首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Due to various decay processes associated with weathering, the stability of artificial slopes in weak rocks may be affected well within their envisaged engineering lifetime. Conceptually, the decay following the initial stress release after excavation can be described as a process seeking equilibrium between weathering and erosion. The extent to which such an equilibrium is actually reached influences the outcome of the weathering‐erosion decay process as well as the effects that the decay has on the geotechnical properties of the exposed rock mass, and thus ultimately the stability of slopes affected by erosion and weathering. This paper combines two conceptual models for erosion and weathering, and derives a numerical model which predicts the resulting slope development. This can help to predict the development of a slope profile excavated in a weak rock in time, and can be extended with the addition of strength parameters to the weathering profile to enable prediction of slope stability as a function of time. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
Three dated structures up to 450 years in age display the effects of coastal weathering of the greenschist of which they are constructed. A variety of weathering forms is present. The various topographic surfaces of the structures create variation in weathering environments and consequent weathering processes and rates. Weathering is enhanced by direct exposure to salt-bearing spray and by humid conditions, and apparently limited by direct exposure to solar radiation. The maximum rates of weathering on the three surfaces approximate to 0·6 mm a−1 over this period, consistent with measured contemporary weathering rates for a natural surface formed by this rock type in a nearby coastal location. © 1997 by John Wiley & Sons, Ltd.  相似文献   

3.
Erosion processes in bedrock‐floored rivers shape channel cross‐sectional geometry and the broader landscape. However, the influence of weathering on channel slope and geometry is not well understood. Weathering can produce variation in rock erodibility within channel cross‐sections. Recent numerical modeling results suggest that weathering may preferentially weaken rock on channel banks relative to the thalweg, strongly influencing channel form. Here, we present the first quantitative field study of differential weathering across channel cross‐sections. We hypothesize that average cross‐section erosion rate controls the magnitude of this contrast in weathering between the banks and the thalweg. Erosion rate, in turn, is moderated by the extent to which weathering processes increase bedrock erodibility. We test these hypotheses on tributaries to the Potomac River, Virginia, with inferred erosion rates from ~0.1 m/kyr to >0.8 m/kyr, with higher rates in knickpoints spawned by the migratory Great Falls knickzone. We selected nine channel cross‐sections on three tributaries spanning the full range of erosion rates, and at multiple flow heights we measured (1) rock compressive strength using a Schmidt hammer, (2) rock surface roughness using a contour gage combined with automated photograph analysis, and (3) crack density (crack length/area) at three cross‐sections on one channel. All cross‐sections showed significant (p < 0.01 for strength, p < 0.05 for roughness) increases in weathering by at least one metric with height above the thalweg. These results, assuming that the weathered state of rock is a proxy for erodibility, indicate that rock erodibility varies inversely with bedrock inundation frequency. Differences in weathering between the thalweg and the channel margins tend to decrease as inferred erosion rates increase, leading to variations in channel form related to the interplay of weathering and erosion rate. This observation is consistent with numerical modeling that predicts a strong influence of weathering‐related erodibility on channel morphology. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

4.
Source rock lithology and immediate modifying processes, such as chemical weathering and mechanical erosion, are primary controls on fluvial sediment supply. Sand composition and Chemical Index of Alteration (CIA) of parent rocks, soil and fluvial sand of the Savuto River watershed, Calabria (Italy), were used to evaluate the modifications of source rocks through different sections of the basin, characterized by different geomorphic processes, in a sub‐humid Mediterranean climate. The headwaters, with gentle topography, produce a coarse‐grained sediment load derived from deeply weathered gneiss, having sand of quartzofeldspathic composition, compositionally very different from in situ degraded bedrock. Maximum estimated CIA values suggest that source rock has been affected significantly by weathering, and it testifies to a climatic threshold on the destruction of the bedrock. The mid‐course has steeper slopes and a deeply incised valley; bedrock consists of mica‐schist and phyllite with a very thin regolith, which provides large cobble to very coarse sand sediments to the main channel. Slope instability, with an areal incidence of over 40 per cent, largely supplies detritus to the main channel. Sand‐sized detritus of soil and fluvial sand is lithic. Estimated CIA value testifies to a significant weathering of the bedrock too, even if in this part of the drainage basin steeper slopes allow erosion to exceed chemical weathering. The lower course has a braided pattern and sediment load is coarse to medium–fine grained. The river cuts across Palaeozoic crystalline rocks and Miocene siliciclastic deposits. Sand‐sized detritus, contributed from these rocks and homogenized by transport processes, has been found in the quartzolithic distal samples. Field and laboratory evidence indicates that landscape development was the result of extensive weathering during the last postglacial temperature maximum in the headwaters, and of mass‐failure and fluvial erosional processes in the mid‐ and low course. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

