首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The moisture content ws of a beach surface strongly controls the availability of sand for aeolian transport. Our predictive capability of the spatiotemporal variability in ws, which depends to a large extent on water table depth, is, however, limited. Here we show that water table fluctuations and surface moisture content observed during a 10-day period on a medium-grained (365μm) planar (1:30) beach can be predicted well with the nonlinear Boussinesq equation extended to include run-up infiltration and a soil–water retention curve under the assumption of hydrostatic equilibrium. On the intertidal part of the beach the water table is observed and predicted to continuously fall from the moment the beach surface emerges from the falling tide to just before it is submerged by the incoming tide. We find that on the lower 30% of the intertidal beach the water table remains within 0.1–0.2 m from the surface and that the sand is always saturated (ws≈20%, by mass). Higher up on the intertidal beach, the surface can dry to about 5% when the water table has fallen to 0.4–0.5 m beneath the surface. Above the high-tide level the water table is always too deep (>0.5 m) to affect surface moisture and, without precipitation, the sand is dry (ws < 5 − 8%). Because the water table depth on the emerged part of the intertidal beach increases with time irrespective of whether the (ocean) tide falls or rises, we find no need to include hysteresis (wetting and drying) effects in the surface-moisture modelling. Model simulations suggest that at the present planar beach only the part well above mean sea level can dry sufficiently (ws < 10%) for sand to become available for aeolian transport. ©2018 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

2.
Small‐scale variations in surface moisture content were measured on a fine‐grained beach using a Delta‐T Theta probe. The resulting data set was used to examine the implications of small‐scale variability for estimating aeolian transport potential. Surface moisture measurements were collected on a 40 cm × 40 cm grid at 10 cm intervals, providing a total of 25 measurements for each grid data set. A total of 44 grid data sets were obtained from a representative set of beach sub‐environments. Measured moisture contents ranged from about 0% (dry) to 25% (saturated), by weight. The moisture content range within a grid data set was found to vary from less than 1% to almost 15%. The magnitude of within‐grid variability varied consistently with the mean moisture content of the grid sets, following an approximately normal distribution. Both very wet and very dry grid data sets exhibited little internal variability in moisture content, while intermediate moisture contents were associated with higher levels of variability. Thus, at intermediate moisture contents it was apparent that some portions of the beach surface could be dry enough to allow aeolian transport (i.e. moisture content is below the critical threshold), while adjacent portions are too wet for transport to occur. To examine the implications of this finding, cumulative distribution functions were calculated to model the relative proportions of beach surface area expected to be above or below specified threshold moisture levels (4%, 7%, and 14%). It was found that the implicit inclusion of small‐scale variability in surface moisture levels typically resulted in changes of less than 1% in the beach area available for transport, suggesting that this parameter can be ignored at larger spatial scales. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
Knowledge of surface moisture on beaches is vital for aeolian process studies because moisture increases transport thresholds and limits mass flux. A number of beach surface moisture measurement techniques have been employed in the field, including sample extraction, commercial soil moisture sensors, and remote sensing techniques. Each method has significant limitations in the context of aeolian process studies. This study was designed to test infrared optic techniques for measuring beach surface moisture. A simple infrared sensor (narrow‐band radiometer) was developed to measure beach surface moisture content. The accuracy and practical usability of the narrow‐band radiometer were assessed in comparison to a commercial handheld spectroradiometer. Field calibrations conducted at Cape San Blas, Florida and Padre Island, Texas indicated that the narrow‐band radiometer performed quite well. The R2 values exceeded 0·98 in each case, and the standard error averaged about 1% moisture content compared with gravimetric moisture contents determined from 1·5 mm deep surface scrapes. The performance of the two instruments was found to be comparable, with the narrow‐band radiometer slightly outperforming the spectroradiometer. In practical applications, the narrow‐band radiometer also has logistical advantages and is better suited to measure large numbers of points. