首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 348 毫秒
1.
    
This investigation comprises the hydraulic characterisation of a river located in the Mexican State of Tabasco, including the performance of its flood plain under the action of an extreme river discharge. This is done through the combination of a high‐quality validation dataset, remote sensing information, and a standard 2D numerical model. The dataset was collected during an intensive field campaign that took place in August 2009. In particular, in situ measurements of river discharge, bathymetry, water level, and velocities through a whole tidal cycle are employed along with multi‐spectral satellite imagery. The purpose of this study is twofold. Firstly, the integrated approach comprising the combination of a 2D hydrodynamic model, high‐quality in situ measurements and satellite imagery reduce the uncertainty in the model parameterisation and results. Secondly, it is shown that freely available sources of information, such as the Shuttle Radar Topographic Mission (SRTM) data can be processed and utilized in 2D hydraulic models. This is particularly important in countries where high‐resolution elevation data is not yet available. It is demonstrated that the selected approach is useful when the study of possible consequences in a flood plain induced by an extreme flood discharge are sought. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
    
Presented here is a model framework based on a land surface topography that can be represented with various degrees of resolution and capable of providing representative channel/floodplain hydraulic characteristics on a daily to hourly scale. The framework integrates two models: (1) a water balance model (WBM) for the vertical fluxes and stores of water in and through the canopy and soil layers based on the conservation of mass and energy, and (2) a routing model for the horizontal routing of surface and subsurface runoff and channel and floodplain waters based on kinematic and diffusion wave methodologies. The WBM is driven by satellite‐derived precipitation (TRMM_3B42) and air temperature (MOD08_M3). The model's use of an irregular computational grid is intended to facilitate parallel processing for applications to continental and global scales. Results are presented for the Amazon Basin over the period Jan 2001 through Dec 2005. The model is shown to capture annual runoff totals, annual peaks, seasonal patterns, and daily fluctuations over a range of spatial scales (>1, 000 to < 4·7M km2). For the period of study, results suggest basin‐wide total water storage changes in the Amazon vary by approximately + /? 5 to 10 cm, and the fractional components accounting for these changes are: root zone soil moisture (20%), subsurface water being routed laterally to channels (40%) and channel/floodplain discharge (40%). Annual variability in monthly water storage changes by + /? 2·5 cm is likely due to 0·5 to 1 month variability in the arrival of significant rainfall periods throughout the basin. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
    
Vegetation plays a critical role in modifying inundation and flow patterns in salt marshes. In this study, the effects of vegetation are derived and implemented in a high‐resolution, subgrid model recently developed for simulating salt marsh hydrodynamics. Vegetation‐induced drag forces are taken into account as momentum sink terms. The model is then applied to simulate the flooding and draining processes in a meso‐tidal salt marsh, both with and without vegetation effects. Marsh inundation and flow patterns are significantly changed with the presence of vegetation. A smaller area of inundation occurs when vegetation is considered. Tides propagate both on the platform and through the channels when vegetation is absent, whereas flows concentrate mainly in channels when vegetation is present. Local inundation on vegetated platforms is caused mainly by water flux spilled from nearby channels, with a flow direction perpendicular to the channel edges, whereas inundation on bare platforms has contributions from both local spilled‐over water flux and remote advection from adjacent platforms. The flooding characteristics predicted by the model showed a significant difference between higher marsh and lower marsh, which is consistent with the wetlands classification by the National Wetlands Inventory (NWI). The flooding characteristics and spatial distribution of hydroperiod are also highly correlated with the vegetation zonation patterns observed in Google Earth imagery. Regarding the strong interaction between flow, vegetation and geomorphology, the conclusion highlights the importance of including vegetation in the modeling of salt marsh dynamics. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

4.
    
