首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
In high elevation cold regions of the Tibetan Plateau, suspended sediment transfer from glacier meltwater erosion is one of the important hydrological components. The Zhadang glacier is a typical valley‐type glacier in the Nyainqentanglha Mountains on the Tibetan Plateau. To make frequent and long period records of meltwater runoff and sediment processes in the very high elevation and isolated regions, an automatic system was installed near the glacier snout (5400 m a.s.l) in August 2013, to measure the transient discharge and sediment processes at 5‐min interval, which is shorter than the time span for the water flow to traverse the catchment from the farthest end to the watershed outlet. Diurnal variations of discharge, and suspended sediment concentration (SSC) were recorded at high frequency for the Zhadang glacier, before suspended sediment load (SSL) was computed. Hourly SSC varied from the range of 0.2 kg/m3 to 0.5 kg/m3 (at 8:00–9:00) to the range of 2.0 kg/m3 to 4.0 kg/m3 (at 17:00–18:00). The daily SSL was 32.24 t during the intense ablation period. Hourly SSC was linearly correlated with discharge (r = 0.885**, n = 18, p < 0.01). A digit‐eight hysteresis loop was observed for the sediment transport in the glacier area. Air temperature fluctuations influence discharge, and then result in the sediment variations. The results of this study provide insight into the responses of suspended sediment delivery processes with a high frequency data in the high elevation cold regions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
Quantifying groundwater flow at seepage faces is crucial because seepage faces influence the hydroecology and water budgets of watersheds, lakes, rivers and oceans, and because measuring groundwater fluxes directly in aquifers is extremely difficult. Seepage faces provide a direct and measurable groundwater flux but there is no existing method to quantitatively image groundwater processes at this boundary. Our objective is to determine the possibilities and limitations of thermal imagery in quantifying groundwater discharge from discrete seeps. We developed a conceptual model of temperature below discrete seeps, observed 20 seeps spectacularly exposed in three dimensions at an unused limestone quarry and conducted field experiments to examine the role of diurnal changes and rock face heterogeneity on thermal imagery. The conceptual model suggests that convective air‐water heat exchange driven by temperature differences is the dominant heat transfer mechanism. Thermal imagery is effective at locating and characterizing the flux of groundwater seeps. Areas of active groundwater flow and ice growth can be identified from thermal images in the winter, and seepage rates can be differentiated in the summer. However, the application of thermal imagery is limited by diverse factors including technical issues of image acquisition, diurnal changes in radiation and temperature, and rock face heterogeneity. Groundwater discharge rates could not be directly quantified from thermal imagery using our observations but our conceptual model and experiments suggest that thermal imagery could quantify groundwater discharge when there are large temperature differences, simple cliff faces, non‐freezing conditions, and no solar radiation.  相似文献   

3.
Tamarix elongata Ledeb is a desert shrub found in the desert region of Northwest China and is commonly cultivated as a sand‐holding plant in this region. To understand its water requirement and the effects of climate conditions on its growth, trunk xylem sap flows of irrigated 8‐year‐old Tamarix elongata Ledeb plants were monitored continuously with heat‐pulse sap flow meters for the entire season. Soil moisture contents at 0–300 cm layer depth were also measured with a tube type time domain reflectometry (Tube‐TDR). Meteorological factors, i.e. solar radiation, air temperature, relative humidity and wind speed were simultaneously monitored by an automatic weather station at the site. Daily and seasonal variations of the trunk sap fluxes and their correlations with the meteorological factors, reference evapotranspiration and soil moisture contents in the root‐zone were analysed. The results indicated that frost influenced the trunk sap flux greatly under irrigated conditions, although the flux generally fluctuated with the variation of environmental factors and showed a mean trunk sap flux of 4·18 l d?1. There was a significantly exponential relationship between sap flux and the reference value of crop evapotranspiration, with a correlation coefficient of R2 = 0·7172. The sap flux also had a significant correlation with the soil water contents at a depth of 150–300 cm from soil surface (R2 = 0·5014). The order of the main meteorological factors affecting the sap flux of Tamarix elongata Ledeb trees was solar radiation > air temperature > vapour pressure deficit > relative humidity > wind speed. