首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New age determinations from Tenerife, together with those previously published (93 in all), provide a fairly comprehensive picture of the volcanic evolution of the island. The oldest volcanic series, with ages starting in the late Miocene, are formed mainly by basalts with some trachytes and phonolites which appear in Anaga, Teno and Roque del Conde massifs. In Anaga (NE), three volcanic cycles occurred: one older than 6.5 Ma, a second one between 6.5 and 4.5 Ma, with a possible gap between 5.4 and 4.8 Ma, and a late cycle around 3.6 Ma. In Teno (NW), after some undated units, the activity took place between 6.7 and 4.5 Ma, with two main series separated by a possible pause between 6.2 and 5.6 Ma. In the zone of Roque del Conde (S), the ages are scattered between 11.6 and 3.5 Ma. Between 3.3 and 1.9 Ma, the whole island underwent a period of volcanic quiescence and erosion.The large Cañadas volcano, made up of basalts, trachytes and phonolites, was built essentially between 1.9 and 0.2 Ma. To the NE of this central volcano, linking it with Anaga, is a chain of basaltic emission centers, with a peak of activity around 0.8 Ma. The Cañadas Caldera had several collapse phases, associated with large ignimbrite emissions. There were, at least, an older phase more than 1 Ma old, on the western part of the volcano, and a younger one, less than 0.6 Ma old, in the eastern side. The two large “valleys” of Guimar and la Orotava were formed by large landslides less than 0.8 Ma ago, and probably before 0.6 Ma ago. The present Cañadas caldera was formed by another landslide, less than 0.2 Ma ago. This caldera was later filled by the huge Teide volcano, which has been active even in historic times. During the same period a series of small volcanoes erupted at scattered locations throughout the island.The average eruptive rate in Tenerife was 0.3 km3/ka, with relatively small variations for the different eruptive periods. This island and La Gomera represent a model of growth by discontinuous pulses of volcanic activity, separated by gaps often coinciding with episodes of destruction of the edifices and sometimes extended for several million years. The neighbouring Gran Canaria, on the other hand, had an initial, rapid “shield-building phase” during which more than 90% of the island was built, and a series of smaller pulses at a much later period.A comparison between these three central islands indicates that the previously postulated westward displacement in time of a gap in the volcanic activity is valid only as a first approximation. Several gaps are present on each island, overlapping in time and not clearly supporting either of the models proposed to explain the evolution of the Canaries.  相似文献   

2.
The relationship between rift zones and flank instability in ocean island volcanoes is often inferred but rarely documented. Our field data, aerial image analysis, and 40Ar/39Ar chronology from Anaga basaltic shield volcano on Tenerife, Canary Islands, support a rift zone—flank instability relationship. A single rift zone dominated the early stage of the Anaga edifice (~6–4.5 Ma). Destabilization of the northern sector led to partial seaward collapse at about ~4.5 Ma, resulting in a giant landslide. The remnant highly fractured northern flank is part of the destabilized sector. A curved rift zone developed within and around this unstable sector between 4.5 and 3.5 Ma. Induced by the dilatation of the curved rift, a further rift-arm developed to the south, generating a three-armed rift system. This evolutionary sequence is supported by elastic dislocation models that illustrate how a curved rift zone accelerates flank instability on one side of a rift, and facilitates dike intrusions on the opposite side. Our study demonstrates a feedback relationship between flank instability and intrusive development, a scenario probably common in ocean island volcanoes. We therefore propose that ocean island rift zones represent geologically unsteady structures that migrate and reorganize in response to volcano flank instability.Editorial responsibility: T. DruittThis revised version was published online in February 2005 with typographical corrections and a changed wording.  相似文献   

