首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In this paper a modelling approach is presented to predict local scour under time varying flow conditions. The approach is validated using experimental data of unsteady scour at bed sills. The model is based on a number of hypotheses concerning the characteristics of the flow hydrograph, the temporal evolution of the scour and the geometry of the scour hole. A key assumption is that, at any time, the scour depth evolves at the same rate as in an equivalent steady flow. The assumption is supported by existing evidence of geometrical affinity and similarity of scour holes formed under different steady hydraulic conditions. Experimental data are presented that show the scour hole development downstream of bed sills due to flood hydrographs follow a predictable pattern. Numerical simulations are performed with the same input parameters used in the experimental tests but with no post‐simulation calibration. Comparison between the experimental and model results indicates good correspondence, especially in the rising limb of the flow hydrograph. This suggests that the underlying assumptions used in the modelling approach are appropriate. In principle, the approach is general and can be applied to a wide range of environments (e.g. bed sills, step‐pool systems) in which scouring at rapid bed elevation changes caused by time varying flows occurs, provided appropriate scaling information is available, and the scour response to steady flow conditions can be estimated. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
A new analytical method was evaluated for predicting scour profile downstream of a submerged sluice gate with an apron. The differential equations between bed Shear stress and Scour profile Curvature(SSC model) were utilized to predict the scour profile in both temporal and equilibrium stages. A jet momentum flux was considered as an external source of erosion on a hypothetical particle ring as the boundary between the flow and sediment bed. The scour length and sediment resistance factor were t...  相似文献   

3.
Debris flows can grow greatly in size by entrainment of bed material, enhancing their runout and hazardous impact. Here, we experimentally investigate the effects of debris‐flow composition on the amount and spatial patterns of bed scour and erosion downstream of a fixed to erodible bed transition. The experimental debris flows were observed to entrain bed particles both grain by grain and en masse, and the majority of entrainment was observed to occur during passage of the flow front. The spatial bed scour patterns are highly variable, but large‐scale patterns are largely similar over 22.5–35° channel slopes for debris flows of similar composition. Scour depth is generally largest slightly downstream of the fixed to erodible bed transition, except for clay‐rich debris flows, which cause a relatively uniform scour pattern. The spatial variability in the scour depth decreases with increasing water, gravel (= grain size) and clay fraction. Basal scour depth increases with channel slope, flow velocity, flow depth, discharge and shear stress in our experiments, whereas there is no correlation with grain collisional stress. The strongest correlation is between basal scour and shear stress and discharge. There are substantial differences in the scour caused by different types of debris flows. In general, mean and maximum scour depths become larger with increasing water fraction and grain size, and decrease with increasing clay content. However, the erodibility of coarse‐grained experimental debris flows (gravel fraction = 0.64) is similar on a wide range of channel slopes, flow depths, flow velocities, discharges and shear stresses. This probably relates to the relatively large influence of grain‐collisional stress to the total bed stress in these flows (30–50%). The relative effect of grain‐collisional stress is low in the other experimental debris flows (<5%), causing erosion to be largely controlled by basal shear stress. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
Estimating the time evolution of a local scour hole downstream of submerged weirs can help determine the maximum scour depth and length and is essential to designing submerged weir foundations.In the current study, artificial neural networks with a backpropagation learning algorithm were used to estimate the temporal variation of scour profiles downstream of submerged weirs under clear water conditions. Physical factors, such as the flow condition, weir size, and sediment characteristics, are ge...  相似文献   

5.
The current study aims to investigate the characteristics of scour topography around High-Rise Structure Foundations(HRSFs)via physical modeling tests.Clear-water scour tests with a uniform non-cohesive bed are modeled under the action of unidirectional steady flows.Time variations of the erosion and deposition topography are measured.The results show that deposition downstream of the first dune behind the HRSF is not located on the centerline of the wake.The deposition pattern indicates that a long steady wake region exists behind the permeable foundation.The scour depth around an HRSF is much less than that around a monopile because of the structural permeability,which gives rise to the bleed flow and a weakened downflow and horseshoe vortex.Additionally,the asymmetry of the HRSF affects the scour rate but not the final equilibrium scour depth.The average scour slope decreases along the direction of the flow.On the contrary,the scour radial distance increases along the direction of the flow,with the average value changing from 1.36De to 2.35De(where De is the equivalent diameter of the foundation).Furthermore,the scour hole around the HRSF is serrated rather than smooth owing to the presence of multiple piles.Empirical formulae are suggested for estimating the evolution of scour depth and volume.These laboratory experiments provide reference information for relevant numerical modeling studies and can be applied to guide engineering designs in an ocean area.  相似文献   

