首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Chemical heterogeneities in the Martian mantle are believed to result from the crystallization of a magma ocean in the first 100 million years of its history. Shergottite meteorites from Mars are thought to retain a compositional record of such early differentiation and the resulting mineralogy at different depths. The coupled 176Lu–176Hf and 147Sm–143Nd isotope systematics in 9 shergottites are used here to investigate these issues. Three compositional groups in the shergottites display distinct isotope systematics. One group, commonly termed as depleted, is characterized by positive 176Hfi from + 46.2 to + 50.4 and 143Ndi from + 36.2 to + 39.1. Another, termed as enriched, has negative 176Hfi = − 16.5 to − 13.2 and 143Ndi = − 7.0 to − 6.5. The third group is intermediate between the depleted and enriched groups with positive 176Hfi = + 30.0 to + 33.4 and 143Ndi = + 16.9. Together, they describe mixing curves between 176Hf/177Hf, 143Nd/144Nd, Lu/Hf, and Sm/Nd, implying that they sample two distinct sources in the Martian mantle. All shergottites are characterized by (Sm/Nd)source < (Sm/Nd)sample, but (Lu/Hf)source > (Lu/Hf)sample. This decoupling can be explained by two successive partial melting episodes in the depleted shergottite source and localized in the Martian upper mantle. The genesis of shergottites can be modeled using non-modal equilibrium partial melting in a source initially composed of 60% olivine, 21% clinopyroxene, 9% orthopyroxene, and 10% garnet, with degrees of partial melting of 8.8% and 3.9%, respectively, for the two successive events. The enriched end-member of the shergottite mixing curve is best modeled by late-stage quenched residual melt resulting from the crystallization of a magma ocean. The depleted shergottite source may be modeled as a mixture of cumulates and residual melt, as convection in the Martian magma ocean is expected to reduce the incompatible trace element heterogeneity in the final solidified layers. Consequently, equilibrium crystallization is preferred to model the crystallization of the Martian magma ocean. The models that best explain the shergottite data are those where the magma ocean is at a depth of at least 1350 km in Mars.  相似文献   

2.
The inorganic silicate fraction extracted from bulk pelagic sediments from the North Pacific Ocean is eolian dust. It monitors the composition of continental crust exposed to erosion in Asia. 176Lu/177Hf ratios of modern dust are sub-chondritic between 0.011 and 0.016 but slightly elevated with respect to immature sediments. Modern dust samples display a large range in Hf isotopic composition (IC), −4.70<?Hf<+16.45, which encompasses that observed for the time series of DSDP cores 885/886 and piston core LL44-GPC3 extending back to the late Cretaceous. Hafnium and neodymium isotopic results are consistent with a dominantly binary mixture of dust contributed from island arc volcanic material and dust from central Asia. The Hf-Nd isotopic correlation for all modern dust samples, ?Hf=0.78?Nd+5.66 (n=22, R2=0.79), is flatter than those reported so far for terrestrial reservoirs. Moreover, the variability in ?Hf of Asian dust exceeds that predicted on the basis of corresponding ?Nd values (−4.7<?Hf<+2.5; −10.9<?Nd<−10.1). This is attributed to: (1) the fixing of an important unradiogenic fraction of Hf in zircons, balanced by radiogenic Hf that is mobile in the erosional cycle, (2) the elevated Lu/Hf ratio in chemical sediments which, given time, results in a Hf signature that is radiogenic compared with Hf expected from its corresponding Nd isotopic components, and (3) the possibility that diagenetic resetting of marine sediments may incorporate a significant radiogenic Hf component into diagenetically grown minerals such as illite. Together, these processes may explain the variability and more radiogenic character of Hf isotopes when compared to the Nd isotopic signatures of Asian dust. The Hf-Nd isotope time series of eolian dust are consistent with the results of modern dust except two samples that have extremely radiogenic Hf for their Nd (?Hf=+8.6 and +10.3, ?Nd=−9.5 and −9.8). These data may point to a source contribution of dust unresolved by Nd and Pb isotopes. The Hf IC of eolian dust input to the oceans may be more variable and more radiogenic than previously anticipated. The Hf signature of Pacific seawater, however, has varied little over the past 20 Myr, especially across the drastic increase of eolian dust flux from Asia around 3.5 Ma. Therefore, continental contributions to seawater Hf appear to be riverine rather than eolian. Current predictions regarding the relative proportions of source components to seawater Hf must account for the presence of a variable and radiogenic continental component. Data on the IC and flux of river-dissolved Hf to the oceans are urgently required to better estimate contributions to seawater Hf. This then would permit the use of Hf isotopes as a monitor of past changes in erosion.  相似文献   