3.
The volcano-stratigraphic and geochronologic data presented in this work show that the Tenerife central zone has been occupied during the last 3 Ma by shield or central composite volcanoes which reached more than 3000 m in height. The last volcanic system, the presently active Teide-Pico Viejo Complex began to form approximately 150 ka ago. The first Cañadas Edifice (CE) volcanic activity took place between about 3.5 Ma and 2.7 Ma. The CE-I is formed mainly by basalts, trachybasalts and trachytes. The remains of this phase outcrop in the Cañadas Wall (CW) sectors of La Angostura (3.5–3.0 Ma and 3.0–2.7 Ma), Boca de Tauce (3.0 Ma), and in the bottom of some external radial ravines (3.5 Ma). The position of its main emission center was located in the central part of the CC. The volcano could have reached 3000 m in height. This edifice underwent a partial destruction by failure and flank collapse, forming debris-avalanches during the 2.6–2.3 Ma period. The debris-avalanche deposits can be seen in the most distal zones in the N flank of the CE-I (Tigaiga Breccia). A new volcanic phase, whose deposits overlie the remains of CE-I and the former debris-avalanche deposits, constituted a new volcanic edifice, the CE-II. The dyke directions analysis and the morphological reconstruction suggest that the CE-II center was situated somewhat westward of the CE-I, reaching some 3200 m in height. The CE-II formations are well exposed on the CW, especially at the El Cedro (2.3–2.00 Ma) sector. They are also frequent in the S flank of the edifice (2.25–1.89 Ma) in Tejina (2.5–1.87 Ma) as well as in the Tigaiga massif to the N (2.23 Ma). During the last periods of activity of CE-II, important explosive eruptions took place forming ignimbrites, pyroclastic flows, and fall deposits of trachytic composition. Their ages vary between 1.5 and 1.6 Ma (Adeje ignimbrites, to the W). In the CW, the Upper Ucanca phonolitic Unit (1.4 Ma) could be the last main episode of the CE-II. Afterwards, the Cañadas III phase began. It is well represented in the CW sectors of Tigaiga (1.1 Ma–0.27 Ma), Las Pilas (1.03 Ma–0.78 Ma), Diego Hernández (0.54 Ma–0.17 Ma) and Guajara (1.1 Ma–0.7 Ma). The materials of this edifice are also found in the SE flank. These materials are trachybasaltic lava-flows and abundant phonolitic lava and pyroclastic flows (0.6 Ma–0.5 Ma) associated with abundant plinian falls. The CE-III was essentially built between 0.9 and 0.2 Ma, a period when the volcanic activity was also intense in the ‘Dorsal Edifice' situated in the easterly wing of Tenerife. The so called ‘valleys' of La Orotava and Güimar, transversals to the ridge axis, also formed during this period. In the central part of Tenerife, the CE-III completed its evolution with an explosive deposit resting on the top of the CE, for which ages from 0.173 to 0.13 Ma have been obtained. The CC age must be younger due to the fact that the present caldera scarp cuts these deposits. On the controversial origin of the CC (central vertical collapse vs. repeated flank failure and lateral collapse of mature volcanic edifices), the data discussed in this paper favor the second hypothesis. Clearly several debris-avalanche type events exist in the history of the volcano but most of the deposits are now under the sea. The caldera wall should represent the proximal scarps of the large slides whose intermediate scarps are covered by the more recent Teide-Pico Viejo volcanoes.  相似文献   

4.
K-Ar ages were measured on Quaternary polygenetic and monogenetic volcanoes in the Higashi-Izu region, Izu peninsula, central Japan, using the unspiked sensitivity method with mass-fractionation correction procedure to investigate when eruptive style changed, whether a hiatus existed between the two types of eruptive activity, and the effect of tectonics on the change in eruptive style. The K-Ar ages range from 0.3-0.08 Ma for monogenetic volcanoes and from 1.8-0.2 Ma for polygenetic volcanoes; thus, no volcanic hiatus was found between the two types of eruptive styles. The transition from polygenetic to monogenetic volcanism occurred during a time of overlap between 0.3 and 0.2 Ma, after collision of the Izu block (the future Izu peninsula) with central Japan, estimated as 1.0-0.8 Ma by previous researchers. Based on the review of several tectonic models of the area, the measured age of transition in eruptive style is interpreted to correspond to the change in the stress field of the Higashi-Izu region.  相似文献   

5.
The size, shape, and magmatic history of the most recently discovered shield volcano in the Hawaiian Islands, Mahukona, have been controversial. Mahukona corresponds to what was thought to be a gap in the paired sequence (Loa and Kea trends) of younger Hawaiian volcanoes (<4?Ma). Here, we present the results of marine expeditions to Mahukona where new bathymetry, sidescan sonar, gravity data, and lava samples were collected to address these controversies. Modeling of bathymetric and gravity data indicate that Mahukona is one of the smallest Hawaiian volcanoes (~6,000?km3) and that its magmatic system was not focused in a long-lived central reservoir like most other Hawaiian volcanoes. This lack of a long-lived magmatic reservoir is reflected by the absence of a central residual gravity high and the random distribution of cones on Mahukona Volcano. Our reconstructed subsidence history for Mahukona suggests it grew to at least ~270?m below sea level but probably did not form an island. New 40Ar–39Ar plateau ages range from 350 to 654?ka providing temporal constraints for Mahukona’s post-shield and shield stages of volcanism, which ended prematurely. Mahukona post-shield lavas have high 3He/4He ratios (16–21?Ra), which have not been observed in post-shield lavas from other Hawaiian volcanoes. Lava compositions range widely at Mahukona, including Pb isotopic values that straddle the boundary between Kea and Loa sequences of volcanoes. The compositional diversity of Mahukona lavas may be related to its relatively small size (less extensive melting) and the absence of a central magma reservoir where magmas would have been homogenized.  相似文献   

