首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this work, a stochastic methodology is applied to analyze the variability of the poroelastic response of the heterogeneous medium at the field scale. To solve the problem analytically, we restrict our attention to the one-dimensional models, where fluid flow as well as deformation occurs in one direction only under a constant applied stress. Assuming statistic homogeneity, the closed-form solutions that describe the variability of fluid pressure head, and a solid's strain and displacement are developed using a spectral approach based on Fourier–Stieltjes representations for the perturbed quantities. The influence of the correlation length of the log hydraulic conductivity on these results is investigated. It is found that the variances of the solid's strain and displacement increase with the correlation length of the log hydraulic conductivity, while the correlation length of the log hydraulic conductivity plays the role in reducing the variability of the specific discharge.  相似文献   

2.
The solid Earth's surface frequently experience changes in total stresses as a result of periodic loading. When the fluid‐saturated porous media deform in response to changes in stress, the induced variations in pore volume affect the pore water pressure. The fluid flow therefore occurs in response to the gradient in the induced excess pore water pressure. This work aims at quantifying the spatial variability in excess pressure head produced by the periodic loading accounting for the variation of log hydraulic conductivity (lnK). It is important for the rational management of groundwater resources. A closed‐form expression is developed by the nonstationary spectral approach to analyse the influence of the statistical properties of lnK process, the hydraulic parameters, and the spatial position. The general stochastic framework outlined in this work provides a basis for assessing the impact of statistical properties of input aquifer parameters on the output variability (or uncertainty). Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
Fluid‐filled granular soils experience changes in total stress because of earth and oceanic tides, earthquakes, erosion, sedimentation, and changes in atmospheric pressure. The pore volume may deform in response to the changes in stress and this may lead to changes in pore fluid pressure. The transient fluid flow can therefore be induced by the gradient in excess pressure in a fluid‐saturated porous medium. This work demonstrates the use of stochastic methodology in prediction of induced one‐dimensional field‐scale groundwater flow through a heterogeneous aquifer. A closed‐form of mean groundwater flux is developed to quantify the induced field‐scale mean behavior of groundwater flow and analyze the impacts of the spatial correlation length scale of log hydraulic conductivity and the pore compressibility. The findings provided here could be useful for the rational planning and management of groundwater resources in aquifers that contain lenses with large vertical aquifer matrix compressibility values.  相似文献   

4.
Hydrologic precursors to earthquakes: A review   总被引:4,自引:0,他引:4  
This review summarizes reports of anomalous flow rates or pressures of groundwater, oil, or gas that have been interpreted as earthquake precursors. Both increases and decreases of pressure and flow rate have been observed, at distances up to several hundred kilometers from the earthquake epicenter, with precursor times ranging from less than one day to more than one year. Although information that might rule out nontectonic causes does not appear in many published accounts of hydrologic anomalies, several recent studies have critically evaluated the possible influences of barometric pressure, rainfall, and groundwater or oil exploitation. Anomalies preceding the 1976 Tangshan, China, and the 1978 Izu-Oshima-Kinkai, Japan, earthquakes are especially well-documented and worthy of further examination.Among hydrologic precursors, pressure head changes in confined subsurface reservoirs are those most amenable to quantitative interpretation in terms of crustal strain. The response of pressure head to earth tides determines coefficients of proportionality between pressure head and crustal strain. The same coefficients of proportionality should govern the fluid pressure response to any crustal strain field in which fluid flow in the reservoir is unimportant. Water level changes in response to independently recorded tectonic events, such as earthquakes and aseismic fault creep, provide evidence that a calibration based on response to earth tides may be applied to crustal strains of tectonic origin.Several models of earthquake generation predict accelerating stable slip on part of the future rupture plane. If precursory slip has moment less than or equal to that of the impending earthquake, then the coseismic volume strain is an upper bound for precursory volume strain. Although crustal strain can be only crudely estimated from most reported pressure head anomalies, the sizes of many anomalies within 150 kilometers of earthquake epicenters appear consistent with this upper bound. In contrast, water level anomalies at greater epicentral distances appear to be larger than this bound by several orders of magnitude.It is clear that water level monitoring can yield information about the earthquake generation process, but progress higes on better documentation of the data.  相似文献   