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
A traversing micro‐erosion meter was used to measure rock surface micro‐topography over 40 cm2 on a supra‐tidal cliff face from early morning to late evening in late spring. From 06:00 hours to 22:00 hours the relative heights of 188 coordinates were obtained using the meter at 2‐hour intervals, resulting in a data set of 1607 readings. Monitoring shows that rock surfaces are dynamic entities, with significant rise and fall relative to the first measurement at shorter timescales than previously reported. The maximum positive rise between readings was 0·261 mm and lowering was 0·126 mm. The pattern of change did not relate as expected to environmental variables such as temperature or insolation. Rather, the surface showed greater surface change in the early morning and late afternoon. It is hypothesized that this pattern relates to the expansion and contraction of lichen thalli as moisture is absorbed during higher humidity in the morning and late afternoon. The implications of these results for weathering studies are considered. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
Rock fragment cover has long been an important agricultural crop production technique on the Loess Plateau, China. Although this approach plays an important role in controlling hydrological processes and preventing soil erosion, inconsistent results have been recovered in this field. In this study, we investigated the effects of rock fragment cover on infiltration, run‐off, soil erosion, and hydraulic parameters using rainfall simulation in the field in a semi‐arid region of China. Two field plots encompassing 6 rock fragment coverages (0%, 10%, 20%, 25%, 30%, and 40%), as well as 2 rock fragment positions and sizes were exposed to rainfall at a particular intensity (60 mm h?1). The results of this study showed that increasing the rock fragment coverage with rock fragments resting on the soil surface increased infiltration but decreased run‐off generation and sediment yield. A contrasting result was found, however, when rock fragments were partially embedded into the soil surface; in this case, a positive relationship between rock fragment coverage and run‐off rate as well as a nonmonotonic relationship with respect to soil loss rate was recovered. The size of rock fragments also exerted a positive effect on run‐off generation and sediment yield but had a negative effect on infiltration. At the same time, both mean flow velocity and Froude number decreased with increasing rock fragment coverage regardless of rock fragment position and size, whereas both Manning roughness and Darcy–Weisbach friction factor were positively correlated. Results show that stream power is the most sensitive hydraulic parameter affecting soil loss. Combined with variance analysis, we concluded that the order of significance of rock fragment cover variables was position followed by coverage and then size. We also quantitatively incorporated the effects of rock fragment cover on soil loss via the C and K factors in the Revised Universal Soil Loss Equation. Overall, this study will enable the development of more accurate modelling approaches and lead to a better understanding of hydrological processes under rock fragment cover conditions.  相似文献   

6.