5.
6.
Cavernous tafoni‐type weathering is a common and conspicuous global feature, creating artistic sculptures, which may be relevant for geochemical budgets. Weathering processes and rates are still a matter of discussion. Field evidence in the type locality Corsica revealed no trend of size variability from the coast to subalpine elevations and the aspect of tafoni seems to be governed primarily by the directions of local fault systems and cleavage, and only subordinately by wind directions or the aspect of insulation. REM analysis of fresh tafone chips confirmed mechanical weathering by the crystallization of salts, as conchoidal fracturing of quartz is observed. The salts are only subordinately provided by sea spray, as calcium and sodium sulfates rather than halite dominate even close to the coast. Characteristic element ratios compare well with aerosols from mixed African and European air masses. Sulfates are largely derived from Sahara dust, indicated by their sulfur isotopic composition. Salt crystals form by capillary rise within the rock and subsequent crystallization in micro‐cracks and at grain boundaries inside rain‐protected overhangs. Siderophile bacteria identified by raster electron microscopy (REM) analysis of tafone debris contribute to accelerated weathering of biotite and tiny sulfide ore minerals. By applying 10Be‐exposure dating, weathering rates of large mature tafone structures were found to be about an order of magnitude higher than those on the exposed top of the affected granite blocks. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
8.
We present a statistical model of soil and rock weathering in deep profiles to expand the capacity to assess weathering to heterogeneous bedrock types, which are common at the Earth's surface. We developed the Weathering Trends (WT) model by extending the fractional mass change calculation (tau) of the geochemical mass balance model in two important ways. First, WT log transforms the elemental ratio data, to discern the log‐linear patterns that naturally develop from thermodynamic and kinetic laws of chemistry. Second, WT statistically fits log‐transformed element concentration ratio data – log(cj/ci), the only depth‐varying term in tau – as a function of depth to determine characteristic depths of transitions in weathering processes, along with confidence intervals. With no prior assumptions, WT estimates average parent material composition, average composition of the upper weathered zone and mean fractional mass change of each element over the entire weathering profile. WT displays the mean shape of weathering profiles of log‐transformed geochemical data bounded by calculated confidence intervals. We share the WT model code as an open‐source R package ( https://github.com/fisherba/WeatheringTrends ). The WT model was designed to interpret two 21 m cores from the Laurels Schist bedrock in the Christina River Basin Critical Zone Observatory in the Pennsylvania Piedmont, where our morphological and elemental data provided inconclusive estimates of bedrock depth. The WT model differentiated between rock variability and weathering to delineate the maximum extent of weathering at 12.3 m (CI 95% [9.2, 21.3]) in Ridge Well 1 and 7.2 m (CI 95% [4.3, 13.0]) in Interfluve Well 2. The water table was 5–8 m below fresh rock at Ridge Well 1, but at the same depth as fresh rock at the lower elevation interfluve. We assess statistical approaches to identify the best immobile element for use in WT and tau calculations. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

9.
This paper presents evidence for strong biochemical weathering of basaltic outcrops induced by fungal communities in a cold environment. Weathering rind formation is considered to be a consequence of the biological activity. Comparisons between in vitro experiments and in situ observations allow a characterization of fungal effects on rocks and help to define the place of these micro‐organisms in the cold environment weathering chain. It is concluded that biological weathering is chronologically the first process of weathering, probably leading to the subsequent expression of cryogenic processes. Information presented here suggests the need for reconsideration of the traditional frost‐driven morphogenetic system normally considered for subpolar areas. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