5.
A study on subsurface airflow plays a vital role in quantifying the effectiveness of natural attenuation of volatile organic compounds (VOCs) or in determining the need of engineering systems (e.g., soil vapor extraction of VOCs). Here, we present a new analytical solution for describing the subsurface airflow induced by barometric pressure and groundwater head fluctuations. The solution improves a previously published semi‐analytical solution into a fully explicit expression and can save much computation efforts when it was used to estimate the soil permeability and porosity, which was demonstrated by a hypothetical example. If the groundwater head and barometric pressure fluctuations have the same frequency and the same order of magnitude for the amplitudes, each or the combination of both fluctuations will generate the air exchange volumes of the same order of magnitude through the ground surface. Particularly, the air exchange volume caused by the combined fluctuations increases with the upper layer's permeability and lower layer's porosity and decreases with the phase difference between these two fluctuations, fluctuation frequency, and the upper layer's thickness. The air exchange volume may decrease quickly to zero essentially when the upper layer's permeability decreases 10‐fold and decrease fourfold to fivefold when the phase difference decreases from π to zero.  相似文献   

6.
This paper describes the velocity pattern of a slow‐moving earth flow containing a viscous shear band and a more or less rigid landslide body on top. In the case of small groundwater fluctuations, Bingham's law may describe the velocity of these slow‐moving landslides, with velocity as a linear function of excess shear stress. Many authors have stated that in most cases a non‐linear version of Bingham's law best describes the moving pattern of these earth flows. However, such an exponential relationship fails to describe the hysteresis loop of the velocity, which was found by some authors. These authors showed that the velocity of the investigated earth flows proved to be higher during the rising limb of the groundwater than during the falling limb. To explain the hysteris loop in the velocity pattern, this paper considers the role of excess pore pressure in the rheological behaviour of earth flows by means of a mechanistic model. It describes changes in lateral internal stresses due to a change in the velocity of the earth flow, which generates excess pore pressure followed by pore pressure dissipation. Model results are compared with a hysteresis in the velocity pattern, which was measured on the Valette landslide complex (French Alps). Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
In exploration geophysics, the efforts to extract subsurface information from wave characteristics exceedingly depend on the construction of suitable rock physics model. Analysis of different rock physics models reveals that the strength and magnitude of attenuation and dispersion of propagating wave exceedingly depend on wave-induced fluid flow at multiple scales. In current work, a comprehensive analysis of wave attenuation and velocity dispersion is carried out at broad frequency range. Our methodology is based on Biot's poroelastic relations, by which variations in wave characteristics associated with wave-induced fluid flow due to the coexistence of three fluid phases in the pore volume is estimated. In contrast to the results of previous research, our results indicate the occurrence of two-time pore pressure relaxation phenomenon at the interface between fluids of disparate nature, that is, different bulk modulus, viscosity and density. Also, the obtained results are compatible with numerical results for the same 1D model which are accounted using Biot's poroelastic and quasi-static equation in frequency domain. Moreover, the effects of change in saturation of three-phase fluids were also computed which is the key task for geophysicist. The outcomes of our research reveal that pore pressure relaxation phenomenon significantly depends on the saturation of distinct fluids and the order of saturating fluids. It is also concluded that the change in the saturation of three-phase fluid significantly influences the characteristics of the seismic wave. The analysis of obtained results indicates that our proposed approach is a useful tool for quantification, identification and discrimination of different fluid phases. Moreover, our proposed approach improves the accuracy to predict dispersive behaviour of propagating wave at sub-seismic and seismic frequencies.  相似文献   