6.
The current study proposes a novel framework for the numerical model for estimating the temporal scour considering unsteady sediment inflow and the sediment sorting process. The framework was applied to local scour upstream of a slit weir. The scour model is based on an ordinary nonlinear differential equation derived from sediment continuity and scour rate equations. A one-dimensional(1-D)Boussinesq-type model coupled with nonequilibrium sediment transport was incorporated in the scour model to...  相似文献   

7.
Influence of large woody debris on sediment scour at bridge piers   总被引:2,自引:0,他引:2  
Large woody debris(LWD) reduces the flow area,deviate the flow and increases the velocity in correspondence of the bridge pier,therefore increases the maximum scour hole depth and accelerates sediment removal.Logs and drifts accumulated on bridge piers are of different dimensions.According to logs characteristics and river morphology,drift accumulations can either extend downstream the bridge pier or they can accumulate totally upstream.This paper aims to analyze the effect of drift accumulation planimetry on bridge pier scour.The experimental investigation has been carried out at the PITLAB hydraulic centre of Civil Engineering Department,University of Pisa,Italy.Drift accumulation was characterized by different relative longitudinal lengths,flow area occlusions,length of longitudinal drift and downstream planimetrical positions relative to the pier center.The experimental investigation has been carried out in clear-water conditions.Several pier sizes,channel widths and sediment materials have been tested.Maximum scour hole in presence of drift accumulation have been compared to the maximum scour hole for an isolated pier.Finally,data were compared with previous literature findings,which highlight the effect of the downstream extension of drift accumulation on bridge pier scour.New relationships have been proposed to predict the effect of drift accumulation on bridge pier scour,both in terms of relative maximum scour and temporal scour evolution.  相似文献   

8.
Bridge pier scour mitigation under steady and unsteady flow conditions   总被引:1,自引:1,他引:0  
Watercourse morphology is affected by local scouring when the flow interferes with anthropic structures. Controlling the scour hole size is of predominant importance to guarantee bridge safety as well as to limit the variations of river morphology. A combined countermeasure against bridge pier scour is proposed and tested in order to reduce the maximum scour depth and deviate it away from the bridge foundation. In the first part of the laboratory campaign, combination of two countermeasures (bed-sill and collar) was evaluated for a circular pier under clear-water and live-bed steady flow conditions. The proposed combined countermeasure exhibited an efficiency of about 64% in terms of scour depth reduction. Afterwards, it was tested in unsteady flow conditions, first for a circular pier, then in the case of a rectangular pier with round nose and tail, two circular in-line piers and two rectangular in-line piers, under a hydrograph with a peak flow velocity slightly above the threshold condition of sediment motion. Results showed that the combined countermeasure had an efficiency of about 63% for a single circular pier; however, higher efficiency (about 75%) was obtained in applications to rectangular pier and two in-line circular or rectangular piers.  相似文献   

9.
River confluences (RCs) are important features within river systems where the three dimensional (3D) flow structures and the downstream mixing of flows can cause deep scour holes. Despite this, few methods have been proposed to control scouring at RCs. In this study, application of a collar was experimentally examined for local scour control at the point where two rivers flow together. In parti-cular, experimental tests were done with and without collar application at three different locations. The results reveal that the scour depth is directly proportional to the discharge ratio, i.e. the ratio of lateral discharge to that in the channel downstream of the confluence, and the densimetric Froude number (Frg). In addition, installation of a collar at RCs can decrease the scour depth up to 100%, thus completely avoiding the scour process. The results also show that by increasing the Frg the optimal installation location for a collar changes and moves towards the river bed level. Using a collar can also reduce the height of the point bar formed downstream of the confluence. The outcomes of the study allow deri-vation of an equation for predicting scour depth when a collar is applied as a countermeasure. The analysis of this equation shows that the estimates are mostly affected by the Frg.  相似文献   