The models of physiographic inundation and flood routing for channel network were used in this study to analyse the influence of the Tainan Scientific Base Industrial Park (TSBIP) and Feng-Hua detention ponds on the inundated potential, inundated volume, flood damage, and flood stage of peak flow along the Yen-Shui creek in 2-day flood for the 2-, 10- and 50-year return periods, respectively. The computed results show that the TSBIP detention ponds are able to reduce the inundated area and flood damage. However, the decrease in inundated area is not obvious for the 50-year return-period flood. Construction of the Feng-Hua detention pond resulted in a significant decrease in the flood stage along the Yen-Shui creek in the downstream reach. Moreover, the decrease in peak flow and lag of time-to-peak become increasingly evident in the downstream direction for the 2- and 10-year return-period events. For the 50-year return period, the lag of time-to-peak is not apparent, but the decrease in peak flow is still noticeable. In respect to the performance of detention ponds, the slopes of hydrographs in the rising and recession segments are smoother than those without detention ponds. Meanwhile, the shapes of peak become flatter if the detention ponds are installed. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
  总被引:1,自引:0,他引:1  
  相似文献   

6.
    
Tools for accurately predicting environmental risks, such as the location and spatial extent of potential inundation, are not widely available. A dependence on calibration and a lack of available flood data have prevented the widespread application of existing hydrodynamic methods for predicting the extent of inundation. We use the height above the nearest drainage (HAND) terrain model to develop a simple static approach for mapping the potential extent of inundation that does not depend on flood observations and extends beyond methods for mapping low‐lying areas. While relying on the contour concept, the method utilizes drainage‐normalized topography and flowpaths to delineate the relative vertical distances (drop) to the nearest river. The HAND‐delineated relative drop is an effective distributed predictor of flood potential, which is directly related to the river stage height. We validated the new HAND contour approach using a flood event in Southern Brazil for which high‐resolution maps were available. The results indicated that the flood hazard‐mapping method accurately predicted the inundation extent of the channel carrying the flood wave and the channels influenced by flooding. For channels positioned outside of the flood‐wave area, the method overestimated the actual flood extent. As an original static assessment of floodwaters across the landscape, the HAND contour method could be used to map flood hazards in areas with poor information and could promote the development of new methods for predicting hydrological hazards. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
    
The use of spatial patterns of flood inundation (often obtained from remotely sensed imagery) to calibrate flood inundation models has been widespread over the last 15 years. Model calibration is most often achieved by employing one or even several performance measures derived from the well‐known confusion matrix based on a binary classification of flooding. However, relatively early on, it has been recognized that the use of commonly reported performance measures for calibrating flood inundation models (such as the F measure) is hampered because the calibration procedure commonly utilizes only one possible solution of a wet/dry classification of a remote sensing image [most often acquired by a synthetic aperture radar (SAR)] to calibrate or validate models and are biased towards either over‐prediction or under‐prediction of flooding. Despite the call in several studies for an alternative statistic, to this date, very few, if any, unbiased performance measure based on the confusion matrix has been proposed for flood model calibration/validation studies. In this paper, we employ a robust statistical measure that operates in the receiver operating characteristics (ROC) space and allows automated model calibration with high identifiability of the best model parameter set but without the need of a classification of the SAR image. The ROC‐based method for flood model calibration is demonstrated using two different flood event test cases with flood models of varying degree of complexity and boundary conditions with varying degree of accuracy. Verification of the calibration results and optional SAR classification is successfully performed with independent observations of the events. We believe that this proposed alternative approach to flood model calibration using spatial patterns of flood inundation should be employed instead of performance measures commonly used in conjunction with a binary flood map. © 2013 California Institute of Technology. Hydrological Processes © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
G) Personalia     
Abstract

This paper proposes a framework for identifying the parameters of a lumped routing model in small to medium sized catchments where lateral inflows can be large but poorly defined. In a first step, a priori estimates of the parameters are made based on topography, aerial photographs, flood marks and field surveys. In a second step, runoff data are analysed of reservoir release events and convective events where no rainfall in the direct catchments occurred. In a third step the routing model is calibrated to the results of hydrodynamic models for scenarios of different magnitudes. In a fourth step, these pieces of information are combined, allowing for soft expert judgement to be incorporated. In a fifth step, the routing parameters are fine tuned to observed flood events where lateral inflows are estimated by a rainfall—runoff model. The framework is illustrated by the Kamp flood forecasting system in Austria that has been in operational use since 2006.  相似文献   

