共查询到20条相似文献,搜索用时 10 毫秒
1.
Mean daily streamflow records from 44 river basins in Romania with an undisturbed runoff regime have been analyzed for trends with the nonparametric Mann‐Kendall test for two periods of study: 1961–2009 (25 stations) and 1975–2009 (44 stations). The statistical significance of trends was tested for each station on an annual and seasonal basis, for different streamflow quantiles. In order to account for the presence of serial correlation that might lead to an erroneous rejection of the null hypothesis, a trend‐free prewhitening was applied to the original data series. The regional field significance of trends is tested by a bootstrap procedure. Changes in the streamflow regime in Romania are demonstrated. The main identified trends are an increase in winter and autumn streamflow since 1961 and a decrease in summer flow since 1975. The streamflow trends are well explained by recent changes in temperature and precipitation that occurred in the last 50 years. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
2.
In a headwater basin covered with boreal forest in northern Japan, the summer dry flow was monitored each summer from 1985 to 1993. Streamflow and specific electrical conductance fluctuated diurnally and these variations were attributed to daytime evapotranspiration. In 1989, the daytime reduction in streamflow and conductance were accompanied by a reduction in the HCO?3 concentration. The low flow hydrograph was separated into two components using HCO?3 and Cl? concentrations in August 1989, assuming low flow to be a mixture of delayed subsurface flow and of quick shallow flow. The slight diurnal variation in the ratio of shallow flow to subsurface flow caused the diurnal variation in conductance by changing the HCO?3 concentration. 相似文献
3.
The Middle East region, where arid and semi‐arid regions occupy most of the land, is extremely vulnerable to any natural or anthropogenic reductions in available water resources. Much of the observed interannual‐decadal variability in Middle Eastern streamflow is physically linked to a large‐scale atmospheric circulation patterns such as the North Atlantic Oscillation (NAO). In this work, the relationship between the NAO index and the seasonal and annual streamflows in the west of Iran was statistically examined during the last four decades. The correlations were constructed for two scenarios (with and without time lag). The associations between the annual and seasonal streamflows and the simultaneous NAO index were found to be poor and insignificant. The possibility of streamflow forecasting was also explored, and the results of lag correlations revealed that streamflow responses at the NAO signal with two and three seasons delays. The highest Spearman correlation coefficient of 0.379 was found between the spring NAO index and the autumn streamflow series at Taghsimab station, indicating that roughly 14% of the variance in the streamflow series is associated with NAO forcing. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
4.
Analysis and modeling of spatial correlation structure in small-scale rainfall in Central Oklahoma 总被引:1,自引:0,他引:1
Spatial correlation structure in small-scale rainfall is analyzed based on a dense cluster of raingauges in Central Oklahoma. This cluster, called the EVAC PicoNet, consists of 53 gauges installed in 25 measurement stations covering an area of about 3 km by 3 km. Two raingauges are placed in 24 stations and five in the central station. Three aspects of the estimated spatial correlation functions are discussed: dependence on time-scale ranging from 1 min to 24 h, inter-storm variability, and dependence on rainfall intensity. The results show a regular dependence of the correlogram parameters on the averaging time-scale, large differences of the correlograms in the individual storms, and the dominance of storms with high spatial variability on the average large sample characteristics. The authors also demonstrate and discuss the ambiguities in correlation estimates conditioned on rainfall intensities. The findings of this study have implications for raingauge network design, rainfall modeling, and conclusive evaluation of radar and satellite estimates of rainfall. 相似文献
5.
《Advances in water resources》2005,28(7):701-710
The patterns of temporal variations of precipitation (P), streamflow (SF) and baseflow (BF) as well as their nitrate-nitrogen (nitrate) concentrations (C) and loads (L) from a long-term record (28 years) in the Raccoon River, Iowa, were analyzed using variogram and spectral analyses. The daily P is random but scaling may exist in the daily SF and BF with a possible break point in the scaling at about 18 days and 45 days, respectively. The nitrate concentrations and loads are shown to have a half-year cycle while daily P, SF, and BF have a one-year cycle. Furthermore, there may be a low-frequency cycle of 6–8 years in C. The power spectra of C and L in both SF and BF exhibit fractal 1/f scaling with two characteristic frequencies of half-year and one-year, and are fitted well with the spectrum of the gamma distribution. The nitrate input to SF and BF at the Raccoon watershed seems likely to be a white noise process superimposed on another process with a half-year and one-year cycle. 相似文献
6.