10.
We discuss a geographic information system (GIS)‐based methodology for rock slope instability assessment based on geometrical relationships between topographic slopes and structural discontinuities in rocks. The methodology involves (a) regionalization of point observations of orientations (azimuth and dip) of structural discontinuities in rocks in order to generate a digital structural model (DStM), (b) testing the kinematical possibility of specific modes of rock slope failures by integrating DStMs and digital elevation model (DEM)‐derived slope and aspect data and (c) computation of stability scenarios with respect to identified rock slope failure modes. We tested the methodology in an area of 90 km2 in Darjeeling Himalaya (India) and in a small portion (9 km2) within this area with higher density of field structural orientation data. The results of the study show better classification of rock slope instability in the smaller area with respect to known occurrences of deep‐seated rockslides than with respect to shallow translational rockslides, implying that structural control is more important for deep‐seated rockslides than for shallow translational rockslides. Results of scenario‐based analysis show that, in rock slopes classified to be unstable, stress‐induced rock slope instability tends to increase with increasing level of water saturation. The study demonstrates the usefulness of spatially distributed data of orientations of structural discontinuities in rocks for medium‐ to small‐scale classification of rock slope instability in mountainous terrains. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
Weathering rinds, zones of alteration on the exterior surfaces of rock outcrops and coarse unconsolidated surficial debris are widely used by geomorphologists and Quaternary geologists as indicators of the relative age of landforms and landscapes. Additionally they provide unique insights into the earliest stages of rock and mineral weathering, yet the origin of these alteration zones is relatively poorly understood. This lack of understanding applies especially to the initial stages of rind formation. The study reported in this paper has two principal objectives. The first is to use lightly polished granite discs inserted in soil profiles under several different plant communities in an Arctic alpine environment for a period of four or five years to investigate the nature of incipient weathering rind development. The second is to investigate the factors responsible for spatial variability in the nature and rates of rind formation. Incipient weathering rind development on the outer edges of the granite discs is observable and measurable over a period of time as short as four years in the mild Arctic alpine environment of Swedish Lapland. The earliest stages of rind development involve the development of a porous structure consisting of a combination of pits and fractures which have been solutionally enlarged and modified. Solution appears to be preferentially concentrated on the surfaces of feldspars and, to a lesser extent, quartz. In addition, iron oxides are present along grain boundaries and in grain interiors and are interpreted to have been derived from the oxidation of ferromagnesian minerals. Spatial variability in weathering rind development appears to be particularly driven by differences in moisture but is not related to soil pH. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
Cavernous weathering (tafoni development) occurs on coastal slopes in greenschist bedrock at elevations up to 40 m above sea level. The freshly weathered surfaces of the cavern interiors are irregular in morphology, discordant to major rock structure, formed by substantially weakened rock and associated with granular weathering debris. The weathering debris contains soluble elements in proportions similar to those present in seawater, and the penetration of elements associated with sea salts into the weathering surface to estimated depths of at least 0·1–0·2 m is indicated by the presence of chlorine. Scanning electron microscopy and microprobe analyses suggest that rock breakdown occurs principally through limited chemical weathering at grain boundaries. The mechanism for the emplacement of marine salts within sheltered rock surfaces in the tafoni is postulated to be a combination of dry deposition under turbulent atmospheric conditions and wetting by coastal fog.  相似文献   

13.
Using field observations and geochemical and digital terrain analyses, we describe the structure and thickness of the regolith across a climosequence on the island of Hawai‘i to gain insight into the relative roles of precipitation and the near‐surface hydrologic structure in determining weathering patterns. In the wet portion of the climosequence, where the long‐term water balance is positive, the regolith thickness reaches an observed maximum of ~40 m and appears limited by the geomorphic base‐level of the landscape. However, even within this thick regolith, distinct units of varying weathering intensity occur; the vertical ordering of which largely reflects differences in the initial permeability structure of the basalt flows rather than a systematic decrease in weathering intensity downwards from the ground surface. In the dry portion of the climosequence, where the long‐term water balance is negative, the regolith thickness is confined to ~1 m, is highly dependent on the inferred permeability structure of the basalt flows, and is independent of geomorphic base‐level. Weathering intensity also varies according to permeability structure and decreases in this thin regolith with distance beneath the ground surface. The abrupt change in regolith depth and character that coincides with the transition from net‐positive to net‐negative long‐term water balance implies that small changes in precipitation rates around a neutral water balance result in large changes in the distribution and depth of weathering. Together our observations indicate that the distribution and depth of weathering in basalts (and probably other lithologies) might be best understood by considering how precipitation interacts with the complicated near‐surface permeability structure over regolith‐forming timescales to weather rock in the vadose zone. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
Historic structures can be viewed as exposure trials of the stone of which they are constructed. As such, they represent a geomorphological weathering experiment. Several structures of Henrician (sixteenth century) and greater age on the coast of southwest England have been exposed to coastal salt weathering for 500–600 years. Long‐term weathering rates on five different rock groups are derived from careful study of weathering depths and forms. There is significant variation in weathering rate between five major rock groups. Rank ordering of weathering rate values reveals a durability order of these rock groups, which is confirmed by local juxtapositions. Controls on rock durability in the coastal weathering environment include both mechanical and mineralogical characteristics. Specific density, and combined quartz and muscovite content, are positively related to durability; high feldspar and chlorite content are associated with low durability. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

