首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new direct performance‐based design method utilizing design tools called performance‐spectra (P‐Spectra) for low‐rise to medium‐rise frame structures incorporating supplemental damping devices is presented. P‐Spectra are graphic tools that relate the responses of nonlinear SDOF systems with supplemental dampers to various damping parameters and dynamic system properties that structural designers can control. These tools integrate multiple response quantities that are important to the performance of a structure into a single compact graphical format to facilitate direct comparison of different potential solutions that satisfy a set of predetermined performance objectives under various levels of seismic hazard. An SDOF to MDOF transformation procedure that defines the required supplemental damping properties for the MDOF structure to achieve the response defined by the target SDOF system is also presented for hysteretic, linear viscous and viscoelastic damping devices. Using nonlinear time‐history analyses of idealized shear structures, the accuracy of the transformation procedure is verified. A seismic performance upgrade design example is presented to demonstrate the usefulness of the proposed method for achieving design performance goals using supplemental damping devices. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
This paper presents a general framework for predicting the residual drift of idealized SDOF systems that can be used to represent non‐degrading structures, including those with supplemental dampers. The framework first uses post‐peak oscillation analysis to predict the maximum ratio of residual displacement to the peak transient displacement in a random sample. Then, residual displacement ratios obtained from nonlinear time‐history analyses using both farfield and near‐fault‐pulse records were examined to identify trends, which were explained using the oscillation mechanics of SDOF systems. It is shown that large errors can result in existing probability models that do not capture the influence of key parameters on the residual displacement. Building on the observations that were made, a general probability distribution for the ratio of residual displacement to the peak transient displacement that more accurately reflects the physical bounds obtained from post‐peak oscillation analysis is proposed for capturing the probabilistic residual displacement response of these systems. The proposed distribution is shown to be more accurate when compared with previously proposed distributions in the literature due to its explicit account of dynamic and damping properties, which have a significant impact on the residual displacement. This study provides a rational basis for further development of a residual drift prediction tool for the performance‐based design and analysis of more complex multi‐degree‐of‐freedom systems.  相似文献   

3.
A simplified design procedure (SDP) for preliminary seismic design of frame buildings with structural dampers is presented. The SDP uses elastic‐static analysis and is applicable to structural dampers made from viscoelastic (VE) or high‐damping elastomeric materials. The behaviour of typical VE materials and high‐damping elastomeric materials is often non‐linear, and the SDP idealizes these materials as linear VE materials. With this idealization, structures with VE or high‐damping elastomeric dampers can be designed and analysed using methods based on linear VE theory. As an example, a retrofit design for a typical non‐ductile reinforced concrete (RC) frame building using high‐damping elastomeric dampers is developed using the SDP. To validate the SDP, results from non‐linear dynamic time history analyses (NDTHA) are presented. Results from NDTHA demonstrate that the SDP estimates the seismic response with sufficient accuracy for design. It is shown that a non‐ductile RC frame building can be retrofit with high‐damping elastomeric dampers to remain essentially elastic under the design basis earthquake (DBE). Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
使用Kanai-Tajimi地震动模型,建立了主动调谐质量阻尼器(ATMD)结构系统的传递函数。将ATMD最优参数的评价准则定义为:设置ATMD结构均方根位移(解析式)的最小值的最小化。将ATMD有效性的评价准则定义为:设置ATMD结构均方根位移的最小值的最小化与未设置ATMD结构的均方根位移之比。根据逃择的评价准则,评价了地震卓越频率系数(EDFR)对ATMD抗震控制性能的影响。同时也评价了EDFR对被动调谐质量阻尼器(PTMD)抗震控制性能的影响。  相似文献   

5.
Viscoelastic–plastic (VEP) dampers are hybrid passive damping devices that combine the advantages of viscoelastic and hysteretic damping. This paper first formulates a semi‐analytical procedure for predicting the peak response of nonlinear SDOF systems equipped with VEP dampers, which forms the basis for the generation of Performance Spectra that can then be used for direct performance assessment and optimization of VEP damped structures. This procedure is first verified against extensive nonlinear time‐history analyses based on a Kelvin viscoelastic model of the dampers, and then against a more advanced evolutionary model that is calibrated to characterization tests of VEP damper specimens built from commercially available viscoelastic damping devices, and an adjustable friction device. The results show that the proposed procedure is sufficiently accurate for predicting the response of VEP systems without iterative dynamic analysis for preliminary design purposes. A design method based on the Performance Spectra framework is then proposed for systems equipped with passive VEP dampers and is applied to enhance the seismic response of a six‐storey steel moment frame. The numerical simulation results on the damped structure confirm the use of the Performance Spectra as a convenient and accurate platform for the optimization of VEP systems, particularly during the initial design stage. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
通过理论分析和大量数值模拟,揭示了线性和非线性粘滞消能器两端的相对水平位移幅值与所在层的层间位移幅值之间的关系,总结提出了考虑支撑变形时安装非线性粘滞消能器结构的实用抗震设计步骤。上述研究结果拓展了现行《建筑抗震设计规范》中有关粘滞消能器部分的设计规定。  相似文献   