3.
Late Triassic A‐type granites are identified in this study in Sarudik, SW Sumatra. We present new data on zircon U–Pb geochronology, whole‐rock major and trace elements and Sr‐Nd‐Hf isotope geochemistry, aiming to study their petrogenesis and tectonic implications. LA‐ICP‐MS U–Pb dating of zircon separated from one biotite monzogranite sample yields a concordia age of 222.6 ±1.0 Ma, indicating a Late Triassic magmatic event. The studied granites are classified as weakly peralumious, high‐K calc‐alkaline granites. They exhibit high SiO2, K2O + Na2O, FeO/(FeO + MgO) and Ga/Al ratios and low Al2O3, CaO, MgO, P2O5 and TiO2 contents, with enrichment of Rb, Th and U and depletion of Ba, Sr, P and Eu, showing the features of A‐type granites. The granites have zircon εHf(t) values from ?4.6 to ?0.4 and whole‐rock εNd(t) values from ?5.51 to ?4.98, with Mesoproterozoic TDM2 ages (1278–1544 Ma) for both Hf and Nd isotopes. Geochemical and isotopic data suggest that the source of these A‐type granites is the Mesoproterozoic continental crust, without significant incorporation of mantle‐derived component, and their formation is controlled by subsequent fractional crystallization. The Sarudik A‐type granites are further assigned to A2‐type formed in post‐collisional environment. Combined with previous knowledge on the western SE Asia tectonic evolution, we conclude that the formation of the Late Triassic A‐type granites is related to the post‐collisional extension induced by the crustal thickening, gravitational collapse, and asthenosphere upwelling following the collision between the Sibumasu and the East Malaya Block.  相似文献   

4.
5.
New, high-precision W isotope data on iron meteorites are presented that provide important constraints on the timing of silicate–metal segregation in planetesimals. Magmatic iron meteorites all have ε182W within error or less radiogenic than initial ε182W estimated by studies of chondritic meteorites. At face value this implies that iron meteorites are as old and older than refractory calcium–aluminium rich inclusions (CAI), which are widely thought to be the oldest solar system objects. Moreover, different meteorites from the same magmatic groups, believed to be derived from the same planetissimal core, display a range of ε182W. We suggest that the paradoxical ε182W values more negative than initial Solar System Initial (SSI) are most readily explained as a result of secondary, spallation reactions with cosmic rays during transit between parent body and the earth. This is supported by the most negative ε182W being found in meteorites with the oldest exposure ages and the magnitude of the effect is shown to be consistent with known nuclear reactions. On the other hand, it is also striking that none of the magmatic iron group meteorites have ε182W analyses, outside error, more radiogenic than the estimated solar system initial ratio. This suggests that core formation in parent bodies of magmatic iron meteorites occurred ≤ 1.5 Myr after the formation age of CAI [Y. Amelin, A.N. Krot, I.D. Hutcheon, and A.A. Ulyanov, Lead isotopic ages of chondrules and calcium-aluminum inclusions, Science 297, 1678–1683, 2002]. This extremely early metal–silicate differentiation is coeval with the first chondrules [M. Bizzarro, J.A. Baker, and H. Haack, Mg isotope evidence for contemporaneous formation of chondrules and refractory inclusions, Nature 431, 275–278, 2004, A.N. Krot, Y. Amelin, P. Cassen, and A. Meibom, Young chondrules in CB chondrites from a giant impact in the early Solar System, Nature 436, 989–992, 2005]. Formation of later chondrules, and hence the parent bodies of some chondritic meteorites, must therefore have occurred in the presence of planetesimals large enough to possess iron cores. We conclude that early planetary accretion and differentiation was sufficiently fast for 26Al-decay to be an important heat source. Non-magmatic iron meteorites, however, display more radiogenic and varied W isotope signatures. This is in keeping with them being generated later, by impact melting during which the metal (partially) re-equilibrated with the then more radiogenic silicate fraction.  相似文献   

6.
Hf isotope measurement has been carried out for UHP metamorphic eclogite from Xindian by using LA-MC-ICP-MS technique. The result indicates that metamorphic growth zircon has high 176Hf/177Hf (0.282544―0.282612) and low 176Lu/177Hf (0.000004―0.000211) ratio,inherited and recrystallized proto-lith zircon has low 176Hf/177Hf (0.282266―0.282466) and high 176Lu/177Hf (0.000090―0.002144) composi-tions. The low 176Lu/177Hf of growth zircon comes from its decreasing of Lu and increasing of Hf during UHP process. The high 176Hf/177Hf deduced from high radiogenic 176Hf,which was produced from long-term evolution of high Lu/Hf ratio minerals. Partial recrystallization of protolith zircon would not cause reworking of Lu/Hf isotope in zircon. Compared to U-Pb,zircon Lu-Hf system has better stability. The initial Hf isotope composition of metamorphic growth zircon may represent the Hf isotope compo-sition of whole rock system at the same time. The initial εHf of 3.0 for metamorphic precursor formation of Xindian eclogite indicates that the source material mainly derived from weak depleted mantle or mixing of depleted mantle with old crust.  相似文献   