Methane emissions from hydroelectric reservoirs can comprise a considerable portion of anthropogenic methane. However, lack of data on CH4 emissions in different geographical regions and high spatial‐temporal variability in the emission rates of reservoirs has led to uncertainties regarding regional emission estimates of CH4. In the subtropical plateau climate region, we used the Ertan hydroelectric reservoir as a study area. The CH4 flux at the air‐water interface was assessed by floating chambers and factors influencing emissions, including the distance from the dam, water depth, seasonal variation in wet and dry season, air‐water temperature gradient and wind speed, and was also studied through a year‐long systematic sampling and monitoring experiment. The results showed that the surface of the reservoir was a source of CH4 during the sampling period and the annual average CH4 flux was 2·80 ± 1·52 mg m?2 d?1. CH4 flux (and its variation) was higher in the shallow water areas than in the deep‐water areas. CH4 flux near the dam was significantly higher than that of other locations farther from the dam in the dry season. The seasonal variations of CH4 emission in wet and dry seasons were minor and significant diurnal variations were observed in wet and dry seasons. Exponential relationships between the CH4 flux and air‐water temperature gradient were found. Air‐water temperature gradient was an important factor influencing diurnal variations of CH4 flux in the Ertan hydroelectric reservoir. These results indicate that systematic sampling is needed to better estimate CH4 flux through coverage of the spatial variation of different water depths, measuring‐point distance from the dam, seasonal variation in wet and dry seasons and changes in climate factors (such as air‐water temperature gradient). Our results also provide a fundamental parameter for CH4 emission estimation of global reservoirs. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
万洪秀  覃志豪  徐永明 《湖泊科学》2018,30(5):1429-1437
以博斯腾湖流域为研究区,基于2001-2016年时间序列的MODIS NDVI数据分析了研究区植被的时空变化趋势,并结合流域气象站点的气温、降水、日照时数和相对湿度数据分析了植被生长季累积NDVI和16天NDVI与气候因子之间的响应特征.结果表明:(1)流域植被覆盖变化呈改善趋势,生长季累积NDVI年变化率为0.014 a-1,16天NDVI变化率均为正值,植被改善趋势显著区域主要分布在高山草原湿地和农业灌溉区边缘的新增农田.(2)植被生长季累积NDVI主要受降水和相对湿度影响,植被总体生产力与水分条件关系最密切,生长季逐16天NDVI与同期气温和日照时数在植被生长初期和末期关系显著,而与降水没有显著的相关性,说明植被短期瞬时长势对热量条件更为敏感.(3)在植被生长不同阶段对气候变化具有不同的滞后效应,其中植被生长初期和末期对气温有0.5~1个月的滞后,生长盛期对降水有0.5~3个月的滞后、日照时数有1.5~2.5个月的滞后、相对湿度有0.5~2.5个月的滞后,揭示了植被不同生长阶段水热条件对其生长韵律的控制差异.  相似文献   

8.
Equatorial Pacific sea surface temperature variations interact with processes of atmospheric circulation, creating conditions for the occurrence of El Niño–Southern Oscillation (ENSO). ENSO events represent the most important interannual phenomena affecting climate patterns worldwide and causing significant socio‐economic impacts. In the Brazilian territory, ENSO leads to an increase in drought episodes in the north‐eastern region and an increase in precipitation in the southern region, whereas the effects over the south‐east region are yet not well understood. The main goal of this study is to compare variations of isotopic composition in precipitation across the south‐east portion of the Brazilian territory during two very strong ENSO events: 1997–1998 (ENSO 1) and 2014–2016 (ENSO 2). Daily isotopic records, available from the Global Network of Isotopes in Precipitation database for ENSO 1, and samples collected during ENSO 2 were used to compare the influence of both events on the isotopic composition of precipitation. Seasonal variations indicated more depleted precipitation during the wet seasons (δ18O = ?5.4 ± 4.0‰) and enriched precipitation during the dry seasons (δ18O = ?2.8 ± 2.3‰). Observed rainfall variations were associated with atmospheric large‐scale processes and moisture transport from the Amazon region, whereas extreme values (enriched or depleted) appear to be associated with particular convective and stratiform precipitation events. Overall, more depleted isotopic composition of precipitation (δ18O = ?4.60‰) and higher d‐excess (up to +15‰) were observed during the dry season of ENSO 1 when compared with ENSO 2 dry season (δ18O‰ = ?2.80‰, d‐excess lower than +14‰). The latter is explained by greater atmospheric moisture content, particularly associated with recycling of transpiration fluxes from the Amazon region, during dry season of ENSO 1. No significant differences for δ18O and δ2H were observed during the wet season; however, d‐excess from ENSO 2 was greater than ENSO 1, due to the slightly greater atmospheric moisture content and very strong upward motion observed. Our findings highlight the opportunity that environmental isotopes offer towards understanding hydrometeorological processes, particularly, the evolution of extreme climatic events of global resonance such as ENSO.  相似文献   

9.