7.
For the purpose of estimating the earthquake response, particularly the story drift demand, of reinforced concrete (R/C) buildings with proportional hysteretic dampers, an equivalent single‐degree‐of‐freedom (SDOF) system model is proposed. Especially in the inelastic range, the hysteretic behavior of an R/C main frame strongly differs from that of hysteretic dampers due to strength and stiffness degradation in R/C members. Thus, the proposed model, unlike commonly used single‐spring SDOF system models, differentiates the restoring force characteristics of R/C main frame and hysteretic dampers to explicitly take into account the hysteretic behavior of dampers. To confirm the validity of the proposed model, earthquake responses of a series of frame models and their corresponding equivalent SDOF system models were compared. 5‐ and 10‐story frame models were studied as representative of low‐ and mid‐rise building structures, and different mechanical properties of dampers—yield strength and yield deformation—were included to observe their influence on the effectiveness of the proposed model. The results of the analyses demonstrated a good correspondence between estimated story drift demands using the proposed SDOF system model and those of frame models. Moreover, the proposed model: (i) led to better estimates than those given by a single‐spring SDOF system model, (ii) was capable of estimating the input energy demand and (iii) was capable of estimating the total hysteretic energy and the participation of dampers into the total hysteretic energy dissipation, in most cases. Results, therefore, suggest that the proposed model can be useful in structural design practice. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, a method for designing supplemental brace–damper systems in single‐degree‐of‐freedom (SDOF) structures is presented. We include the effects of the supporting brace stiffness in the dynamic response by using a viscoelastic Maxwell model. On the basis of the study of an SDOF under ground excitation, we propose a noniterative design procedure for simultaneously specifying both the damper and the brace while assuring a desired structural performance. It is shown that to increase the damper size beyond the value delivered by the proposed criteria will not provide any improvement but actually worsen the structural response. The design method presented here shows excellent agreement with the FEMA 273 design approach but offers solutions closer to optimality. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Viscous fluid dampers have proved to be effective in suppressing unwanted vibrations in a range of engineering structures. When dampers are fitted in a structure, a brace is typically used to attach them to the main structure. The stiffness of this brace can significantly alter the effectiveness of the damper, and in structures with multiple dampers, this can be a complex scenario to model. In this paper, we demonstrate that the effects of the brace compliance on the damper performance can be modelled by way of a first‐order filter. We use this result to formulate a procedure that calculates the stiffness required by the supporting brace to provide a specified effectiveness of the damping action. The proposed procedure assumes that viscous dampers have been sized in a previous design step based on any optimal methodology in which, as is usually the case, the presence of supporting braces and their dynamic effects were neglected. Firstly considering a one degree‐of‐freedom system, we show that the proposed method ensures a desired level of damper efficiency for all frequencies within a selected bandwidth. Then the analysis is extended to the case of multi‐degree‐of‐freedom systems to show that the design criteria can be applied in a straightforward and successful manner to more complex structures. © 2014 The Authors. Earthquake Engineering & Structural Dynamics published by John Wiley & Sons Ltd.  相似文献   