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Previous experimental studies of capillary barriers have identified highly hysteretic soil moisture retention characteristics in the materials used. In this study, numerical modelling is used to analyse the role of soil moisture hysteresis in capillary barrier functioning. Comparisons between published experimental results and model simulations indicate that soil moisture hysteresis was a necessary inclusion in the modelling approach to adequately reproduce pore water pressure distributions and the timing of breakthrough occurrences. Under hypothetical intermittent infiltration and evaporation conditions, the predicted volumetric water content in the moisture retention layer was significantly different for hysteretic and non‐hysteretic models. The hysteresis effect was found to be dependent on the nature of infiltration–evaporation cycling, although the predicted volume of flow through the hysteretic barrier was lower than that of the non‐hysteretic case, regardless of the nature of the cyclic upper boundary conditions. For practical engineering designs, where the water leakage through the barrier is the primary concern, the inclusion of soil moisture hysteresis in numerical modelling is needed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
This paper presents results from a study designed to explore the effects of beach surface moisture and fetch effects on the threshold of movement, intensity of sand transport by wind and mass flux. The experiment was carried out over a period of five weeks at Greenwich Dunes, Prince Edward Island, Canada in May and June 2002. Moisture content was measured with a Delta‐T moisture probe over a 50 m by 25 m grid established on the beach. Measurements of wind speed and direction were made with arrays of cup anemometers and a two‐dimensional sonic anemometer. Transport intensity was measured at a height of 2–4 cm above the bed using omnidirectional saltation probes which count the impact of saltating grains on a piezoelectric crystal. Anemometers and saltation probes were sampled at 1 Hz. Sand transport was measured with vertical integrating sand traps over periods of 10–20 minutes. Results show that where there is a considerable supply of dry sand the saltation system responds very rapidly (1–2 s) to fluctuations in wind speed, i.e. to wind gusts. Where sand supply from the surface is limited by moisture, mean transport rates are much lower and this reflects in both a reduction in the instantaneous transport rate and in a transport system that becomes increasingly intermittent. Threshold wind speed is significantly correlated with an increase in surface moisture content near the upwind end of the beach fetch, but the relationship is not significant at the downwind end where sediment transport is initiated primarily by saltation impact from upwind. Mass flux increases with increasing fetch length and the relationship is described best by a power function. Further work is necessary to develop a theoretical function to predict the increase in transport with fetch distance as well as the critical fetch distance. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
A remote sensing technique for assessing beach surface moisture was used to provide insight into beach‐surface evolution during an aeolian event. An experiment was carried out on 21 October 2007 at Greenwich Dunes, Prince Edward Island National Park, Canada, during which cameras were mounted on a mast on the foredune crest at a height of about 14 m above the beach. Maps of beach surface moisture were created based on a calibrated relationship between surface brightness from the photographs and surface moisture content measured in situ at points spaced every 2.5 m along a transect using a Delta‐T moisture probe. A time sequence of maps of surface moisture content captured beach surface evolution through the transport event at a spatial and temporal resolution that would be difficult to achieve with other sampling techniques such as impedance probes. Erosion of the foreshore and berm crest resulted in an increase in surface moisture content in these areas as the wetter underlying sediments were exposed. Flow expansion downwind of the berm crest led to sand deposition and a consequent decrease in surface moisture content. Remote sensing systems such as the one presented here allow observations of the combined evolution of beach surface moisture, shoreline position, and fetch distances during short‐term experiments and hence provide a comprehensive rendering of sediment erosion and transport processes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
T. Neta  Q. Cheng  R. L. Bello  B. Hu 《水文研究》2011,25(6):933-944
Assessing moisture contents of lichens and mosses using ground‐based high‐spectral resolution spectrometers offers immense opportunities for a comprehensive monitoring of peatland moisture status by satellite/airborne imagery. This study investigates the impact of various moisture conditions of the lichens Cladina stellaris and Cladina rangiferina, and the mosses Dicranum elongatum and Tomenthypnum nitens on the spectral signatures obtained. Reflectance and moisture content measurements of these species were made in a laboratory setting, while maintaining the natural moisture conditions of the samples; once the moisture and spectral measurements were complete, the samples were returned to the field and placed in their natural setting, continuously receiving moisture from precipitation and groundwater and losing water through evaporation and drainage. Previously, we correlated the present spectral indices with the moisture contents of the above species, whereas the current study developed new species‐specific indices to improve the detection of the plants' moisture contents. The relationship between the plants' moisture content and the water table position was examined as well. It was found that the lichens are not responsive to variations in the water table position, whereas the mosses, specifically D. elongatum, are quite sensitive to changes in the water table position. Thus, the use of the mosses spectral indices may contribute to an indirect evaluation of the water table position. Overall, the results suggest that the unique spectral signatures of the above species can be detected by satellite and airborne imagery, whereas the mosses, can be used as indicators of peatlands moisture status. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Sediment budget data from an 18‐month topographic survey were analysed with data from brief experiments on wind parameters, beach moisture contents, bedforms and sand mobilization in order to monitor conditions and patterns of embryo dune development over a flat 150–1000 m wide accreting upper beach. The surface conditions over the upper beach locally affect aeolian transport, but net dune development over time depends on sustained strong winds and their orientation. Incoming marine sand supplied by storms and onshore winds is reorganized by the dominant offshore to longshore winds into elongated embryo dunes over this upper beach, imprinting a regional morphology of long‐term longshore dune ridge development. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
The variation of seawater level resulting from tidal fluctuations is usually neglected in regional groundwater flow studies. Although the tidal oscillation is damped near the shoreline, there is a quasi‐steady‐state rise in the mean water‐table position, which may have an influence on regional groundwater flow. In this paper the effects of tidal fluctuations on groundwater hydraulics are investigated using a variably saturated numerical model that includes the effects of a realistic mild beach slope, seepage face and the unsaturated zone. In particular the impact of these factors on the velocity field in the aquifer is assessed. Simulations show that the tidal fluctuation has substantial consequences for the local velocity field in the vicinity of the exit face, which affects the nearshore migration of contaminant in coastal aquifers. An overheight in the water table as a result of the tidal fluctuation is observed and this has a significant effect on groundwater discharge to the sea when the landward boundary condition is a constant water level. The effect of beach slope is very significant and simplifying the problem by considering a vertical beach face causes serious errors in predicting the water‐table position and the groundwater flux. For media with a high effective capillary fringe, the moisture retained above the water table is important in determining the effects of the tidal fluctuations. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

10.
Rill development studies have focused almost exclusively on surface erosion processes and critical threshold hydraulic conditions. Characteristic rill features, such as arcuate headcuts and knickpoints, are morphologically similar to the ‘theatre-headed’ valleys which have been associated with ‘sapping’ processes at various scales. This paper reports on laboratory experiments designed to identify linkages between surface flow hydraulics, subsurface moisture conditions and rill development. Experiments were carried out in a 16·57 m2 flume under simulated rainfall with soil samples up to 0·15 m depth in which moisture conditions were monitored by miniature time-domain reflectometer probes. Tests showed complex responses in which some rill incision reflected surface flow conditions, but major rill system development with markedly enhanced sediment yield was closely associated with high soil moisture contents. It was not possible to measure seepage forces directly, but calculation and observation indicate that these were less important than reduction in soil strength with saturation, which resulted in increased effective runoff erosivity. This caused concentrated undercutting along the water table at rill walls, while slightly stronger surface layers above the water table formed microscarps. These retreated along the water table into interrill surfaces, producing residual pediment transport slopes. The microscarps eventually disappeared when the water table reached the surface, eliminating differential soil strength. The experiments showed complex relationships between surface and subsurface erosional processes in evolving rill systems, strongly influenced by soil moisture dynamics. The very small topographic and hydraulic head amplitudes indicate that seepage forces and ‘sapping’ were minimal. The dominant effect of soil moisture was reduction of soil strength with saturation, and increased runoff entrainment. Experimental conditions were not unusual, either for agricultural fields or natural hillslopes, and the intricate interrelationship of surface and subsurface erosion processes observed is probably not uncommon. Attempts to link specific morphologic features at rill scale to dominance of surface or subsurface processes alone are therefore unlikely to be successful or reliable. © 1998 John Wiley & Sons, Ltd.  相似文献   

11.