7.
Here we report an integrated study of zircon U-Pb age and Hf isotope composition for a gneiss sample from the Kongling terrain in the Yangtze Craton. CL imaging reveals that most zircons are magmatic, and a few of them have thin metamorphic rims. The magmatic zircons gave a weighted mean U-Pb age of 3218±13 Ma, indicating the gneiss is the oldest basement rock in the Yangtze Craton found to date. They have εHf(t) value of -2.33±0.51,and two-stage Hf model age of 3679±49 Ma,indicating that the gneiss was der...  相似文献   

8.
The Mesoproterozoic sedimentary strata on the western margin of the Yangtze massif are a clastic-carbonate rock association intercalated with a small amount of tuff and basalt and deposited in a relatively stable environment. They are termed as the Kunyang Group, the Huili Group, and the Dongchuan Group respectively in different regions. We performed zircon U-Pb dating of the tuff from the groups. The results, coupled with the detrital zircon U-Pb ages of clastic rocks from the Kunyang Group and the Dongchuan Group, indicate that the sedimentation ages of the Kunyang Group and the Huili Group range from 1050 to 1000 Ma and that the Kunyang Group and the Huili Group belong to a sedimentary association with contemporaneous heterotopic facies. The detrital zircon ages and Hf isotope compositions reveal that the clastic materials in the Kunyang Group and the Huili Group are derived primarily from the Cathaysia massif. Zircons of the tuff in the Dongchuan Group yields an age of ca.1.5 Ga and all the zircon ages of clastics in the Dongchuan Group are older than 1.5 Ga, indicating that the sedimentation of the Dongchuan Group occurred during the late Mesoproterozoic Changcheng Period. Age spectra of the detrital zircons indicate that the clastic materials of the Dongchuan Group are derived primarily from the ancient basement of the Yangtze massif. A systematic Hf isotope determination of various types of zircons in the above three stratigraphic units shows that there is a rapid elevation in the initial Hf value of zircon at ~1.5 and 1.0 Ga. Previous studies on the sedimentary characteristics of the Kunyang Group and the Huili Group show that both were deposited in a foreland basin. Combining our data with previous studies, we suggest that the Kunyang Group and the Huili Group are foreland basin sedimentary successions formed along the southern side of the Yangtze massif after an amalgamation between the Yangtze massif and the Cathaysia massif during the Grenvillian. The assembly of the Yangtze massif and the Cathaysia massif developed gradually from the west to the east and was finally completed in the eastern segment of the Yangtze massif at 0.9 Ga, representing the last stage of the Rodinia supercontinent assembly. Hf isotope compositions in zircon indicate that the supercontinent cycle has an intimate relation with crustal growth.  相似文献   

9.
Zircons were separated from granitoids, gneisses, and sedimentary rocks of the Chinese Altai. Those with igneous characteristics yielded U-Pb ages of 280-2800 Ma, recording a long history of magmatic activity in the region. Zircon Hf isotopic compositions show an abrupt change at ~420 Ma, indicating that prior to that time the magmas came from both ancient and juvenile sources, whereas younger magmas were derived mainly from juvenile material. This may imply that the lithosphere was signifi- cantly modified...  相似文献   

10.
The combined use of Lu–Hf and Sm–Nd isotope systems potentially offers a unique perspective for investigating continental erosion, but little is known about whether, and to what extent, the Hf–Nd isotope composition of sediments is related to silicate weathering intensity. In this study, Hf and Nd elemental and isotope data are reported for marine muds, leached Fe-oxide fractions and zircon-rich turbidite sands collected off the Congo River mouth, and from other parts of the SE Atlantic Ocean. All studied samples from the Congo fan (muds, Fe-hydroxides, sands) exhibit indistinguishable Nd isotopic composition (εNd ~ ? 16), indicating that Fe-hydroxides leached from these sediments correspond to continental oxides precipitated within the Congo basin. In marked contrast, Hf isotope compositions for the same samples exhibit significant variations. Leached Fe-hydroxide fractions are characterized by εHf values (from ? 1.1 to + 1.3) far more radiogenic than associated sediments (from ? 7.1 to ? 12.0) and turbidite sands (from ? 27.2 to ? 31.6). εHf values for Congo fan sediments correlate very well with Al/K (i.e. a well-known index for the intensity of chemical weathering in Central Africa). Taken together, these results indicate that (1) silicate weathering on continents leads to erosion products having very distinctive Hf isotope signatures, and (2) a direct relationship exists between εHf of secondary clay minerals and chemical weathering intensity.These results combined with data from the literature have global implications for understanding the Hf–Nd isotope variability in marine precipitates and sediments. Leached Fe-hydroxides from Congo fan sediments plot remarkably well on an extension of the ‘seawater array’ (i.e. the correlation defined by deep-sea Fe–Mn precipitates), providing additional support to the suggestion that the ocean Hf budget is dominated by continental inputs. Fine-grained sediments define a diffuse trend, between that for igneous rocks and the ‘seawater array’, which we refer to as the ‘zircon-free sediment array’ (εHf = 0.91 εNd + 3.10). Finally, we show that the Hf–Nd arrays for seawater, unweathered igneous rocks, zircon-free and zircon-bearing sediments (εHf = 1.80 εNd + 2.35) can all be reconciled, using Monte Carlo simulations, with a simple weathering model of the continental crust.  相似文献   