8.
Although there is no assumption of pore geometry in derivation of Gassmann's equation, the pore geometry is in close relation with hygroscopic water content and pore fluid communication between the micropores and the macropores. The hygroscopic water content in common reservoir rocks is small, and its effect on elastic properties is ignored in the Gassmann theory. However, the volume of hygroscopic water can be significant in shaly rocks or rocks made of fine particles; therefore, its effect on the elastic properties may be important. If the pore fluids in microspores cannot reach pressure equilibrium with the macropore system, assumption of the Gassmann theory is violated. Therefore, due to pore structure complexity, there may be a significant part of the pore fluids that do not satisfy the assumption of the Gassmann theory. We recommend that this part of pore fluids be accounted for within the solid rock frame and effective porosity be used in Gassmann's equation for fluid substitution. Integrated study of ultrasonic laboratory measurement data, petrographic data, mercury injection capillary pressure data, and nuclear magnetic resonance T2 data confirms rationality of using effective porosity for Gassmann fluid substitution. The effective porosity for Gassmann's equation should be frequency dependent. Knowing the pore geometry, if an empirical correlation between frequency and the threshold pore‐throat radius or nuclear magnetic resonance T2 could be set up, Gassmann's equation can be applicable to data measured at different frequencies. Without information of the pore geometry, the irreducible water saturation can be used to estimate the effective porosity.  相似文献   

9.
Different theoretical and laboratory studies on the propagation of elastic waves in layered hydrocarbon reservoir have shown characteristic velocity dispersion and attenuation of seismic waves. The wave‐induced fluid flow between mesoscopic‐scale heterogeneities (larger than the pore size but smaller than the predominant wavelengths) is the most important cause of attenuation for frequencies below 1 kHz. Most studies on mesoscopic wave‐induced fluid flow in the seismic frequency band are based on the representative elementary volume, which does not consider interaction of fluid flow due to the symmetrical structure of representative elementary volume. However, in strongly heterogeneous media with unsymmetrical structures, different courses of wave‐induced fluid flow may lead to the interaction of the fluid flux in the seismic band; this has not yet been explored. This paper analyses the interaction of different courses of wave‐induced fluid flow in layered porous media. We apply a one‐dimensional finite‐element numerical creep test based on Biot's theory of consolidation to obtain the fluid flux in the frequency domain. The characteristic frequency of the fluid flux and the strain rate tensor are introduced to characterise the interaction of different courses of fluid flux. We also compare the behaviours of characteristic frequencies and the strain rate tensor on two scales: the local scale and the global scale. It is shown that, at the local scale, the interaction between different courses of fluid flux is a dynamic process, and the weak fluid flux and corresponding characteristic frequencies contain detailed information about the interaction of the fluid flux. At the global scale, the averaged strain rate tensor can facilitate the identification of the interaction degree of the fluid flux for the porous medium with a random distribution of mesoscopic heterogeneities, and the characteristic frequency of the fluid flux is potentially related to that of the peak attenuation. The results are helpful for the prediction of the distribution of oil–gas patches based on the statistical properties of phase velocities and attenuation in layered porous media with random disorder.  相似文献   

10.
The 1999 Chi‐Chi earthquake significantly altered the landscape of central Taiwan. Surface deformation produced by the earthquake along the trace of the Chelungpu thrust can be classified into two styles: (1) uplift without significant surface rupture, and (2) uplift accompanied by surface rupture. Here we examine areas that exhibited the first style of deformation (e.g. Wufeng). Seismic stress at the time of the main shock may have been relieved by high pore‐fluid pressure in a 300‐m‐thick sand and gravel aquifer. Along the thrust fault, frictional heating of these sediments resulted in thermal expansion and an increase in pore‐fluid pressure. High pore‐fluid pressure damped seismic‐wave energy and enhanced intergranular slips of unconsolidated sandy and gravel sediments, which were possibly assisted by sulphuric acid corrosion, leading to a high sulphate content in the groundwater (c. 70 mg L?1). These changes permitted surface folding and terrace‐style uplifting to occur without significant rupture. In contrast, other areas in which the second style of deformation is dominant (e.g. Fengyuen‐Shihkang) have thin (0–10 m) sand and gravel deposits and lower concentrations of sulphate (c. 30 mg L?1) in groundwater. In these areas, sediments were heated but not sufficiently to produce significant thermal expansion and increase in pore‐fluid pressure; accumulation of stress in these locations led to rupture at the ground surface, with the formation of steep fault scarps. The areas exhibiting the first deformation style are characterized by the presence of high pore‐fluid pressure, frictional heat conduction, and possibly chemical corrosion related to sulphuric acid attack and formation of sulphate, in contrast to those involving significant uplift and surface rupture. The areal distribution of these two surface deformation styles suggests that the aforementioned fluid‐related subsurface processes may have altered the characteristics of sediments and caused diverse responses to the quake. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