10.
A simplified seismic design procedure for steel portal frame piers installed with hysteretic dampers is proposed, which falls into the scope of performance‐based design philosophy. The fundamental goal of this approach is to design a suite of hysteretic damping devices for existing and new bridge piers, which will assure a pre‐defined target performance against future severe earthquakes. The proposed procedure is applicable to multi‐degree‐of‐freedom systems, utilizing an equivalent single‐degree‐of‐freedom methodology with nonlinear response spectra (referred to as strength‐demanded spectra) and a set of formulae of close‐form expressions for the distribution of strength and stiffness produced in the structure by the designed hysteretic damping devices. As an illustrative example, the proposed procedure is applied to a design of a simple steel bridge pier of portal frame type with buckling‐restrained braces (one of several types of hysteretic dampers). For the steel portal frame piers, an attempt is made to utilize not only the displacement‐based index but also the strain‐based index as pre‐determined target performance at the beginning of design. To validate this procedure, dynamic inelastic time‐history analyses are performed using the general‐purpose finite element program ABAQUS. The results confirm that the proposed simplified design procedure attains the expected performance level as specified by both displacement‐based and strain‐based indices with sufficient accuracy. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
This study uses a semi‐active viscous damper with three different control laws to reshape the structural hysteresis loop and mitigate structural response, referred to as 1–4, 1–3 and 2–4 devices, respectively. The 1–4 control law provides damping in all four quadrants of the force‐displacement graph (it behaves like a standard viscous damper), the 1–3 control law provides resisting forces only in the first and third quadrants, and the 2–4 control law provides damping in the second and fourth quadrants. This paper first outlines the linear single degree of freedom structural performance when the three types of semi‐active viscous dampers are applied. The results show that simultaneous reduction in both displacement and base‐shear demand is only available with the semi‐active 2–4 device. To enable guidelines for adding a 2–4 device into the design procedure, damping reduction factors (RFξs) are developed, as they play an important role and provide a means of linking devices to design procedures. Three methods are presented to obtain RFξ and equivalent viscous damping of a structure with a 2–4 semi‐active viscous damper. In the first method, the relationship between RFξ and the damping of a semi‐active structure can be obtained by calculating the area under the force‐deformation diagram. The second and third method modified the Eurocode8 formula of RFξ and smoothed results from analysis, respectively. Finally, a simple method is proposed to incorporate the design or retrofit of structures with simple, robust and reliable 2–4 semi‐active viscous dampers using standard design approaches. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
This paper presents a new methodology based on structural performance to determine uniform fragility design spectra, i.e., spectra with the same probability of exceedance of a performance level for a given seismic intensity. The design spectra calculated with this methodology provide directly the lateral strength, in terms of yield‐ pseudo‐accelerations, associated with the rate of exceedance of a specific ductility characterizing the performance level for which the structures will be designed. This procedure involves the assessment of the seismic hazard using a large enough number of seismic records of several magnitudes; these records are simulated with an improved empirical Green function method. The statistics of the performance of a single degree of freedom system are obtained using Monte Carlo simulation considering the seismic demand, the fundamental period, and the strength of the structure as uncertain variables. With these results, the conditional probability that a structure exceeds a specific performance level is obtained. The authors consider that the proposed procedure is a significant improvement to others considered in the literature and a useful research tool for the further development of uniform fragility spectra that can be used for the performance‐based seismic design and retrofit of structures.  相似文献   

13.
This work introduces a geometric formalism, based on the use of phasors in the Argand-Gauss plane for the design and sizing of inertial dampers to be applied to multimodal structural oscillators. Their damping effect depends on the fact that the response of the secondary oscillator (the damper) delays the response of the primary mass to be controlled by 90°, so that the elastic force transmitted by the damper becomes a viscous force on the controlled oscillator. When such condition occurs we say that the damper is ‘tuned’ to the main oscillator; the damping induced by the damper is modest and serves only to limit the displacement of main oscillator.Our geometrical approach provides a method whose language is close to that of structural mechanics, thus paving the way to the professional for: (i) sizing the damper parameters; and (ii) evaluating the stability to the damped system and its performance limits. The aim of the development is explore the use of dampers to control the initial response modes of buildings under horizontal seismic and aerodynamic loads. Having introduced the concept of a monomass oscillator equivalent to a given mode of vibration, we develop a multimodal multidamper model which we then use to perform numerical evaluations. Several control strategies (involving changes in number and position of the dampers) are considered in relation to variation in bandwidth and intensity of the external forcing action. We discuss the advantages and limitations of this passive approach to structural control.  相似文献   

14.
The paper aims at evaluating the influence of damper properties on the probabilistic seismic response of structural systems equipped with nonlinear viscous dampers. For this purpose, a linear single‐degree‐of‐freedom system with an added linear or nonlinear viscous damper is considered, and the response statistics are evaluated for a set of natural records describing the ground motion uncertainty. A dimensional analysis of the seismic problem is carried out first to identify the minimum set of characteristic parameters describing the system and controlling the seismic response. An extensive parametric study is then performed to estimate the influence of the damper properties on the statistics of the main response quantities of interest (i.e. maximum displacements, accelerations and damper forces), for a wide range of values of the characteristic parameters. Finally, a set of case studies is investigated to show some interesting issues concerning the influence of the damper nonlinear behaviour on the evaluation of the system reliability and to highlight some limitations of current deterministic approaches neglecting the probabilistic properties of the response. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
Energy serves as an alternative index to response quantities like force or displacement to include the duration‐related seismic damage effect. A procedure to evaluate the absorbed energy in a multistorey frame from energy spectra was developed. For low‐ to medium‐rise frames, it required a static pushover analysis of the structure to determine the modal yield force and ductility factor of an equivalent single‐degree‐of‐freedom system for the first two modes. The energy spectra were then used to determine the energy contribution of each mode. A procedure was also developed to distribute the energy along the frame height based on energy shapes. This study showed that the second‐mode response in some cases needs to be considered to reflect the energy (or damage) concentration in the upper floors. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