10.
Results of an experimental study on the countermeasure of scour depth at circular piers are presented. Experiments were conducted for pier scour with and without a splitter plate under a steady, uniform clear-water flow condition. The results of pier scour without splitter plate were used as a reference. Different combinations of lengths and thicknesses of splitter plates were tested attaching each of them to a pier at the upstream vertical plane of symmetry. Two different median sediment sizes (d 50 = 0.96 and 1.8 mm) were considered as bed sediment. The experimental results show that the scour depth consistently decreases with an increase in splitter plate length, while the scour depth remains independent of splitter plate thickness. In addition, temporal evolution of scour depth at piers with and without a splitter plate is observed. The best combination is found to be with a splitter plate thickness of b/5 and a length of 2b. Here, b denotes the pier diameter. An empirical formula for the estimation of equilibrium scour depth at piers with splitter plates is obtained from a multiple linear regression analysis of the experimental data. The flow fields for various combinations of circular piers with and without splitter plate including plain bed and equilibrium scour conditions were measured by using an acoustic Doppler velocimeter. The turbulent flow fields for various configurations are investigated by plotting the velocity vectors and the turbulent kinetic energy contours on vertical and horizontal planes. The splitter plate attached to the pier deflects the approach flow and thus weakens the strength of the downflow and the horseshoe vortex, being instrumental in reducing the equilibrium scour depth at piers. The proposed method of pier scour countermeasure is easy to install and cost effective as well.  相似文献   

11.
Obstacle marks are instream bedforms, typically composed of an upstream frontal scour hole and a downstream sediment accumulation in the vicinity of an obstacle. Local scouring at infrastructure (e.g. bridge piers) is a well-studied phenomenon in hydraulic engineering, while less attention is given to the time-dependent evolution of frontal scour holes at instream boulders and their geometric relations (depth to width, and length ratio). Furthermore, a comparison between laboratory studies and field observations is rare. Therefore, the morphodynamic importance of such scour features to fluvial sediment transport and morphological change is largely unknown. In this study, obstacle marks at boulder-like obstructions were physically modelled in 30 unscaled process-focused flume experiments (runtime per experiment ≥ 5760 min) at a range of flows (subcritical, clear-water conditions, emergent and submerged water levels) and boundary conditions designed to represent the field setting (i.e. obstacle tilting, and limited thickness of the alluvial layer). Additionally, geometries of scour holes at 90 in-situ boulders (diameter ≥ 1 m) located in a 50-km segment of the Colorado River in Marble Canyon (AZ) were measured from a 1 m-resolution digital elevation model. Flume experiments reveal similar evolution of local scouring, irrespective of hydraulic conditions, controlled by the scour incision, whereas the thickness of the alluvial layer and obstacle tilting into the evolving frontal scour hole limit incision. Three temporal evolution phases—(1) rapid incision, (2) decreasing incision, and (3) scour widening—are identified based on statistical analysis of spatiotemporal bed elevation time series. A quantitative model is presented that mechanistically predicts enlargement in local scour length and width based on (1) scour depth, (2) the inclination of scour slopes, and (3) the planform area of the frontal scour hole bottom. The comparison of field observations and laboratory results demonstrates scale invariance of geometry, which implies similitude of processes and form rather than equifinality.  相似文献   