9.
  总被引:1,自引:0,他引:1  
This paper uses numerical simulation of flood inundation based on a coupled one‐dimensional–two‐dimensional treatment to explore the impacts upon flood extent of both long‐term climate changes, predicted to the 2050s and 2080s, and short‐term river channel changes in response to sediment delivery, for a temperate upland gravel‐bed river. Results show that 16 months of measured in‐channel sedimentation in an upland gravel‐bed river cause about half of the increase in inundation extent that was simulated to arise from climate change. Consideration of the joint impacts of climate change and sedimentation emphasized the non‐linear nature of system response, and the possibly severe and synergistic effects that come from combined direct effects of climate change and sediment delivery. Such effects are likely to be exacerbated further as a result of the impacts of climate change upon coarse sediment delivery. In generic terms, these processes are commonly overlooked in flood risk mapping exercises and are likely to be important in any river system where there are high rates of sediment delivery and long‐term transfer of sediment to floodplain storage (i.e. alluviation involving active channel aggradation and migration). Similarly, attempts to reduce channel migration through river bank stabilization are likely to exacerbate this process as without bank erosion, channel capacity cannot be maintained. Finally, many flood risk mapping studies rely upon calibration based upon combining contemporary bed surveys with historical flood outlines, and this will lead to underestimation of the magnitude and frequency of floodplain inundation in an aggrading system for a flood of a given magnitude. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
    
The study investigates the capability of coarse resolution synthetic aperture radar (SAR) imagery to support flood inundation models. A hydraulic model of a 98‐km reach of the River Po (Northern Italy) was calibrated on the October 2000 high‐magnitude flood event with extensive and high‐quality field data. During the June 2008, low‐magnitude flood event a SAR image was acquired and processed in near real time (NRT) in order to provide adequate data for quick verification and recalibration of the hydraulic model. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
《水文科学杂志》2013,58(6):1007-1012
Abstract

The effects of human activities on flood propagation, during the period 1878–2005, in a 190-km reach of the middle—lower portion of the River Po (Northern Italy) are investigated. A series of topographical, hydrological and inundation data were collected for the 1878 River Po geometry and the June 1879 flood event, characterised by an inundated area of 432 km2. The aim of the study is two-fold: (1) to show the applicability of flood inundation models in reconstructing historical inundation events, and (2) to assess the effects of human activities during the last century on flood propagation in the middle—lower portion of the River Po. Numerical simulations were performed by coupling a two-dimensional finite element code, TELEMAC-2D, with a one-dimensional finite difference code, HEC-RAS.  相似文献   

12.
    
The general role of river water input in shaping the basic morphometric parameters of floodplain lakes has been previously investigated. However, the process has not been quantitatively described in detail. This study is the first attempt in the literature to determine the allometric relation between fluvial impulse, expressed as Fluvial Connectivity Quotient, and morphometric parameters of six floodplain lakes of Bug River valley in the period 1952–2014. This relationship is given by Y = aXb, from which the value of b exponent was analysed to determine the strength of the allometric relation. Extreme values of allometric compounds during the time period under study ranged from 5.99 to ?4.91. Volume was the morphometric parameter showing the highest variability in all the lakes. General similarity in allometric relations was observed in the lakes under study. During analysis, no long‐term trends were observed in the relationship between the Fluvial Connectivity Quotient and morphometric parameters. The results obtained show that fluvial impulse was the factor determining the variability of morphometric parameters of the lakes. Direct catchments topography of lake has periodically (during limnophase periods) played a significant role in shaping the morphometry of floodplain lakes. The most stable allometric relations occurred in a confluent lake, with a low limnological effective rise value and consequently, relatively long potamophase periods.Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
    