16.
This paper evaluates the hysteretic behavior of an innovative compressed elastomer structural damper and its applicability to seismic‐resistant design of steel moment‐resisting frames (MRFs). The damper is constructed by precompressing a high‐damping elastomeric material into steel tubes. This innovative construction results in viscous‐like damping under small strains and friction‐like damping under large strains. A rate‐dependent hysteretic model for the compressed elastomer damper, formed from a parallel combination of a modified Bouc–Wen model and a non‐linear dashpot is presented. The model is calibrated using test data obtained under sinusoidal loading at different amplitudes and frequencies. This model is incorporated in the OpenSees [17] computer program for use in seismic response analyses of steel MRF buildings with compressed elastomer dampers. A simplified design procedure was used to design seven different systems of steel MRFs combined with compressed elastomer dampers in which the properties of the MRFs and dampers were varied. The combined systems are designed to achieve performance, which is similar to or better than the performance of conventional steel MRFs designed according to current seismic codes. Based on the results of nonlinear seismic response analyses, under both the design basis earthquake and the maximum considered earthquake, target properties for a new generation of compressed elastomer dampers are defined. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
The paper investigates the degree of accuracy achievable when some non‐linear static procedures based on a pushover analysis are used to evaluate the seismic performance. In order to assess the significance of different sources of errors, three types of structural systems are analysed: (i) single‐degree‐of‐freedom (SDOF) systems with different hysteretic behaviour; (ii) shear‐type multi‐degree‐of‐freedom (MDOF) systems with elastic–perfect plastic (EPP) shear force–interstorey drift relationships; (iii) a steel moment‐resisting frame with rigid joints and EPP moment–curvature relationship. In SDOF systems, the source of approximation comes only from the calibration of the demand spectrum, while in MDOF systems some further errors are introduced by the schematization with an equivalent SDOF system. The non‐linear static procedures are compared with rigorous time‐history analyses carried out by considering ten generated earthquake ground motions compatible with the Eurocode 8 elastic spectra. It was found that SDOF systems with longer periods satisfy the equal displacement approximation regardless of the hysteretic model, while hysteresis loops with smaller energy dissipated indicate lower response for shorter periods. This is the opposite of what predicted by the ATC‐40 capacity spectrum method, which underestimates and overestimates, respectively, the actual response of low‐ and high‐ductility systems. Conversely, the inelastic spectrum method proposed by Vidic, Fajfar and Fischinger leads to the most accurate results for all types of structural systems. The analyses carried out on EPP shear‐type frames point out a large concentration of the ductility demand on some storeys. However, such a concentration markedly reduces when some hardening is accounted for. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
This paper deals with the practical implementation of the statistical equivalent linearization method (EQL) in conjunction with general FE‐analysis to evaluate non‐linear structural response under random excitation. A computational procedure is presented which requires the non‐linear part of the system to be subdivided into suitable sub‐domains (elements). Each element is independently linearized using only a minimum number of co‐ordinates. A local co‐ordinate system is introduced using linear transformations of the global (master) degrees of freedom. Restoring forces and non‐linear constitutive laws are defined by the local co‐ordinates of each element. The linearization coefficients are further transformed back to establish the global linearized system. The procedure has, on one hand, the ability to use any desired linearization criterion and, on the other hand, it can be combined with highly developed procedures to determine the response of arbitrary large FE‐models. To illustrate the applicability of the procedure, two different non‐linear systems are analysed under bi‐directional earthquake excitation. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

19.
The effects of soil–structure interaction (SSI) while designing the liquid column damper (LCD) for seismic vibration control of structures have been presented in this study. The formulation for the input–output relation of a flexible‐base structure with attached LCD has been presented. The superstructure has been modelled by a single‐degree‐of‐freedom (SDOF) system. The non‐linearity in the orifice damping of the LCD has been replaced by equivalent linear viscous damping by using equivalent linearization technique. The force–deformation relationships and damping characteristics of the foundation have been described by complex valued impedance functions. Through a numerical stochastic study in the frequency domain, the various aspects of SSI on the functioning of the LCD have been illustrated. A simpler approach for studying the LCD performance considering SSI, using an equivalent SDOF model for the soil–structure system available in literature by Wolf (Dynamic Soil–Structure Interaction. International Series in Civil Engineering and Engineering Mechanics. Prentice‐Hall: Englewood Cliffs, NJ, 1985) has also been presented. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
根据黏弹性阻尼器的特点和抗震规范的要求,分别提出了用于黏弹性阻尼器减震结构抗震分析的弹性及弹塑性需求谱,前者是基于黏弹性阻尼器减震结构等效阻尼比的简化计算公式及规范规定的反应谱;后者是基于修正的V id icRμ-μ-T关系。在此基础上,借助模态推覆分析,提出了可以考虑高阶振型影响的黏弹性阻尼器消能减震结构体系的能力谱分析方法,并对一8层钢筋混凝土消能减震框架结构进行了"中震不坏,大震可修"性能水准下的抗震分析。算例结果表明,采用该方法分析黏弹性阻尼器减震结构体系是可行的、有效的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号