Chulsang Yoo Eunho Ha 《Stochastic Environmental Research and Risk Assessment (SERRA)》2007,21(3):287-297
In this study, the effect of zero measurements on the spatial correlation function of rainfall is analyzed for the quantification
of a rainfall field. The use of a bivariate mixed distribution function made it possible to analyze and compare the spatial
correlation functions for these three different data sets: only the positive measurements at both gauge locations, positive
measurements at either one or both gauge locations, and all measurements including zero at both locations. As an example,
the spatial correlation functions are derived for the Geum River Basin, Korea and evaluated for the wet and dry seasons, respectively.
Results show that the effect of zero measurements on spatial correlation structures is significant during the wet season,
when the inter-station correlations were estimated significantly lower than those during the dry season. It was also found
that only the case considering positive measurements are valid for the quantification of rainfall field. Even during the wet
season, the inter-station correlation coefficients derived by considering the zero measurements show their high variability
along with many abnormally looking high estimates, which made the quantification of the spatial correlation function become
very ambiguous. 相似文献
7.
ABSTRACTThe application of remotely-sensed data for hydrological modeling of the Congo Basin is presented. Satellite-derived data, including TRMM precipitation, are used as inputs to drive the USGS Geospatial Streamflow Model (GeoSFM) to estimate daily river discharge over the basin from 1998 to 2012. Physically-based parameterization was augmented with a spatially-distributed calibration that enables GeoSFM to simulate hydrological processes such as the slowing effect of the Cuvette Centrale. The resulting simulated long-term mean of daily flows and the observed flow at the Kinshasa gauge were comparable (40 631 and 40 638 m3/s respectively), in the 7-year validation period (2004–2010), with no significant bias and a Nash-Sutcliffe model efficiency coefficient of 0.70. Modeled daily flows and aggregated monthly river outflows (compared to historical averages) for additional sites confirm the model reliability in capturing flow timing and seasonality across the basin, but sometimes fails to accurately predict flow magnitude. The results of this model can be useful in research and decision-making contexts and validate the application of satellite-based hydrological models driven for large, data-scarce river systems such as the Congo. 相似文献
8.
Sam J. Leuthold Stephanie A. Ewing Robert A. Payn Florence R. Miller Stephan G. Custer 《水文研究》2021,35(2):e14029
In snowmelt-driven mountain watersheds, the hydrologic connectivity between meteoric waters and stream flow generation varies strongly with the season, reflecting variable connection to soil and groundwater storage within the watershed. This variable connectivity regulates how streamflow generation mechanisms transform the seasonal and elevational variation in oxygen and hydrogen isotopic composition (δ18O and δD) of meteoric precipitation. Thus, water isotopes in stream flow can signal immediate connectivity or more prolonged mixing, especially in high-relief mountainous catchments. We characterized δ18O and δD values in stream water along an elevational gradient in a mountain headwater catchment in southwestern Montana. Stream water isotopic compositions related most strongly to elevation between February and March, exhibiting higher δ18O and δD values with decreasing elevation. These elevational isotopic lapse rates likely reflect increased connection between stream flow and proximal snow-derived water sources heavily subject to elevational isotopic effects. These patterns disappeared during summer sampling, when consistently lower δ18O and δD values of stream water reflected contributions from snowmelt or colder rainfall, despite much higher δ18O and δD values expected in warmer seasonal rainfall. The consistently low isotopic values and absence of a trend with elevation during summer suggest lower connectivity between summer precipitation and stream flow generation as a consequence of drier soils and greater transpiration. As further evidence of intermittent seasonal connectivity between the stream and adjacent groundwaters, we observed a late-winter flush of nitrate into the stream at higher elevations, consistent with increased connection to accumulating mineralized nitrogen in riparian wetlands. This pattern was distinct from mid-summer patterns of nitrate loading at lower elevations that suggested heightened human recreational activity along the stream corridor. These observations provide insights linking stream flow generation and seasonal water storage in high elevation mountainous watersheds. Greater understanding of the connections between surface water, soil water and groundwater in these environments will help predict how the quality and quantity of mountain runoff will respond to changing climate and allow better informed water management decisions. 相似文献
9.