V. Tayefi  S. N. Lane  R. J. Hardy  D. Yu 《水文研究》2007,21(23):3190-3202
A much understudied aspect of flood inundation is examined, i.e. upland environments with topographically complex floodplains. Although the presence of high‐resolution topographic data (e.g. lidar) has improved the quality of river flood inundation predictions, the optimum dimensionality of hydraulic models for this purpose has yet to be fully evaluated for situations of both topographic and topological (i.e. the connectivity of floodplain features) complexity. In this paper, we present the comparison of three treatments of upland flood inundation using: (a) a one‐dimensional (1D) model (HEC‐RAS v. 3·1·2) with the domain defined as series of extended cross‐sections; (b) the same 1D model, but with the floodplain defined by a series of storage cells, hydraulically connected to the main river channel and other storage cells on the floodplain according to floodplain topological characteristics; (c) a two‐dimensional (2D) diffusion wave treatment, again with explicit representation of floodplain structural features. The necessary topographic and topological data were derived using lidar and Ordnance Survey Landline data. The three models were tested on a 6 km upland reach of the River Wharfe, UK. The models were assessed by comparison with measured inundation extent. The results showed that both the extended cross‐section and the storage cell 1D modes were conceptually problematic. They also resulted in poorer model predictions, requiring incorrect parameterization of the main river to floodplain flux in order to approach anything like the level of agreement observed when the 2D diffusion wave treatment was assessed. We conclude that a coupled 1D–2D treatment is likely to provide the best modelling approach, with currently available technology, for complex floodplain configurations. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
Marco GEMMER 《湖泊科学》2003,15(Z1):166-172
本文计算了洪湖东分洪区洪灾损失.洪水风险带以模拟的洪水淹没深度表示.这是洪水风险综合评价模型的基础.本项研究基于GIS为基础的水动力模型计算洪水淹没深度;并以GIS/RS为基础建立了单位洪水风险评价模型,计算不同洪水风险带的直接损失.研究表明,综合洪水风险评价模型在长江流域应用是可行的.  相似文献   

15.
    
Sang‐Hyeok Kang 《水文研究》2009,23(11):1642-1649
In urban areas with a high building density, features such as roads, buildings and river dykes significantly affect flow dynamics and flood propagation. This should therefore be accounted for in the model set‐up. While 2D hydraulic models of densely urban areas are at the forefront of current research into flood inundation mechanisms, these models are constrained by inadequate parameters of topography and insufficient data. In order to solve these problems, topographic information obtained from digital elevation model (DEM) is directly programmed into the urban inundation model for a densely urban area, without exchanging the input data. In this paper, the extraction of building area is described using a tight coupling approach within a GIS environment, and its influence on the extent of flood inundation with a high building density is estimated. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
    
The quality of digital elevation model (DEM)‐derived river drainage networks (RDNs) is influenced by DEM quality, basin physical characteristics, scale, and algorithms used; these factors should not be neglected. However, few research studies analyse the different evaluation approaches used in the literature with respect to adequacy, meaning of the results, advantages, and limitations. Focusing on coarse‐resolution networks, this paper reviews the use of these techniques and offers new insights on these issues. Additionally, we propose adaptations for selected metrics and discuss distinct interpretations for the evaluation of RDNs derived at different spatial resolutions (1, 5, 10, 20, and 30 km) considering the Uruguay River basin (206,000 km2) as a case study. The results demonstrate that lumped basin/river characteristics and basin delineation analysis should not be used as evaluation criteria for RDN quality; however, some of these metrics offer useful complementary information. Percentage of the DEM‐derived RDN within a uniform buffer placed around a river network considered as reference and mean separation distance between these two networks are more suitable metrics, but the former is insensitive to serious errors. The change in reference from a fine‐scale network to a coarse‐resolution manual tracing network significantly augments the discrepancy of these largest errors when the mean distance metric was applied, and visual comparison analysis is necessary to interpret the results for other metrics. We recommend the use of the mean distance metric in combination with a detailed visual assessment, the importance of which increases as the resolution coarsens. In both cases, the impact of network quality can be further refined by quantifying the basin shape and river length errors.  相似文献   

17.
    