11.
Introduction The surface of the Earth is the main location where the fluid strongly interacts with solid, and where the atmosphere, hydrosphere, biosphere, and lithosphere strongly interact. Obviously, fault zones as the channels of fluid (water) flow are the focus area of this strong interaction. Earth-quakes, as the products of tectonic activity, occurred near or on the fault zones, can be regarded as one of the results of this strong interaction. Bolt (1999) pointed out that if there were …  相似文献   

12.
八宝山断层的变形行为与降雨及地下水的关系   总被引:8,自引:1,他引:7       下载免费PDF全文
利用北京丰台大灰厂观测台站1970——2003年的长期综合观测资料,系统分析了降雨和地下水对北京八宝山断层变形行为的影响. 研究结果表明:当降雨量持续稳定周期性变化,则断层孔隙压也呈稳定周期性变化,断层变形行为也表现出明显的规则周期性变化;当降雨量明显偏低或偏离正常周期性变化,则断层孔隙压周期性消失,断层的变形行为方式也发生改变. 降雨通过改变断层带孔隙压力的变化而影响着八宝山断层的变形行为. 结合该断层已有研究结果,认为降雨和地下水有可能通过改变断层变形行为方式而影响着区域构造应力/应变场的调整. 这一结果将对研究地球浅部流体与固体相互作用提供直接的观测证据.   相似文献   

13.
In this paper, we extend the previous studies of semi-brittle flow of synthetic calcite-quartz aggregates to a range of temperatures and effective pressures where viscous creep occurs. Triaxial deformation experiments were performed on hot-pressed calcite-quartz aggregates containing 10, 20 and 30 wt% quartz at confining pressure of 300 MPa, pore pressures of 50-290 MPa, temperatures of 673-1073 K and strain rates of 3.0×10−5/s, 8.3×10−5/s and 3.0×10−4/s. Starting porosity varied from 5 to 9%. We made axial and volumetric strain measurements during the mechanical tests. Pore volume change was measured by monitoring the volume of pore fluid that flows out of or into the specimen at constant pore pressure. Yield stress increased with decreasing porosity and showed a dependence on effective pressure. Thus, the yield stress versus effective pressure can be described as a yield surface with negative slope that expands with decreasing porosity and increasing strain hardening, gradually approaching the envelope of strength at 10% strain, which has a positive slope. Creep of porous rock can be modeled to first order as an isolated equivalent void in an incompressible nonlinear viscous matrix. An incremental method is used to calculate the stress-strain curve of the porous material under a constant external strain rate. The numerical simulations reproduce general trends of the deformation behavior of the porous rock, such as the yield stress decreasing with increasing effective pressure and significant strain hardening at high effective pressure. The drop of yield stress with increasing porosity is modeled well, and so is the volumetric strain rate, which increases with increasing porosity.  相似文献   