Li-Juan Li Lu Zhang Hao Wang Juan Wang Jun-Wei Yang De-Juan Jiang Jiu-Yi Li Da-Yong Qin 《水文研究》2007,21(25):3485-3491
Located in the Loess Plateau of China, the Wuding River basin (30 261 km2) contributes significantly to the total sediment yield in the Yellow River. To reduce sediment yield from the catchment, large-scale soil conservation measures have been implemented in the last four decades. These included building terraces and sediment-trapping dams and changing land cover by planting trees and improving pastures. It is important to assess the impact of these measures on the hydrology of the catchment and to provide a scientific basis for future soil conservation planning. The non-parametric Mann–Kendall–Sneyers rank test was employed to detect trends and changes in annual streamflow for the period of 1961 to 1997. Two methods were used to assess the impact of climate variability on mean annual streamflow. The first is based on a framework describing the sensitivity of annual streamflow to precipitation and potential evaporation, and the second relies on relationships between annual streamflow and precipitation. The two methods produced consistent results. A significant downward trend was found for annual streamflow, and an abrupt change occurred in 1972. The reduction in annual streamflow between 1972 and 1997 was 42% compared with the baseline period (1961–1971). Flood-season streamflow showed an even greater reduction of 49%. The streamflow regime of the catchment showed a relative reduction of 31% for most percentile flows, except for low flows, which showed a 57% reduction. The soil conservation measures reduced streamflow variability, leading to more uniform streamflow. It was estimated that the soil conservation measures account for 87% of the total reduction in mean annual streamflow in the period of 1972 to 1997, and the reduction due to changes in precipitation and potential evaporation was 13%. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
10.
《水文科学杂志》2013,58(3):538-549
Abstract Trend analysis was performed on streamflow data for a collection of stations on the Canadian Prairies, in terms of spring and summer runoff volumes, peak flow rates and peak flow occurrences, as well as an annual volume measure, for analysis periods of 1966–2005, 1971–2005, and 1976–2005. The Mann-Kendall statistical test for trend and bootstrap resampling were used to identify the trends and to determine the field significance of the trends. Partial correlation analysis was used to identify relationships between hydrological variables that exhibit a significant trend and meteorological variables that exhibit a significant trend. Noteworthy results include decreasing trends in the spring snowmelt runoff event volume and peak flow, decreasing trends (earlier occurrence) in the spring snowmelt runoff event peak date and decreasing trends in the seasonal (1 March–31 October) runoff volume. These trends can be attributed to a combination of reductions in snowfall and increases in temperatures during the winter months. 相似文献
11.
Low streamflow statistic estimators at ungauged river sites generally have large errors and uncertainties. This can be due to many reasons, including lack of data, complex hydrologic processes, and the inadequate or improper characterization of watershed hydrogeology. One potential solution is to take a small number of streamflow measurements at an ungauged site to either estimate hydrogeologic indices or transfer information from a nearby site using concurrent streamflow measurements. An analysis of four low streamflow estimation techniques, regional regression, regional plus hydrogeologic indices, baseflow correlation, and scaling, was performed within the Apalachicola–Chattahoochee–Flint watershed, a U.S. Geological Survey WaterSMART region in the south‐eastern United States. The latter three methods employ a nominal number of spot measurements at the ungauged site to improve low streamflow estimation. Results indicate that baseflow correlation and scaling methods, which transfer information from a donor site, can produce improved low streamflow estimators when spot measurements are available. Estimation of hydrogeologic indices from spot measurements improves regional regression models, with the baseflow recession constant having more explanatory power than the aquifer time constant, but these models are generally outperformed by baseflow correlation and scaling. 相似文献
12.
Diel fluctuations can comprise a significant portion of summer discharge in small to medium catchments. The source of these signals and the manner in which they are propagated to stream gauging sites is poorly understood. In this work, we analysed stream discharge from 15 subcatchments in Dry Creek, Idaho, Reynolds Creek, Idaho, and HJ Andrews, Oregon. We identified diel signals in summer low flow, determined the lag between diel signals and evapotranspiration demand and identified seasonal trends in the evolution of the lag at each site. The lag between vegetation water use and streamflow response increases throughout summer at each subcatchment, with the rate of increase as a function of catchment stream length and other catchment characteristics such as geology, vegetation and stream geomorphology. These findings support the hypothesis that variations in stream velocity are the key control on the seasonal evolution of the observed lags. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
13.