Scaling aspects of river flow routing are studied by comparing two flow routing schemes, one designed for use in coupled general circulation models (GCMs) and operated at large spatial scales (~350 km), and the other designed for use in typical hydrological applications at small spatial scales (~25 km). The same runoff data are used as input into the two routing schemes, and comparisons are made between mean annual, mean monthly and daily streamflow simulated at four locations within the Mackenzie River Basin. The results suggest that for the purpose of realistically modelling monthly streamflow at the mouth of the rivers in GCMs, flow routing at large spatial scales gives similar results. However, the amplitude of the annual streamflow cycle is slightly but characteristically larger, when routing is performed at large spatial scales. Flow routing at large spatial scales also results in overestimation of high flows, while low flows are underestimated. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

18.
    
Recent high profile flood events have highlighted the need for hydraulic models capable of simulating pluvial flooding in urban areas. This paper presents a constant velocity rainfall routing scheme that provides this ability within the LISFLOOD‐FP hydraulic modelling code. The scheme operates in place of the shallow water equations within cells where the water depth is below a user‐defined threshold, enabling rainfall‐derived water to be moved from elevated features such as buildings or curbstones without causing instabilities in the solution whilst also yielding a reduction in the overall computational cost of the simulation. Benchmarking against commercial modelling packages using a pluvial and point‐source test case demonstrates that the scheme does not impede the ability of LISFLOOD‐FP to match both predicted depths and velocities of full shallow water models. The stability of the scheme in conditions unsuitable for traditional two‐dimensional hydraulic models is then demonstrated using a pluvial test case over a complex urban digital elevation model containing buildings. Deterministic single‐parameter sensitivity analyses undertaken using this test case show limited sensitivity of predicted water depths to both the chosen routing speed within a physically plausible range and values of the depth threshold parameter below 10 mm. Local instabilities can occur in the solution if the depth threshold is >10 mm, but such values are not required even when simulating extreme rainfall rates. The scheme yields a reduction in model runtime of ~25% due to the reduced number of cells for which the hydrodynamic equations have to be solved. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
    
Abstract

A two-dimensional (2D) hydrodynamic assessment of the Nile swamps in southern Sudan has been carried out using DHI MIKE 21 software based on a ground referenced and corrected Shuttle Radar Topography Mission (SRTM) digital elevation model. The model was set up and calibrated using available historical information as well as newly measured data. The results show the model capable of representing the hydraulic conditions in the swamps, allowing the assessment of different flow conditions and their effects on the swamp. The study has established water-level gradients, flow directions and velocities in the swamp, as well as on the seasonal flood plains, and describes the importance of evapotranspiration for losses in the system.

Citation Petersen, G. & Fohrer, N. (2010) Two-dimensional numerical assessment of the hydrodynamics of the Nile swamps in southern Sudan. Hydrol. Sci. J. 55(1), 17–26.  相似文献   

20.
    
Previously we have detailed an application of the generalized likelihood uncertainty estimation (GLUE) procedure to estimate spatially distributed uncertainty in models conditioned against binary pattern data contained in flood inundation maps. This method was applied to two sites where a single consistent synoptic image of inundation extent was available to test the simulation performance of the method. In this paper, we extend this to examine the predictive performance of the method for a reach of the River Severn, west‐central England. Uniquely for this reach, consistent inundation images of two major floods have been acquired from spaceborne synthetic aperture radars, as well as a high‐resolution digital elevation model derived using laser altimetry. These data thus allow rigorous split sample testing of the previous GLUE application. To achieve this, Monte Carlo analyses of parameter uncertainty within the GLUE framework are conducted for a typical hydraulic model applied to each flood event. The best 10% of parameter sets identified in each analysis are then used to map uncertainty in flood extent predictions using the method previously proposed for both an independent validation data set and a design flood. Finally, methods for combining the likelihood information derived from each Monte Carlo ensemble are examined to determine whether this has the potential to reduce uncertainty in spatially distributed measures of flood risk for a design flood. The results show that for this reach and these events, the method previously established is able to produce sharply defined flood risk maps that compare well with observed inundation extent. More generally, we show that even single, poor‐quality inundation extent images are useful in constraining hydraulic model calibrations and that values of effective friction parameters are broadly stationary between the two events simulated, most probably reflecting their similar hydraulics. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号