Continuous temperature measurements at 11 stream sites in small lowland streams of North Zealand, Denmark over a year showed much higher summer temperatures and lower winter temperatures along the course of the stream with artificial lakes than in the stream without lakes. The influence of lakes was even more prominent in the comparisons of colder lake inlets and warmer outlets and led to the decline of cold‐water and oxygen‐demanding brown trout. Seasonal and daily temperature variations were, as anticipated, dampened by forest cover, groundwater input, input from sewage plants and high downstream discharges. Seasonal variations in daily water temperature could be predicted with high accuracy at all sites by a linear air‐water regression model (r2: 0·903–0·947). The predictions improved in all instances (r2: 0·927–0·964) by a non‐linear logistic regression according to which water temperatures do not fall below freezing and they increase less steeply than air temperatures at high temperatures because of enhanced heat loss from the stream by evaporation and back radiation. The predictions improved slightly (r2: 0·933–0·969) by a multiple regression model which, in addition to air temperature as the main predictor, included solar radiation at un‐shaded sites, relative humidity, precipitation and discharge. Application of the non‐linear logistic model for a warming scenario of 4–5 °C higher air temperatures in Denmark in 2070‐2100 yielded predictions of temperatures rising 1·6–3·0 °C during winter and summer and 4·4–6·0 °C during spring in un‐shaded streams with low groundwater input. Groundwater‐fed springs are expected to follow the increase of mean air temperatures for the region. Great caution should be exercised in these temperature projections because global and regional climate scenarios remain open to discussion. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
利用乌什台数字化前兆形变观测资料,分析乌什MS 4.5级地震前乌什台水管倾斜仪、洞体应变仪数据变化情况。通过对比分析发现:地震前,洞体应变仪北南分量数据曲线正常,东西分量数据曲线加速拉张,05:14-20:32拉张幅度达到7.40×10-7,7月19日5时至20日16时乌什洞体应变仪东西分量快速拉张了9.20×10-7;7月19日5-19时,水管倾斜仪北南分量数据曲线正常,东西分量数据曲线反向西倾7.13ms,且05:59-06:06、07:36-07:46、18:42-18:56数据掉格,水管倾斜仪异常结束后1小时,在洞体应变仪异常过程中发生了乌什MS 4.5级地震。水管仪东西分量震前反向西倾,洞体应变仪东西分量震前拉张加速,短临异常明显,且2套形变观测震前异常时间同步性较好。  相似文献   

11.
G. Richards  R. D. Moore 《水文研究》2003,17(9):1733-1753
This study examined suspended sediment concentration (SSC) during the ablation seasons of 2000 and 2001 in Place Creek, Canada, a steep, glacier‐fed mountain stream. Comparison of stream flow in Place Creek with that in an adjacent, almost unglacierized catchment provided a rational basis for separating the ablation seasons into nival, nival–glacial, glacial and autumn recession subseasons. Distinct groupings of points in plots of electrical conductivity against discharge supported the validity of the subseasonal divisions in terms of varying hydrological conditions. Relationships between SSC and discharge (Q) varied between the two study seasons, and between subseasons. Hysteresis in the SSC–Q relationship was evident at both event and weekly time‐scales. Some suspended sediment released from pro‐glacial Place Lake (the source of Place Creek) appeared to be lost to channel storage at low flows, especially early in the ablation season, with re‐entrainment at higher flows. Multiple regression models were derived for the subseasons using predictor variables including Q, Q2, the change in Q over the previous 3 h, cumulative discharge over the ablation season, total precipitation over the previous 24 h and SSC measured at 1500 hours as an index value for each day. The models produced adjusted R2 values ranging from 0·71 to 0·91, and provided tentative insights into the differences in SSC dynamics amongst subseasons. Introduction of the index value of SSC significantly improved the model fit during the nival–glacial and glacial subseasons for both years, as it adjusts the model to the current condition of sediment supply. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

12.