12.
Sediment load plays a major role in the morphological evolution of rivers.Therefore,the analysis of the sediment load interaction with hydraulic structures is of main importance in order to enhance the preservation of fish habitats and river morphological characteristics.The present study analyzes the scour mechanisms downstream of a block ramp in live bed conditions,when the sediment supplied by the approaching flow is balanced by the sediment transported out of the scour hole.Experiments were performed in a model flume and the effect of the approaching sediment concentration on the scour geometry was analyzed.It was observed that the scour features depend deeply on the approaching sediment concentration and four main profile configurations were distinguished.The experimental data were analyzed and empirical relationships were developed in order to evaluate the depth and length of a scour hole,the dune height and the distance of the transversal section of maximum dune height from the ramp toe for different hydraulic and geometric conditions.It was also proved that the dynamic equilibrium shape of a scour hole does not depend on the sediment load time history.  相似文献   

13.
Spur dikes are river training structures that have been extensively used worldwide for towards enhancing flood control and the stability of embankments and riverbanks.However,scour around spur dikes can be a major problem affecting their stability and hydraulic performance.The precise computation of temporal scour depth at spur dikes is very important for the design of economical and safe spur dikes.This study focuses on experimentally assessing the temporal variation of scour depth around a vertical wall spur dike and identifying the parameters,which mostly influence spur dike performance for a channel bed surface comprised of sand-gravel mixtures.In the current study,the authors did physical experiments in a flume based study to obtain new data,aimed at deriving a new predictive model for spur dike scour and comparing its performance to others found in the literature.It was found that the dimensionless temporal scour depth variation increases with an increase in(i)the threshold velocity ratio,(ii)the densimetric Froude number of the bed surface sediment mixture,(iii)the flow shallowness(defined as the ratio of the approach flow depth,y,to the spur dike’s transverse length,l),and(iv)the flow depth-particle size ratio.It is also concluded that the temporal scour depth variation in the sediment mixture is influenced by the non-uniformity of sediment and decreases with an increase in the non-uniformity of the sediment mixture.A new mathematical model is derived for the estimation of temporal scour depths in sand-gravel sediment mixtures.The proposed equation has been calibrated and validated with the experimental data,demonstrating a good predictive capacity for the estimation of temporal scour depth evolution.  相似文献   

14.
I.INTRODUCTIONhiverchannelsaresubjecttocontinuouschangeingeometryduetoillteraCtionbetWeentheflowanderodibleboundaries.Ofconcerntothedesignersofoilpipelinesacrossariver,bridgesandhydraulicworksistheproblemofscourwhichcanunderminetheStructures.Scouratsiteofbridgesandhydraulicworksoccursduetoconstrictedflowandexistenceofbridgepiers.SuchatabOfscouroccursonlyinashortsection,usuallyillthesameorderofthelengthofthehydraulicworksorbridges.Therefore,thispatternofscouriscalledlocalscour.Man}rresea…  相似文献   

15.
Sediment load plays a fundamental role in natural river morphology evolution. Therefore, the correct assessment of the role of the sediment load on natural or anthropic pools morphology downstream of river grade control structures, such as rock chute or block ramps, is of fundamental interest for preserving the fish habitat and the river morphology. This work presents an experimental study on the sediment load influence on rectangular expanding pools downstream of block ramps in live-bed conditions. Several longitudinal and transversal expanding ratios have been tested. Ramp slopes were varied between 0.083 and 0.25. The effect of the pool geometry and the sediment load on hydraulic jump downstream of block ramp as well as scour morphologies and flow patterns have been analyzed. Equations were derived to evaluate the maximum scour hole depth, the longitudinal distance of the section in which it occurs, and the maximum water elevations both in the pool and in the downstream contraction.  相似文献   

16.
J-Hook vanes are grade control structures used to stabilize the riverbed. This paper aims to investigate the behaviour of J-Hook vanes as a grade-control structure in straight rivers. Scour downstream of J-Hook vane structures like other grade-control structures depends on the shape of the structure and the river hydraulic conditions. The purpose of this study is classifying the scour geometry and predicting the main scour parameters such as the scour depth, length, width, and the ridge height and length downstream of the J-Hook vanes in straight rivers. Experiments were carried out in a horizontal channel. For each length of the structure, three heights in different hydraulic conditions, including densimetric Froude numbers, water drops, and opening ratios, were tested. Results show that the densimetric Froude number, the drop height, and the height of the structure are the key parameters to form and classify the scour. Equations have been derived using dimensional analysis and experimental data to predict the maximum scour depth, the maximum length of the scour, the maximum scour width, and the maximum height and length of the dune. All the experiments were conducted in clear water conditions.  相似文献   