14.
A model describing the three‐dimensional matrix flow along a slope with rock fragments or impermeable blocks was developed. The model was combined with modified Picard's iteration to ensure mass conservation in the unsaturated flow. We found that rock fragments obstruct water flow along the slope. The groundwater table must be raised to provide a sufficient pore water pressure gradient to facilitate water flow, but higher pore water pressure may induce slope failure. We also conducted a bench‐scale laboratory flume experiment to examine the effects of impermeable blocks on downstream seepage flow. In addition, a numerical experiment was conducted to examine how different arrangements of impermeable blocks affect downstream seepage flow and pore water pressure. This research demonstrated that the hydraulic phenomena were affected when impermeable blocks were present, and pore water pressure increased as the position of impermeable blocks was lowered. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
Groundwater ridging is the rapid rise of a shallow water table during a rainfall event, in an environment where, in the pre‐event period, the capillary fringe extends to the ground surface. Groundwater ridging is widely cited to account for the observed significant appearance of pre‐event water in a stream stormflow hydrograph. Various hypotheses have been advanced to explain the groundwater‐ridging mechanism; and most recently, from a field study site in South Africa, an energy hypothesis was proposed, which explains that groundwater‐ridging water‐table rise is a result of rapid introduction and transmission of additional pressure head into the capillary fringe from an intense rainfall at the ground surface. However, there is a need for further analysis and evidence from other field study sites to confirm and support this newly proposed energy hypothesis. The objectives of this paper are, therefore, as follows: to review previous observations on groundwater ridging, from other study sites, in order to deduce evidence of the newly proposed energy hypothesis; to present and evaluate a one‐dimensional diffusion mathematical model that can simulate groundwater‐ridging water‐table rise, based on the newly proposed energy hypothesis; and to evaluate the importance of a capillary fringe in streamflow generation. Analysis of previous observations from other study sites generally indicated that the rate of groundwater‐ridging water‐table rise is directly related to the rainfall intensity, hence confirming and agreeing with the newly proposed energy hypothesis. Additionally, theoretical results by the mathematical model agreed fairly well with the field results observed under natural rainfall, confirming that the rapidly rainfall‐induced energy is diffusively transmitted downwards through pore water, elevating the pressure head at every depth. The results in this study also support the concept of a three‐end‐member stream stormflow hydrograph and contribute to the explanation of how catchments can store water for long periods but then release it rapidly during storm events. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
Burial stress on a sediment or sedimentary rock is relevant for predicting compaction or failure caused by changes in, e.g., pore pressure in the subsurface. For this purpose, the stress is conventionally expressed in terms of its effect: “the effective stress” defined as the consequent elastic strain multiplied by the rock frame modulus. We cannot measure the strain directly in the subsurface, but from the data on bulk density and P‐wave velocity, we can estimate the rock frame modulus and Biot's coefficient and then calculate the “effective vertical stress” as the total vertical stress minus the product of pore pressure and Biot's coefficient. We can now calculate the elastic strain by dividing “effective stress” with the rock frame modulus. By this procedure, the degree of elastic deformation at a given time and depth can be directly expressed. This facilitates the discussion of the deformation mechanisms. The principle is illustrated by comparing carbonate sediments and sedimentary rocks from the North Sea Basin and three oceanic settings: a relatively shallow water setting dominated by coarse carbonate packstones and grainstones and two deep water settings dominated by fine‐grained carbonate mudstones and wackestones.  相似文献   

17.
In the last decade, remote sensing of the temporal variation of ground level and gravity has improved our understanding of groundwater dynamics and storage. Mass changes are measured by GRACE (Gravity Recovery and Climate Experiment) satellites, whereas ground deformation is measured by processing synthetic aperture radar satellites data using the InSAR (Interferometry of Synthetic Aperture Radar) techniques. Both methods are complementary and offer different sensitivities to aquifer system processes. GRACE is sensitive to mass changes over large spatial scales (more than 100,000 km2). As such, it fails in providing groundwater storage change estimates at local or regional scales relevant to most aquifer systems, and at which most groundwater management schemes are applied. However, InSAR measures ground displacement due to aquifer response to fluid‐pressure changes. InSAR applications to groundwater depletion assessments are limited to aquifer systems susceptible to measurable deformation. Furthermore, the inversion of InSAR‐derived displacement maps into volume of depleted groundwater storage (both reversible and largely irreversible) is confounded by vertical and horizontal variability of sediment compressibility. During the last decade, both techniques have shown increasing interest in the scientific community to complement available in situ observations where they are insufficient. In this review, we present the theoretical and conceptual bases of each method, and present idealized scenarios to highlight the potential benefits and challenges of combining these techniques to remotely assess groundwater storage changes and other aspects of the dynamics of aquifer systems.  相似文献   