Suspended sediment is a major source of pollution in irrigation‐dominated watersheds. However, little is known about the process and mechanisms of suspended sediment transport in drain channels directly connected to agricultural fields. This paper explains sediment dynamics using averaged 5 min flow discharge Q (m3 s?1) and suspended sediment concentration C (mg l?1) collected during one crop season in a small catchment containing a first‐order drain channel and its connected six agricultural fields within the Salton Sea watershed. The statistical properties and average trends of Q and C were investigated for both early (i.e. November) and late (i.e. January) stages of a crop season. Further in‐depth analysis on sediment dynamics was performed by selecting two typical single‐field irrigation events and two multiple‐field irrigation events. For each set of irrigation events, the process of suspended sediment transport was revealed by examining hydrograph and sediment graph responses. The mechanisms underlying suspended sediment transport were investigated by analysing the types of corresponding hysteresis loop. Finally, sediment rating curves for both hourly and daily data at early and late stages and for the entire crop season were established to seek possible sediment‐transport predictive model(s). The study suggests that the complicated processes of suspended sediment transport in irrigation‐dominated watersheds require stochastic rather than deterministic forecasting. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
In arid environments, thermal oscillations are an important source of rock weathering. Measurements of temperature have been made on the surface of rocks in a desert environment at a sampling interval of 0·375 s, with simultaneous measurements of wind speed, air temperature, and incoming shortwave radiation. Over timescales of hours, the temperature of the rock surface was determined primarily by shortwave radiation and air temperature, while rapid temperature variations, high dT/dt, at intervals of seconds or less, were determined by wind speed. The maximum values of temperature change and time spent above 2°C min?1 increased at high measurement rates and were much higher than previously reported. The maximum recorded value of dT/dt was 137°C min?1 and the average percentage time spent above 2°C min?1 was ~70 ± 13%. Maximum values of dT/dt did not correlate with the maximum values of time spent above 2°C min?1. Simultaneous measurements of two thermocouples 5·5 cm apart on a single rock surface had similar temperature and dT/dt values, but were not correlated at sampling intervals of less than 10 s. It is suggested that this is resulting from rapid fluctuations due to small spatial and timescale wind effects that are averaged out when data is taken at longer sampling intervals, ~10 s or greater. Published in 2010 by John Wiley & Sons, Ltd.  相似文献   

14.
Spatial variability in lithobiont‐induced weathering patterns on desert rocks is aspect‐dependent. While differences between the northern and southern aspects have been extensively studied, little is known concerning the differences between east‐facing (EF) and west‐facing (WF) aspects in deserts, including the Negev Desert. Whereas cobbles on both slopes are inhabited by endolithic lichens, epilithic lichens, which render the bedrock a smooth appearance, and free‐living cyanobacteria, which give the bedrock a rugged microrelief, predominate on WF and EF bedrock, respectively. Following previous research that regarded dew as the principal factor that determines lithobiont distribution, measurements of radiation, temperature, wind and dew were carried out during 2008–2009 in the Negev Desert. The data indicated that albeit slightly higher midday surface temperatures that characterize WF surfaces (cobbles and bedrock), nocturnal temperatures on these surfaces were significantly lower, therefore facilitating higher dew condensation. High amounts of dew result from the relatively rapid drop in temperatures (14:00–20:00) due to the afternoon northwesterly sea‐breeze wind (with a cooling rate of the WF bedrock being 52.9% higher than on EF bedrock, 2.6 °C h?1 in comparison to only 1.7 °C h?1), and facilitate the growth of high‐chlorophyll dew‐fed (and rain‐fed) epilithic lichens, which may act as bio‐protectors on WF bedrock. Lack of condensation on EF bedrock results in turn in the growth of rain‐fed free‐living cyanobacteria, responsible for high rock dissolution and subsequently for a rugged microrelief. By affecting the nocturnal bedrock temperatures, wind acts as a cooling agent, impacting in turn the amount of dew, and subsequently lithobiont composition and weathering patterns in the Negev Desert. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
基于2019—2020期间在盘锦市含章湖利用浮式观测平台开展湖冰原型观测试验,分析不同因素对湖冰变化造成的影响.结果表明:99 d冰期内湖冰的生消过程可概述为:湖泊封冻(3 d)—稳定生长(62 d)—冰厚稳定(7 d)—加速消融(24 d)—破碎分解(3d).生长期冰厚的平均增长速率为0.4 cm/d,最大冰厚为30.7 cm;不同深度(5~17 cm)冰温对气温变化的响应存在滞后性,滞后时间为70~158 min,冰温与气温的最大相关系数为0.52~0.89;降雨过程造成冰面反照率由0.22降至0.09,影响了冰内温度以及冰下40 cm以内的浅层水温,但14 mm的降雨量并未引起表面冰厚增加;降雪过程造成冰面反照率由0.25升至0.90,同时阻碍了 5 cm以内的浅层冰温对气温变化的响应,但风速长时间大于8 m/s时会导致冰面积雪被吹散,冰面重新裸露;消融期冰厚的衰减过程呈抛物线趋势,存在显著的加速过程,融化速率由0.3 cm/d逐渐增加到2.7 cm/d;湖冰生长期的冰底热通量均值为4.8 W/m~2;到消融期增加至8.1 W/m~2,为生长期的1.7倍;太阳辐射与湖冰边界侧向融化是导致湖冰加速融化的关键因素.本研究填补了国内湖冰冻融全过程实测资料的空缺,为湖冰热力学模型的改进提供了科学支撑.  相似文献   

16.