Abstract The water shortage in the Yellow River, China, has been aggravated by rapid population growth and global climate changes. To identify the characteristics of streamflow change in the Yellow River, approximately 50 years of natural and observed streamflow data from 23 hydrological stations were examined. The Mann-Kendall and Pettitt tests were used to detect trends and abrupt change points. The results show that both the natural and the observed streamflow in the Yellow River basin present downward trends from 1956 to 2008, and the decreasing rate of observed streamflow is generally faster than that of the natural streamflow. Larger drainage areas have higher declining rates, and the declining trends are intensified downstream within the mainstream. The possibility of abrupt changes in observed streamflow is higher than in natural streamflow, and streamflow series in the mainstream are more likely to change abruptly than those in the tributaries. In the mainstream, all the significant abrupt changes appear in the middle and latter half of the 1980s, but the abrupt changes occur somewhat earlier for observed streamflow than for natural streamflow. The significant abrupt change for the observed streamflow in the tributaries is almost isochronous with the natural streamflow and occurs from the 1970s to 1990s. It is implied that the slight reduction in precipitation is not the only direct reason for the streamflow variation. Other than the effects of climate change, land-use and land-cover changes are the main reasons for the natural streamflow change. Therefore, the increasing net water diversion by humans is responsible for the observed streamflow change. It is estimated that the influence of human activity on the declining streamflow is enhanced over time. Editor Z.W. Kundzewicz Citation Miao, C.Y., Shi, W., Chen, X.H., and Yang, L., 2012. Spatio-temporal variability of streamflow in the Yellow River: possible causes and implications. Hydrological Sciences Journal, 57 (7), 1355–1367. 相似文献
14.
ABSTRACTLow streamflow conditions can have adverse consequences for society and river ecology. The variability and drivers of streamflow drought indicators within the USA were investigated using observed streamflow records from 603 gauges across the USA. The analysis was based on two main approaches: (i) low-flow magnitude indicators, and (ii) streamflow deficit indicators. First, we examined how streamflow drought indicators vary spatially across the USA. Second, we used a data-driven clustering method to identify spatial clusters for each indicator. Finally, we assessed the association with regional climate drivers. The results show that the spatial variability of low-flow magnitude indicators is significantly different from the deficit indicators. Further, our clustering approach identifies regions of spatial homogeneity, which can be linked to the extreme regional climate drivers and land–atmosphere interactions. The influence of regional climate on streamflow drought indicators varies more between clusters than between indicators. 相似文献
15.
In headwater catchments, streamflow recedes between periods of rainfall at a predictable rate generally defined by a power–law relationship relating streamflow decay to streamflow. Research over the last four decades has applied this relationship to predictions of water resource availability as well as estimations of basin‐wide physiographic characteristics and ecohydrologic conditions. However, the interaction of biophysical processes giving rise to the form of these power–law relationships remains poorly understood, and recent investigations into the variability of streamflow recession characteristics between discrete events have alternatively suggested evapotranspiration, water table elevation, and stream network contraction as dominant factors, without consensus. To assess potential temporal variability and interactions in the mechanism(s) driving streamflow recession, we combine long‐term observational data from a headwater stream in the southern Appalachian Mountains with state and flux conditions from a process‐based ecohydrologic model. Streamflow recession characteristics are nonunique and vary systematically with seasonal fluctuations in both rates of transpiration and watershed wetness conditions, such that transpiration dominates recession signals in the early growing season and diminishes in effect as the water table elevation progressively drops below and decouples with the root zone with topographic position. As a result of this decoupling, there exists a seasonal hysteretic relationship between streamflow decay and both evapotranspiration and watershed wetness conditions. Results indicate that for portions of the year, forest transpiration may actively compete with subsurface drainage for the same water resource that supplies streamflow, though for extended time periods, these processes exploit distinct water stores. Our analysis raises concerns about the efficacy of assessing humid headwater systems using traditional recession analysis, with recession curve parameters treated as static features of the watershed, and we provide novel alternatives for evaluating interacting biological and geophysical drivers of streamflow recession. 相似文献
16.
ABSTRACTClimate change/variability accompanied by anthropogenic activities can alter the runoff response of landscapes. In this study we investigate the integrated impacts of precipitation change/variability and landscape changes, specifically wetland drainage practices, on streamflow regimes in wetland-dominated landscapes in the Assiniboine and Saskatchewan River basins of the North American Prairies. Precipitation and streamflow metrics were examined for gradual (trend type) and abrupt (shift type) changes using the modified Mann-Kendall trend test and a Bayesian change point detection methodology. Results of statistical analyses indicate that precipitation metrics did not experience statistically significant increasing or decreasing changes and there was no statistical evidence of streamflow regime change over the study area except for one of the smaller watersheds. The absence of widespread streamflow and precipitation changes suggests that wetland drainage did not lead to detectable changes in streamflow metrics over most of the Canadian portion of the Prairies between 1967 and 2007.