6.
Thirty-seven new K–Ar ages from West Maui volcano, Hawai‘i, are used to define the waning stages of shield growth and a brief episode of postshield volcanism. All but two samples from shield-stage strata have reversed polarity magnetization, so conceivably the exposed shield is not much older than the Olduvai Normal-Polarity subchron, or about 1.8 Ma. The oldest ages obtained are in the range 1.9–2.1 Ma but have large analytical error. Shield volcanism ended about 1.35 Ma, and postshield volcanism followed soon thereafter, persisting until about 1.2 Ma. Exposed shield-stage strata were emplaced at a rate of about 0.001 km3 per year, a rate smaller than historic Hawaiian magmatic rates by a factor of 100. Stratigraphic accumulation rates are similar to those measured previously at Wai‘anae volcano (O‘ahu) or the upper part of the Mauna Kea shield sequence (Hilo drill core, Hawai‘i). These rates diminish sharply during the final 0.3–0.5 m.y. of the shield stage. Hawaiian shield volcanoes begin waning well before their last 0.5 m.y. of life, then end quickly, geologically speaking, if West Maui is representative.  相似文献   

7.
腾冲火山活动的时代和岩浆来源问题   总被引:35,自引:0,他引:35       下载免费PDF全文
47个腾冲火山岩样品的K-Ar年龄值域在0.09和17.84Ma之间。4条火山岩的40Ar/36Ar-40K/36Ar等时线年龄分别为2.93、0.81、0.31和0.13Ma。火山喷发的时代从中新世到更新世,喷发的高潮在晚更新世。腾冲火山目前还不是死火山,而腾冲及其邻区的热事件(侵入-热变质-喷发)又是连续发生的。20个样品的Rb和Sr含量、稳定Sr同位素初始比(0.70578-0.71437)以及其它地球化学资料还表明,这些火山岩是属于板块碰撞带生成的高钾钙碱性岩浆系列。火山岩的母岩浆来源于地幔的玄武岩浆,但在上升过程中受到过富含放射性成因Sr的地壳物质的强烈渐进混染。  相似文献   

8.
K–Ar ages have been determined for 14 late Miocene to Pliocene volcanic rocks in the north of the Kanto Mountains, Japan, for tracking the location of the volcanic front through the time. These samples were collected from volcanoes located behind the trench–trench–trench (TTT) triple junction of the Pacific, Philippine Sea, and North American plates. This junction is the site of subduction of slabs of the Pacific and the Philippine Sea plates, both of which are thought to have influenced magmatism in this region. The stratigraphy and K–Ar ages of volcanic rocks in the study area indicate that volcanism occurred between the late Miocene and the Pliocene, and ceased before the Pleistocene. Volcanism in adjacent areas of the southern NE Japan and northern Izu–Bonin arcs also occurred during the Pliocene and ceased at around 3 Ma with the westward migration of the volcanic front, as reported previously. Combining our new age data with the existing data shows that before 3 Ma the volcanic front around the TTT junction was located about 50 km east of the preset‐day volcanic front. We suggest that northward subduction of the Philippine Sea Plate slab ended at ~3 Ma as a result of collision between the northern margin of the plate with the surface of the Pacific Plate slab. This collision may have caused a change in the subduction vector of the Philippine Sea Plate from the original north‐directed subduction to the present‐day northwest‐directed subduction. This indicates that the post ~3 Ma westward migration of the volcanic front was a result of this change in plate motion.  相似文献   

9.
A geochronological study utilized the unspiked potassium–argon (K–Ar) technique to obtain ages from the two main volcanic members of the shield stage of the Waianae Volcano, HI. These new dates are further constrained using a combination of stratigraphic relationships, magnetostratigraphy and major element geochemistry. Exposed shield lavas encompass 0.85 Ma, with reliably dated tholeiitic lavas from the main shield ranging from 3.93±0.08 to 3.54±0.04 Ma, and a later shield stage ranging in age from 3.57±0.04 to 3.08±0.04 Ma. These data suggest that the total extent of Waianae shield activity was significantly more than 1 Ma. The age of faulting in two flank zones is constrained to be about 3.4 Ma. Preliminary estimates of lava accumulation rates vary from about 0.3 to 2.0 mm/a; calculated rates show no systematic variation with location in the volcano or with time.  相似文献   