18.
The pore water pressure head that builds in the soil during storms is a critical factor for the prediction of potential slope instability. We report findings from a 3‐year study of pressure head in 83 piezometers distributed within a 13‐ha forested catchment on the northern coast of California. The study's primary objective was to observe the seasonal and storm‐based dynamics of pressure head at a catchment scale in relation to observed rainfall characteristics and in situ topography to better understand landscape patterns of pressure head. An additional goal was to determine the influence of the interaction between rainfall and forest canopy in altering delivery of water and pressure head during the large storms necessary to induce landsliding. We found that pressure head was highly variable in space and time at the catchment scale. Pore pressures peaked close to maximum rainfall intensity during the largest storms measured. The difference between rainfall and throughfall delivered through the canopy was negligible during the critical landslide‐producing peak rainfall periods. Pore pressure was spatially variable within the catchment and did not strongly correlate with surficial topographic features. Only 23% of the piezometers located in a variety of slope positions were found to be highly responsive to rainfall. Topographic index statistically explained peak pressure head at responsive locations during common storms, but not during the larger storms with potential to produce landslides. Drainage efficiency throughout the catchment increased significantly in storms exceeding 2 to 7 months peak pressure head return period indicated by slowing or cessation of the rate of increase of pressure head with increasing storm magnitude. This asymptotic piezometric pattern persisted through the largest storm measured during the study. Faster soil drainage suppressed pressure head response in larger storms with important process implications for pore pressure development and landslide hazard modelling. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
A comprehensive understanding of seasonal hydrological dynamics is required to describe the influence of pore‐water pressure on the stability of landslides in snowy regions. This study reports on the results of continuous meteorological and hydrological observations over 2 years on a landslide body comprising Neogene sedimentary rocks in northern Japan, where a thick (3–5 m) seasonal snowpack covers the land surface. Monitoring of the volumetric water content in shallow unsaturated zones (<0.8 m depth) and pore‐water pressure in saturated bedrock at depths of 2.0 and 5.2 m revealed clear seasonality in hydrological responses to rainfall and meltwater supply. During snow‐free periods, both the shallow soil moisture and deep pore‐water pressure responded rapidly to intense rainwater infiltration. In contrast, during snowmelt, the deep pore pressure fluctuated in accordance with the daily cycle of meltwater input, without notable changes in shallow moisture conditions. During occasional foehn events that cause intense snow melting in midwinter, meltwater flows preferentially through the layered snowpack, converging to produce a localized water supply at the ground surface. This episodically triggers a significant rise in pore‐water pressure. The seasonal differences in hydrological responses were characterized by a set of newly proposed indices for the magnitude and quickness of increases in the pressure head near the sliding surface. Under snow‐covered conditions, the magnitude of the pressure increase tends to be suppressed, probably owing to a reduction in infiltration caused by a seasonal decrease in the permeability of surface soils, and effective pore‐water drainage through the highly conductive colluvial layer. Deep groundwater flow within bedrock remained in a steady upwelling state, enhanced by increasing moisture in shallow soils under snow cover, reflecting the convergence of subsurface water from surrounding hillslopes.  相似文献   

20.
Considering heterogeneity in porous media pore size and connectivity is essential to predicting reactive solute transport across interfaces. However, exchange with less‐mobile porosity is rarely considered in surface water/groundwater recharge studies. Previous research indicates that a combination of pore‐fluid sampling and geoelectrical measurements can be used to quantify less‐mobile porosity exchange dynamics using the time‐varying relation between fluid and bulk electrical conductivity. For this study, we use macro‐scale (10 s of cm) advection–dispersion solute transport models linked with electrical conduction in COMSOL Multiphysics to explore less‐mobile porosity dynamics in two different types of observed sediment water interface porous media. Modeled sediment textures contrast from strongly layered streambed deposits to poorly sorted lakebed sands and cobbles. During simulated ionic tracer perturbations, a lag between fluid and bulk electrical conductivity, and the resultant hysteresis, is observed for all simulations indicating differential loading of pore spaces with tracer. Less‐mobile exchange parameters are determined graphically from these tracer time series data without the need for inverse numerical model simulation. In both sediment types, effective less‐mobile porosity exchange parameters are variable in response to changes in flow direction and fluid flux. These observed flow‐dependent effects directly impact local less‐mobile residence times and associated contact time for biogeochemical reaction. The simulations indicate that for the sediment textures explored here, less‐mobile porosity exchange is dominated by variable rates of advection through the domain, rather than diffusion of solute, for typical low‐to‐moderate rate (approximately 3–40 cm/day) hyporheic fluid fluxes. Overall, our model‐based results show that less‐mobile porosity may be expected in a range of natural hyporheic sediments and that changes in flowpath orientation and magnitude will impact less‐mobile exchange parameters. These temporal dynamics can be assessed with the geoelectrical experimental tracer method applied at laboratory and field scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号