Editor Z.W. Kundzewicz Associate editor None assigned 相似文献
17.
Climate change has a significant influence on streamflow variation. The aim of this study is to quantify different sources of uncertainties in future streamflow projections due to climate change. For this purpose, 4 global climate models, 3 greenhouse gas emission scenarios (representative concentration pathways), 6 downscaling models, and a hydrologic model (UBCWM) are used. The assessment work is conducted for 2 different future time periods (2036 to 2065 and 2066 to 2095). Generalized extreme value distribution is used for the analysis of the flow frequency. Strathcona dam in the Campbell River basin, British Columbia, Canada, is used as a case study. The results show that the downscaling models contribute the highest amount of uncertainty to future streamflow predictions when compared to the contributions by global climate models or representative concentration pathways. It is also observed that the summer flows into Strathcona dam will decrease, and winter flows will increase in both future time periods. In addition to these, the flow magnitude becomes more uncertain for higher return periods in the Campbell River system under climate change. 相似文献
18.
Deciphering the mechanisms through which the El Niño/Southern Oscillation (ENSO) affects hydrometeorological parameters in the tropics and extratropics is of great interest. We investigate climatic teleconnections between warm or cold phases of ENSO and streamflow patterns over South Korea using an empirical methodology designed to detect regions showing a strong and consistent hydroclimatic signal associated with ENSO. We calculate not only spatial coherence values by monthly streamflow composite formed over 2‐year ENSO cycle and the first harmonic fit to detect candidate regions but also temporal consistency rates by aggregate composite and index time series to determine core regions. As a result, the core regions, namely, the Han river basin and the Nakdong river basin, are detected with a high level of response of ENSO phenomena to streamflow patterns. The ENSO composites for both core regions indicate drier (wetter) conditions in early autumn of the warm (cold) episode years and wetter (drier) conditions from winter to spring of the following year. For both regions, the spatial coherences are over 92% (82%) and the temporal consistencies are 71% (75%) during the El Niño (La Niña) events. In addition, for the core regions identified by composite‐harmonic analysis for both extreme episodes, the results of comparative analyses by using correlation, annual cycle, and Wilcoxon rank sum test indicate that 2 opposite phases‐streamflow relationships have a tendency of sign reversal of the streamflow anomaly. Also, the positive departures during the El Niño years show more coherent and strong responses than the negative anomalies in the La Niña events. In conclusion, South Korea experiences climatic teleconnection between ENSO forcing and midlatitude streamflow patterns. 相似文献
19.
Abstract The spatial scaling properties of annual average streamflow is examined using records from 1 433 river basins across the continental United States. The log-linear relationship ln(E[Qr i]) = a + br ln(Ai) is representative throughout the United States, where E[Qr i] represents the expectation of the rth moment of annual streamflow at site i, and Ai represents drainage area. The scaling model parameters ar and br follow nearly perfect linear relationships ar = rα and br = rβ throughout the continental United States. We conclude that the probability distribution of annual streamflow follows simple scaling relationships in all regions of the United States. In temperate regions where climate is relatively homogeneous, scale alone describes most of the variability in the moments of annual streamflow. In the more climatically heterogeneous regions, such as in the Upper Colorado and Missouri river basins, scale alone is a poor predictor of the moments of annual flow. 相似文献
20.
The effect of climate change on water resources has been an area of continued research, especially in Australia. Previous studies have suggested significant trends in rainfall, and these are amplified causing larger changes in streamflow. However, most of the previous analysis was based on annual time scales or modelled data and did not account for changes in land cover, which could interact with changes in climate. Climate data and streamflow data between 1970 and 2010 from 13 mostly forested small catchments (<250 km2) in Australia were analysed for trends. Non-parametric Mann-Kendall trend analysis, generalized additive mixed modelling and rainfall-runoff modelling were combined for the analysis. This indicates consistent increases in maximum temperature and varied decreases in rainfall. The streamflow in the studied catchments indicated small decreases in streamflow, which amplified observed trends in the rainfall. In general, overall decreases are much smaller than suggested in earlier research. 相似文献