Strategic planning of optimal water use requires an accurate assessment of actual evapotranspiration (ETa) to understand the environmental and hydrological processes of the world's largest contiguous irrigation networks, including the Indus Basin Irrigation System (IBIS) in Pakistan. The Surface Energy Balance System (SEBS) has been used successfully for accurate estimations of ETa in different river basins throughout the world. In this study, we examined the application of SEBS using publically available remote sensing data to assess spatial variations in water consumption and to map water stress from daily to annual scales in the IBIS. Ground‐based ETa was calculated by the advection‐aridity method, from nine meteorological sites, and used to evaluate the intra‐annual seasonality in the hydrological year 2009–2010. In comparison with the advection‐aridity, SEBS computed daily ETa was slightly underestimated with a bias of ?0.15 mm day?1 during the kharif (wet; April–September) season, and it was overestimated with a bias of 0.23 mm day?1 in the rabi (dry; October–March) season. Monthly values of the ETa estimated by SEBS were significantly (P < 0.05) controlled by mean air temperature and rainfall, among other climatological variables (relative humidity, sunshine hours and wind speed). Because of the seasonal (kharif and rabi) differences in the water and energy budget in the huge canal command areas of the IBIS, ETa and rainfall were positively correlated in the kharif season and were negatively correlated during the rabi season. In addition, analysis of the evaporation process showed that mixed‐cropping and rice–wheat dominated areas had lower and higher water consumption rates, respectively, in comparison with other cropping systems in the basin. Basin areas under water stress were identified by means of spatial variations in the relative evapotranspiration, which had an average value of 0.59 and 0.42 during the kharif and the rabi seasons, respectively. The hydrological parameters used in this study provide useful information for understanding hydrological processes at different spatial and temporal scales. Results of this study further suggest that the SEBS is useful for evaluation of water resources in semi‐arid to arid regions over longer periods, if the data inputs are carefully handled. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
Natural and agricultural wetlands are considered to be the major sources of global atmospheric methane (CH4). A one‐dimensional model was developed to simulate methane emission and used to examine the influence of various physical processes on the rate of methane emission. Three processes involved in the methane emission are implemented in the model: production, reoxidation and transport. Three transport pathways were considered: diffusion across water–air or soil–air interfaces, ebullition and diffusion through plants. These pathways are influenced by soil properties, plant growth, water‐table conditions, temperature and external inputs (e.g. fertilizer). The model was used to examine the seasonal variation of the methane emission at a rice field in Hunan, China, which was observed during a field experiment for consecutive (early and late) rice seasons in 1992. The observed seasonal variations of methane emission, and role of plants in transporting methane to the atmosphere, are captured by the model simulation. Further model applications were conducted to simulate effects of fertilizer and water‐level condition on the methane emission. The results indicate that unfermented organic fertilizer produces a higher methane emission rate than mineral fertilizer. The simulations with treatments of a deep‐water covering and constant moisture reduced the methane emission. The rice field study provides a framework for further development of the model towards simulations based on spatially distributed variables (e.g. water table, soil temperature and vegetation) at a regional scale. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

18.