17.
Rock and stepped gabion weirs are peculiar hydraulic structures that received relatively little attention in technical literature. Nevertheless, they can be successfully used for river restoration instead of traditional hydraulic structures. They have the advantage of being elastic structures and to preserve the natural environment. They can easily adapt to the in situ conditions and can be effortlessly modified according to the different hydraulic or geometric conditions which can occur in a natural river. The present study aims to analyze the effects of their presence on flow pattern and on the scour hole occurring downstream. The analysis involved scour processes, hydraulic jump types, stilling basin morphology and flow patterns. Two different hydraulic jump types were distinguished and classified. It was shown that the flow regime deeply influences the scour process, which evolves much more rapidly when a Skimming Flow regime takes place. Empirical relationships are proposed to evaluate maximum scour depth, maximum axial length, and non dimensional axial profiles.  相似文献   

18.
A better understanding of bedrock incision mechanisms and processes is essential to the study of long‐term landscape evolution. Yet, little is known about flow dynamics in bedrock rivers, limiting our ability to make realistic predictions of local bedrock incision rates. A recent investigation of flow through bedrock canyons of the Fraser River revealed that plunging flows, defined by the downward‐directed movement of near surface flow toward the channel bed, occur in channels that have low width‐to‐depth ratios. Plunging flows occur into deep scour pools, which are often coincident with lateral constrictions and channel spanning submerged ridges (sills). A phenomenological investigation was undertaken to reproduce the flow fields observed in the Fraser canyons and to explore morphological controls on the occurrence and relative strength of plunging flow in bedrock canyons. Our observations show that the plunging flow structure can be produced along a scour pool entrance slope by accelerating the flow at the canyon entrance either over submerged sills or through lateral constrictions. Plunging flow appears to be a function of convective deceleration into a scour pool which can be enhanced by sill height, the amount of the channel width that is constricted, pool entrance slope, discharge, and a reduction in channel width‐to‐depth ratio. Plunging flow greatly enhances the potential for incision to occur along the channel bed and is an extreme departure from the assumptions of steady, uniform flow in bedrock incision models, highlighting the need for improved formulations that account for fluid flow. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

19.
The installation of free falling jet grade control structures has become a popular choice for river bed stabilization. However, the formation and development of scour downstream of the structure may lead to failure of the structure itself. The current approaches to scour depth prediction are generally based on studies conducted with the absence of upward seepage. In the present study, the effects of upward seepage on the scour depth were investigated. A total of 78 tests without and with the application of upward seepage were carried out using three different sediment sizes, three different tailwater depths, four different flow discharges, and four different upward seepage flow discharge rates. In some tests, the three-dimensional components of the flow velocity within the scour hole were measured for both the cases with and without upward seepage. The scour depth measured for the no-seepage results compared well with the most accurate relationship found in the literature. It was found that generally the upward seepage reduced the downward velocity components near the bed, which led to a decrease in the maximum scour depth. A maximum scour depth reduction of 49% was found for a minimum tailwater depth, small sediment size, and high flow discharge. A decay of the downward velocity vector within the jet impingement was found due to the upward seepage flow velocity. The well known equation of D’Agostino and Ferro was modified to account for the effect of upward seepage, which satisfactorily predicted the experimental scour depth, with a reasonable average error of 10.7%.  相似文献   

20.
SCOUR HOLE CHARACTERISTICS BELOW FREE OVERFALL SPILLWAY   总被引:1,自引:0,他引:1  
1 INTRODUCTION Flow through hydraulic structures often issues in the form of jets. The jet velocities are usually high enough to produce sizable, even dangerous scour hole. The extent of the resulting scour depends on the nature of bed material and flow characteristics. The erosion process is quite complex and depends upon the interaction of hydraulic and morphological factors. Scouring may lead to: endangering the stability of the structure by structural failure or increased seepage, end…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号