15.
The evolution of volcanic landscapes and their landslide potential are both dependent upon the weathering of layered volcanic rock sequences. We characterize critical zone structure using shallow seismic Vp and Vs profiles and vertical exposures of rock across a basaltic climosequence on Kohala peninsula, Hawai’i, and exploit the dramatic gradient in mean annual precipitation (MAP) across the peninsula as a proxy for weathering intensity. Seismic velocity increases rapidly with depth and the velocity–depth gradient is uniform across three sites with 500–600 mm/yr MAP, where the transition to unaltered bedrock occurs at a depth of 4 to 10 m. In contrast, velocity increases with depth less rapidly at wetter sites, but this gradient remains constant across increasing MAP from 1000 to 3000 mm/yr and the transition to unaltered bedrock is near the maximum depth of investigation (15–25 m). In detail, the profiles of seismic velocity and of weathering at wet sites are nowhere monotonic functions of depth. The uniform average velocity gradient and the greater depths of low velocities may be explained by the averaging of velocities over intercalated highly weathered sites with less weathered layers at sites where MAP > 1000 mm/yr. Hence, the main effect of climate is not the progressive deepening of a near‐surface altered layer, but rather the rapid weathering of high permeability zones within rock subjected to precipitation greater than ~1000 mm/yr. Although weathering suggests mechanical weakening, the nearly horizontal orientation of alternating weathered and unweathered horizons with respect to topography also plays a role in the slope stability of these heterogeneous rock masses. We speculate that where steep, rapidly evolving hillslopes exist, the sub‐horizontal orientation of weak/strong horizons allows such sites to remain nearly as strong as their less weathered counterparts at drier sites, as is exemplified by the 50°–60° slopes maintained in the amphitheater canyons on the northwest flank of the island. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

16.
Honeycomb weathering occurs in two environments in Late Cretaceous and Eocene sandstone outcrops along the coastlines of south‐west Oregon and north‐west Washington, USA, and south‐west British Columbia, Canada. At these sites honeycomb weathering is found on subhorizontal rock surfaces in the intertidal zone, and on steep faces in the salt spray zone above the mean high tide level. In both environments, cavity development is initiated by salt weathering. In the intertidal zone, cavity shapes and sizes are primarily controlled by wetting/drying cycles, and the rate of development greatly diminishes when cavities reach a critical size where the amount of seawater left by receding tides is so great that evaporation no longer produces saturated solutions. Encrustations of algae or barnacles may also inhibit cavity enlargement. In the supratidal spray zone, honeycomb weathering results from a dynamic balance between the corrosive action of salt and the protective effects of endolithic microbes. Subtle environmental shifts may cause honeycomb cavity patterns to continue to develop, to become stable, or to coalesce to produce a barren surface. Cavity patterns produced by complex interactions between inorganic processes and biologic activity provide a geological model of ‘self‐organization’. Surface hardening is not a factor in honeycomb formation at these study sites. Salt weathering in coastal environments is an intermittently active process that requires particular wind and tidal conditions to provide a supply of salt water, and temperature and humidity conditions that cause evaporation. Under these conditions, salt residues may be detectable in honeycomb‐weathered rock, but absent at other times. Honeycomb weathering can form in only a few decades, but erosion rates are retarded in areas of the rock that contain cavity patterns relative to adjacent non‐honeycombed surfaces. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Weathering rates were calculated using the height differences between lead lettering on marble gravestones from inland urban, inland rural, coastal urban and coastal rural sites within southern Britain. All sites exhibit similar amounts and variations in rainfall over the study period for which gravestone measurements are available. Comparison of mean weathering rates suggested that the coastal urban site of Clacton had a similar weathering rate to the nearby coastal rural site. The other urban sites of Oxford, Lodge Hill and Portsmouth had similar weathering rates, despite their diverse locations and histories. The inland rural site had a significantly lower mean weathering rate than any other site. Analysis of covariance confirms that there are similarities between some sites. Linear and curvilinear regression of depth of loss against age suggests that a linear regression adequately describes the relationship over the period for which data are available, although there are problems with this simple interpretation. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