Cavernous features commonly develop in sandstone, but their development over time remains enigmatic. It has been suggested that moisture movements within the rock mass play a key role in the location, development and dynamics of cavernous features. In this research the role of internal moisture movement is tested through monitoring moisture and surface deterioration dynamics in April 2008 and April 2009 within two large cavernous features (mega‐tafoni) in the Golden Gate Highlands National Park, South Africa (GGHNP). Data are presented from surveys of internal moisture (using electrical resistivity tomography, ERT), surface moisture (using a Protimeter) and deterioration (using surface hardness as recorded with an Equotip as a proxy for surface deterioration) across five 2.45 m long transects. In addition a high resolution temperature record is presented to assess the influence of micro‐climates within the caverns. The results indicate consistency in the gross spatial pattern of moisture flow within the rock mass over a one year period, but significant changes in mean moisture contents and in the fine detail of moisture patterning. Some noticeably weakened areas had developed within the central parts of the cavernous features, often linked to wetter subsurface conditions, supporting the theory that ‘core softening’ is a main driver of cavernous feature formation. However, in some areas surface hardening is also found to be associated with wetter subsurface conditions, supporting the theory that ‘case hardening’ is a main driver of cavernous feature formation. In addition, the presence of well‐established biofilms suggests an even more complex interaction between moisture, surface development and biological activity. A model is presented therefore which integrates this paradox by proposing a non‐linear relationship between moisture dynamics, facilitation of biofilm formation, and deterioration within cavernous features. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
Rock moisture content is a major control of mechanical weathering, particularly freeze-thaw, and yet almost no data exist from field situations. This study presents moisture content values for rocks, taken from a variety of positions and conditions, in the maritime Antarctic. Additional information regarding the amount of water the rock could take up, as observed from laboratory experiments, is also presented. The results show that the approaches used in simulation experiments, particularly that of soaking a rock for 24 hours, may produce exaggerated results. It was found that the saturation coefficient (S-value) was a good indicator of frost susceptibility (based on water content) but that the derivation of that value may underestimate the potential of some rocks. The distribution of moisture within rocks is seen as an important, but unkown, factor. The results of these field moisture contents suggest that for simulations of freeze-thaw or hydration to be meaningful then they should have rock water contents based on field observations.  相似文献   

13.
Ephemeral aeolian sand strips are commonplace on beaches. Their formation during high energy sand transport events often precedes the development of protodunes and their dynamics present interesting feedback mechanisms with surface moisture patterns. However, due to their temporary nature, little is known of their formation, mobility or the specifics of their interaction with beach surface characteristics. Similarly surface moisture has an important influence on sediment availability and transport in aeolian beach systems, yet it is difficult to quantify accurately due to its inherent variability over both short spatial and temporal scales. Whilst soil moisture probes and remote sensing imagery techniques can quantify large changes well, their resolution over mainly dry sand, close to the aeolian transport threshold is not ideal, particularly where moisture gradients close to the surface are large. In this study we employed a terrestrial laser scanner to monitor beach surface moisture variability during a three and a half hour period after a rain event and investigated relationships between bedform development, surface roughness and surface moisture. Our results demonstrate that as the beach surface dries, sand transport increases, with sediment erosion occurring at the wet/dry surface boundary, and deposition further downwind. This dynamic structure, dependent upon changing surface moisture characteristics, results in the formation of a rippled sand strip and ultimately a protodune. Our findings highlight dynamic mobility relationships and confirm the need to consider transient bedforms and surface moisture across a variety of scales when measuring aeolian transport in beach settings. The terrestrial laser scanner provides a suitable apparatus with which to accomplish this. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Rui Guo  Yiping Guo  Jun Wang 《水文研究》2018,32(17):2708-2720
An approach based on individual rainfall events is introduced to mathematically describe the hydrologic responses and estimate the stormwater capture efficiencies of permeable pavement systems (PPSs). A stochastic model describing the instantaneous dynamic water balance of a PPS is established, from which the probability distribution of the antecedent moisture content of the PPS at the beginning of a rainfall event is analytically derived. Based on this probability distribution and the event‐based approach, an analytical equation that can be used for estimating the stormwater capture efficiencies of PPSs is also derived. The derived analytical equation is verified by comparing its results with those from continuous simulations for a wide range of PPSs with different sizes and underlying soils and operating under various climate conditions. It was found that the antecedent moisture contents of PPSs at the test locations are usually fairly close to zero, suggesting that PPSs at these locations are always almost empty at the start of a rainfall event. The derived analytical equation accounts for many key processes influencing the behaviour and operation of PPSs; it may serve as an easy‐to‐use tool that is essential for the planning and design of PPSs.  相似文献   

15.
