a Chilean glacial fjord were combined with under-way surface temperature and salinity measurements to describe the formation of tidal intrusion fronts and plume-like fronts. These fronts formed within several hundred meters from each other in the vicinity of a shallow sill, maximum depth of approximately 3 m, in a glacial fjord off the Strait of Magellan in the Chilean Patagonia. Measurements were obtained in mid-December of 2003 and 2004, during late austral spring, under active glacier melting and calving. The glacial fjord is approximately 18 km long from the face of the glacier to the connection with the Strait of Magellan and typically less than 1 km wide throughout the system. Between the glacier face and the 3-m sill, depths are typically less than 100 m, and seaward of the sill, depths increase to more than 200 m. Velocity and salinity data obtained during flood periods revealed that water with oceanic salinity was aspirated to near-surface levels from depths of approximately 30 m as flood flows accelerated from approximately 10 cm s−1, seaward of the sill, to approximately 60 cm s−1 at the sill crest. The upwelled water was then slightly diluted by mixing at the sill crest before plunging down to the basin between the glacier and the sill. The plunging of salty water over the sill created dramatic tidal intrusion fronts only a few tens of meters from the sill crest and pumping of salt with every flood period. During ebb periods, the low salinity waters derived from the glacier and a small river near the glacier converged at the sill crest. After some mixing, the buoyant waters were released within a thin layer (∼3 m deep) lead by a plume-like front that remained coherent for a few hundred meters seaward of the sill. The main findings of this study were that tidal intrusion and plume fronts were observed within 2 km from each other, and that tidal pumping was the predominant mechanism for salt fluxes into the system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号