18.
Weathering reduces the strength of rocks and so is a key control on the stability of rock slopes. Recent research suggests that the geotechnical response of rocks to weathering varies with ambient stress conditions resulting from overburden loading and/or stress concentrations driven by near-surface topography. In addition, the stress history experienced by the rock can influence the degree to which current weathering processes cause rock breakdown. To address the combined effect of these potential controls, we conducted a set of weathering experiments on two sedimentary lithologies in laboratory and field conditions. We firstly defined the baseline geotechnical behaviour of each lithology, characterising surface hardness and stress–strain behaviour in unconfined compression. Weathering significantly reduced intact rock strength, but this was not evident in measurements of surface hardness. The ambient compressive stress applied to samples throughout the experiments did not cause any observable differences in the geotechnical behaviour of the samples. We created a stress history effect in sub-sets of samples by generating a population of microcracks that could be exploited by weathering processes. We also geometrically modified groups of samples to cause near-surface stress concentrations that may allow greater weathering efficacy. However, even these pronounced sample modifications resulted in insignificant changes in geotechnical behaviour when compared to unmodified samples. The observed reduction in rock strength changed the nature of failure of the samples, which developed post-peak strength and underwent multiple stages of brittle failure. Although weakened, these samples could sustain greater stress and strain following exceedance of peak strength. On this basis, the multi-stage failure style exhibited by weaker weathered rock may permit smaller-magnitude, higher-frequency events to trigger fracture through intact rock bridges as well as influencing the characteristics of pre-failure deformation. These findings are consistent with patterns of behaviour observed in field monitoring results. © 2019 John Wiley & Sons, Ltd.  相似文献   

19.
Spheroidal weathering, one of the important rock weathering styles, has been attributed to chemical weathering by the water from joint surfaces, and mechanical aspects of the weathering have not been well addressed. We made an investigation on spheroidal weathering of Miocene granite porphyry with well‐developed columnar joints and found that this spheroidal weathering proceeds through chemical processes and accompanying mechanical processes. The investigation of the textures, physical properties, mineralogy, and chemistry of the porphyry revealed the presence of a brown band on the surface margins of corestones, representing the oxidation of pyrite and chlorite, and the precipitation of iron hydroxides, and the consequent generation of micro‐cracks within the band. During weathering, oxidation progresses inwards from joints that surround the rindlets, including both high‐angle columnar and low‐angle planar joints, and causes rounding of the unweathered interior portion of the rock. Microscopic observations of the brown band embedded with fluorescent resin show that pores are first filled with iron hydroxides, and that micro‐cracks then form parallel to the oxidation front in the outer portion of the brown band. Iron hydroxide precipitation increases the P‐wave velocity in the brown band, while micro‐crack formation decreases the tensile strength of the rock. Where the brown band has thickened to ~6 cm, the micro‐cracks are connected to one another to create continuous cracks, which separate the rindlets from the corestone. Micro‐crack formation parallel to the corestone surface may be attributed to compressive stresses generated by small amounts of volumetric expansion due to the precipitation of iron hydroxides in the brown band. Earth surface is under oxidizing environments so that precipitation of iron hydroxides commonly occurs; the spheroidal weathering in this paper is a typical example of the combination of chemical and mechanical processes under such environments. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
Long‐term weathering of a quartz chlorite schist via wetting and drying was studied under a simulated tropical climate. Cubic rock samples (15 mm × 15 mm × 15 mm) were cut from larger rocks and subjected to time‐compressed climatic conditions simulating the tropical wet season climate at the Ranger Uranium Mine in the Northern Territory, Australia. Fragmentation, moisture content and moisture uptake rate were monitored over 5000 cycles of wetting and drying. To determine the impact of climatic variables, five climatic regimes were simulated, varying water application, temperature and drying. One of the climatic regimes reproduced observed temperature and moisture variability at the Ranger Uranium Mine, but over a compressed time scale. It is shown that wetting and drying is capable of weathering quartz chlorite schist with changes expected over a real time period of decades. While wetting and drying alone does produce changes to rock morphology, the incorporation of temperature variation further enhances weathering rates. Although little fragmentation occurred in experiments, significant changes to internal pore structure were observed, which could potentially enhance other weathering mechanisms. Moisture variability is shown to lead to higher weathering rates than are observed when samples are subjected only to leaching. Finally, experiments were conducted on two rock samples from the same source having only subtle differences in mineralogy. The samples exhibited quite different weathering rates leading to the conclusion that our knowledge of the role of rock type and composition in weathering is insufficient for the accurate determination of weathering rates. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号