The partition of available energy into evapotranspiration affected by environmental and physiological factors is critical in understanding the water cycle and optimizing the water management in the field. Our study attempted to accurately quantify the environmental and physiological control on variability in evaporative fraction (EF) based on the Penman–Monteith model. The eddy covariance method was used to measure water flux over a canopy and then calculate the EF above a maize field in northwest China in 2007. Results indicate that the EF was lower in other growth stages than in the heading stage, so the EF value in the heading stage was taken as the standard value. The decreases in EF caused by canopy conductance and environmental factors were 0.176 and ?0.026, accounting for 117% and ?17% of the total difference in EF, respectively. Such results were mainly due to the following: (1) the variation of maize canopy conductance was greater than that of the environmental factors, such as air temperature, air humidity, wind speed and radiation; (2) the EF of the maize was more sensitive to variation in canopy conductance than the environmental factor. Our study revealed that crop physiological factor played an important role in determining the energy partition processes and reducing the sensible heat flux in the maize field. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
The stable isotopic composition of dissolved inorganic carbon (δ13C‐DIC) was investigated as a potential tracer of streamflow generation processes at the Sleepers River Research Watershed, Vermont, USA. Downstream sampling showed δ13C‐DIC increased between 3–5‰ from the stream source to the outlet weir approximately 0·5 km downstream, concomitant with increasing pH and decreasing PCO2. An increase in δ13C‐DIC of 2·4 ± 0·1‰ per log unit decrease of excess PCO2 (stream PCO2 normalized to atmospheric PCO2) was observed from downstream transect data collected during snowmelt. Isotopic fractionation of DIC due to CO2 outgassing rather than exchange with atmospheric CO2 may be the primary cause of increased δ13C‐DIC values downstream when PCO2 of surface freshwater exceeds twice the atmospheric CO2 concentration. Although CO2 outgassing caused a general increase in stream δ13C‐DIC values, points of localized groundwater seepage into the stream were identified by decreases in δ13C‐DIC and increases in DIC concentration of the stream water superimposed upon the general downstream trend. In addition, comparison between snowmelt, early spring and summer seasons showed that DIC is flushed from shallow groundwater flowpaths during snowmelt and is replaced by a greater proportion of DIC derived from soil CO2 during the early spring growing season. Thus, in spite of effects from CO2 outgassing, δ13C of DIC can be a useful indicator of groundwater additions to headwater streams and a tracer of carbon dynamics in catchments. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
Glacier and permafrost hazards such as glacial‐lake outburst floods and rock–ice avalanches cause significant socio‐economic damages worldwide, and these processes may increase in frequency and magnitude if the atmospheric temperature rises. In the extratropical Andes nearly 200 human deaths were linked to these processes during the twentieth century. We analysed bibliographical sources and satellite images to document the glacier and permafrost dynamics that have caused socio‐economic damages in this region in historic time (including glacial lake outburst floods, ice and rock–ice avalanches and lahars) to unravel their causes and geomorphological impacts. In the extratropical Andes, at least 15 ice‐dammed lakes and 16 moraine‐dammed lakes have failed since the eighteenth century, causing dozens of floods. Some floods rank amongst the largest events ever recorded (5000 × 106 m3 and 229 × 106 m3, respectively). Outburst flood frequency has increased in the last three decades, partially as a consequence of long‐term (decades to centuries) climatic changes, glaciers shrinkage, and lake growth. Short‐term (days to weeks) meteorological conditions (i.e. intense and/or prolonged rainfall and high temperature that increased meltwater production) have also triggered outburst floods and mass movements. Enormous mass failures of glaciers and permafrost (> 10 × 106 m3) have impacted lakes, glaciers, and snow‐covered valleys, initiating chain reactions that have ultimately resulted in lake tsunamis and far‐reaching (> 50 km) flows. The eruption of ice‐covered volcanoes has also caused dozens of damaging lahars with volumes up to 45 × 106 m3. Despite the importance of these events, basic information about their occurrence (e.g. date, causes, and geomorphological impact), which is well established in other mountain ranges, is absent in the extratropical Andes. A better knowledge of the processes involved can help to forecast and mitigate these events. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号