This paper deals with the effect of rainfall on the process of wind erosion of beach sands and presents results from both field and wind tunnel experiments. Although sediment transport by splash is of secondary importance on coastal dunes, splash–saltation processes can move sediments in conditions where no motion is predicted by aeolian processes. The effect of raindrop impact on the movement of soil particles by wind was measured on a sand beach plain using an acoustic sediment sampler. In general, an increase of particle movement by wind at the sensor heights was observed during rainfall. Rainfall also affected the wind erosion process during and after rain by changing the cohesive conditions of the surface. The influence of the surface moisture content on the initiation of wind erosion and on the vertical distribution of transported sand particles was studied in a wind tunnel. Moisture significantly increased threshold wind velocities for the initiation of sediment transport and modified vertical sediment profiles.  相似文献   

16.
The goal of this study was to improve understanding of the factors that influence runoff generation during non‐frozen ground periods in small agricultural watersheds in southwestern Wisconsin where the landscapes are controlled by dolostone bedrock in order to provide agricultural producers with a manure management tool. Six small watersheds (ranging from 6 to 17 ha) within two southwestern Wisconsin farm sites (Discovery Farms Program (DFP) and Pioneer Farm (PF)) were instrumented, and surface runoff was continuously monitored from 2004 to 2007. The soils in all watersheds were formed in deep (~1 m) loessial sites. A direct‐plant management strategy and corn‐soybean crop rotation were utilized within watersheds at DFP. A conventional tillage system (chisel plow in the fall followed by soil finisher in the spring) and a corn‐oat‐alfalfa crop rotation were utilized within watersheds at PF. At PF, the amount of precipitation leaving the landscape as surface runoff (1.8%) was two times greater compared to DFP (0.9%), indicating that the direct‐plant management system was better at retaining precipitation than the chisel plow/soil finisher system. Using breakpoint regression analysis, a non‐linear response in runoff generation with antecedent soil moisture (ASM) was observed with a threshold ASM of 0.39 cm3cm?3 (approximately 80% of total porosity) for all six watersheds. Below this threshold, runoff coefficients were near zero. Above this threshold, runoff coefficients increased with ASM. A non‐linear response in runoff generation with maximum 30 min rainfall intensity (I30) was also observed, and threshold I30 values increased as ASM decreased and as crop cover increased. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
Rock moisture is an important factor for the intensity and distribution of frost weathering processes. However, quantitative measurements are scarce, which is partly due to the lack of reliable measurement techniques. This paper presents five different techniques for obtaining rock moisture data. While collecting rock pieces and two‐dimensional geoelectric measurements allow determination of the spatial moisture distribution, the temporal variability can be derived from conductivity and time domain reflectometry records. Computer simulations, using rock properties and climatic records as input data, render it possible to clarify the important aspects that are responsible for the moisture distribution. It proved to be advisable to use several methods to check and validate the results. The results, obtained in study areas in the Bavarian Alps, make it clear that direct rainfall is the main source of rock moisture. The influence of snow is limited to the immediate vicinity of the snow fields and is not equally pronounced at different times and positions. Rock moisture levels are higher in summer than they are in winter, since in winter less water is supplied in liquid form. Northerly exposed rockwalls are generally more moist than those exposed in a southerly direction, which is due to the different insolation as well as to the wind direction during rainfall. In every position the rock is, on average, wetter on the inside than it is on the surface. This means that shallow frost cycles, as typical for south‐exposed sites, are not affecting weathering, since they take place at a depth level that is mostly dried out. Numerous spatial and temporal patterns of rockfall found in the same study areas can be explained through variations in rock moisture. Thus, the moisture content of the rock is considered to be one of the major controlling factors of the frost‐shattering rate. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
胜利滩海地区地理地质条件特殊,勘探程度低、难度大。通过对滩海及极浅海地区采集方法的研究,在改进采集设备的同时,进一步完善了野外观测系统设计,总结了各种激发因素和接收因素,形成一套完整合理的有利于滩海及极浅海地区地震勘探方法,使地震资料的信噪比和分辨率得到了很大提高,从而为地下构造形态研究、油藏描述提供了可靠的基础资料。  相似文献   

19.