11.
In-situ Hf isotope analyses and U–Pb dates were obtained by laser ablation-MC-ICP-MS for a zircon-bearing mantle eclogite xenolith from the diamondiferous Jericho kimberlite located within the Archean Slave Province (Nunavut), Canada. The U–Pb zircon results yield a wide range of ages (2.0 to 0.8 Ga) indicating a complex geological history. Of importance, one zircon yields a U–Pb upper intercept date of 1989 ± 67 Ma, providing a new minimum age constraint for zircon crystallization and eclogite formation. In contrast, Hf isotope systematics for the same zircons display an intriguing uniformity, and corresponding Hf depleted mantle model ages range between 2.1 ± 0.1 and 2.3 ± 0.1 Ga; the youngest Hf model age is within error to the oldest U–Pb date.

The Jericho eclogites have previously been interpreted as representing remnants of metamorphosed oceanic crust, and their formation related to Paleoproterozoic subduction regimes along the western margin of the Archean Slave craton during the Wopmay orogeny. Hf isotope compositions and U–Pb results for the Jericho zircons reported here are in good agreement with a Paleoproterozoic subduction model, suggesting that generation of oceanic crust and eclogite formation occurred between 2.0 and 2.1 Ga. The slightly older Hf depleted mantle model ages (2.1 to 2.3 Ga) may be reconciled with this model by invoking mixing between ‘crustal’-derived Hf from sediments and more radiogenic Hf associated with the oceanic crust during the 2 Ga subduction event. This results in intermediate Hf isotope compositions for the Jericho zircons that yield ‘fictitiously’ older Hf model ages.  相似文献   


12.
13.
Zircon as a multi-objective typomorphic mineral commonly contains diverse trace elements with specific petrogenetic significances.The Hf abundance in zircon is sensitively indicative of melt fractionation during zircon growth on one hand,and on another,the Ti content is a robust temperature sensor of zircon crystallization and has been effectively u tilized in thermometric estimation.A Hf-Ti negative correlation was previously reported in igneous zircons,and thus a potential Hf thermometry was t...  相似文献   

14.
15.
Suizhou-Zaoyang area is located in the southern Qinling-Tongbai-Dabie Orogen, China. A combined research on U-Pb ages and Lu-Hf isotopes for detrital zircons from three meta-sedimentary rocks in the Wudang Group is reported. The upper Wudang Group has a major age population of ca. 750 Ma and a sub-major of ca. 860 Ma. But the lower part only yields one age peak at ca. 2.03 Ga. In situ Lu-Hf analyses of the young age group of ca. 750 Ma for zircons from the upper Wudang Group yield an average εHf(t) value of ?8.6 and two-stage Hf model ages(TDM2) from 1837 to 2230 Ma, respectively. However, zircons from the lower Wudang Group give an average εHf(t) value of 4.5 and TDM1 of 2220±22 Ma, close to the timing of zircon crystallization. Thus, it is suggested that, in the study area, the continental crust grew during the middle Paleoproterozoic and reworked during the middle Neoproterozoic, which shows the affinity to the Dabie Orogen. In addition, in the lower Wudang Group, two metamorphic zircon ages of 1992±91 and 1999±61 Ma are consistent with that of the middle Paleoproterozoic metamorphism event in the northern Yangtze Block, which may represent the assemblage of the Columbia Supercontinent. On the basis of the U-Pb ages and Hf isotopes, it is proposed that Suizhou-Zaoyang area was involved in the subduction-collision event in the middle Paleoproterozoic and the Yangtze Block was one of the components of the Paleo-Mesoproterozoic supercontinent.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号