A periodic vertical movement of the groundwater table results in a subsequent cyclic response of the water content and pressure profiles in the vadose zone. The sequence of periodic wetting and drying processes can be affected by hysteresis effects in this zone. A one-dimensional saturated/unsaturated flow model based on Richards’ equation and the Mualem (Soil Sci. 137 (1984) 283) hysteresis model is formulated which can take into account multi-cycle hysteresis effects in the relation between capillary pressure and water content. The numerical integration of the unsaturated flow equation is based on a Galerkin-type finite element method. The flow domain is discretised by finite elements with linear shape functions. Simulations start with static water content and pressure profiles, which correspond to either a boundary drying or wetting retention curve. To facilitate the numerical solution of the hysteretic case an implicit non-iterative procedure was chosen for the solution of the nonlinear differential equation. Laboratory experiments were performed with a vertical sand column by imposing a high frequency periodic pressure head at the lower end of the column. The total water volume in the column, and the periodic water content profile averaged over time were measured. The boundary drying and wetting curves of the relation between water content and capillary pressure were determined by independent experiments. The simulations of the experimental conditions show a clear effect of the hysteresis phenomenon on the water content profile. The simulations with hysteresis agree well with the measurements. Computed dimensionless water content profiles are presented for different oscillation frequencies with and without consideration of hysteresis.  相似文献   

20.
As a fundamental unit of the landscape, hillslopes are studied for their retention and release of water and nutrients across a wide range of ecosystems. The understanding of these near‐surface processes is relevant to issues of runoff generation, groundwater–surface water interactions, catchment export of nutrients, dissolved organic carbon, contaminants (e.g. mercury) and ultimately surface water health. We develop a 3‐D physics‐based representation of the Panola Mountain Research Watershed experimental hillslope using the TOUGH2 sub‐surface flow and transport simulator. A recent investigation of sub‐surface flow within this experimental hillslope has generated important knowledge of threshold rainfall‐runoff response and its relation to patterns of transient water table development. This work has identified components of the 3‐D sub‐surface, such as bedrock topography, that contribute to changing connectivity in saturated zones and the generation of sub‐surface stormflow. Here, we test the ability of a 3‐D hillslope model (both calibrated and uncalibrated) to simulate forested hillslope rainfall‐runoff response and internal transient sub‐surface stormflow dynamics. We also provide a transparent illustration of physics‐based model development, issues of parameterization, examples of model rejection and usefulness of data types (e.g. runoff, mean soil moisture and transient water table depth) to the model enterprise. Our simulations show the inability of an uncalibrated model based on laboratory and field characterization of soil properties and topography to successfully simulate the integrated hydrological response or the distributed water table within the soil profile. Although not an uncommon result, the failure of the field‐based characterized model to represent system behaviour is an important challenge that continues to vex scientists at many scales. We focus our attention particularly on examining the influence of bedrock permeability, soil anisotropy and drainable porosity on the development of patterns of transient groundwater and sub‐surface flow. Internal dynamics of transient water table development prove to be essential in determining appropriate model parameterization. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号