10.
A review of the general volcano-stratigraphy and geochronology of La Gomera, one of the lesser known Canary Islands, has led to the establishment of a new evolutionary model. The oldest edifice corresponds to the submarine stage built up between 20 and 15 Ma. The construction of the Submarine Edifice was followed by an important break in the activity (about 4 Ma) and deep erosion of the edifice. About 10.5 Ma ago, the main present-day edifice (the Old Edifice 10.5–6.4 Ma) emerged, which was also submarine in its initial phases. Two different main stages are distinguishable. The first stage was represented by a large, some 22 km wide basaltic shield volcano (the Lower Old Edifice). Several lateral collapse events (Tazo and San Marcos avalanches) occurred during this time and were responsible for the removal of an important part of its northern flank. In the second growth stage (the Upper Old Edifice), the activity migrated southwards. A 25-km wide composite volcano arose covering part of the remaining earlier shield volcano. The felsic (trachytic to phonolitic) activity occurring in two separate episodes formed a significant component of this composite volcano. Finally, one more recent large edifice (the Young Edifice) built up from 5.7 to 4 Ma. The lava flows of this younger edifice covered completely the centre and the south of the island and filled deep ravines in the north. More evolved magmas, including significant felsic magmas (the third and last felsic episode), occurred in this phase of activity.The growth of La Gomera was long-lasting, separated by an important gap in the activity in the Middle Miocene, with no Quaternary activity at all. At the same time on Tenerife (the nearest island east of La Gomera), three large edifices grew separately: Roque del Conde, Anaga and Teno (initially three separated islands). From the available data, it is inferred that the subaerial activity started earlier in the Roque del Conde Edifice, then on La Gomera and later in Teno in the NW and Anaga in NE of Tenerife, which is the youngest of all these edifices. These facts, together with the irregular general progress of the volcanic activity, support more complex views of the genesis for the Canary Islands than the simple hotspot model.  相似文献   

11.
47个腾冲火山岩样品的K-Ar年龄值域在0.09和17.84Ma之间。4条火山岩的40Ar/36Ar-40K/36Ar等时线年龄分别为2.93、0.81、0.31和0.13Ma。火山喷发的时代从中新世到更新世,喷发的高潮在晚更新世。腾冲火山目前还不是死火山,而腾冲及其邻区的热事件(侵入—热变质—喷发)又是连续发生的。20个样品的Rb和Sr含量、稳定Sr同位素初始比(0.70578—0.71437)以及其它地球化学资料还表明,这些火山岩是属于板块碰撞带生成的高钾钙碱性岩浆系列。火山岩的母岩浆来源于地幔的玄武岩浆,但在上升过程中受到过富含放射性成因Sr的地壳物质的强烈渐进混染。  相似文献   

12.
Historic and recent (last 2,000?years) eruptions on the active volcanic island of Tenerife have been predominantly effusive, indicating that this is the most probable type of activity to be expected in the near future. In the past, lava flow invasion caused major damage on the island, and as the population and infrastructure have increased dramatically since the last eruption, lava flows are the most important short-term volcanic risk on Tenerife. Hence, an understanding of lava flow behaviour is vital to manage risks from lava flows and minimise future losses on the island. This paper focuses on the lava flows from the historic eruptions in Tenerife, providing new data on the volumes emitted, advance rates and the timing of the emplacement of flows. The studies show three main stages in the development of unconfined flow fields: the first stage, corresponding to the fast advance of the initial fronts during the first 24?C36?h of eruption (reaching calculated velocities of up to 1.1?m/s); the second stage, in which fronts stagnate; and a third stage, in which secondary lava flows develop from breakouts 4?C7?days after the initial eruption and farther extend the flow field (velocities of up to 0.02?m/s have been calculated for this stage). The breakouts identified originated at sites both proximal and distal to the vent and, in both cases, caused damage through lengthening and widening the original flow field. Hence, the probability of damage from lavas to land and property is highest during stages 1 and 3, and this should be accounted for when planning the response to a future effusive eruption. Tenerife??s lava flows display a similar behaviour to that of lava flows on volcanoes characterised by basaltic effusive activity (such as Etna or Kilauea), indicating the possibility of applying forecasting models developed at those frequently active volcanoes to Tenerife.  相似文献   

13.
The ages of polarity chrons in previous M-sequence magnetic polarity time scales were interpolated using basal sediment ages in suitably drilled DSDP holes. This method is subject to several sources of error, including often large paleontological age ranges. Magnetostratigraphic results have now tied the Early Cretaceous and Late Jurassic paleontological stage boundaries to the M-sequence of magnetic polarity. The numeric ages of most of these boundaries are inadequately known and some have been determined largely by intuition. An examination of relevant data suggests that 114 Ma, 136 Ma and 146 Ma are optimum estimates for the ages of the Aptian/Barremian, Cretaceous/Jurassic and Kimmeridgian/Oxfordian stage boundaries, respectively. Each of these boundaries has a good correlation to the M-sequence of magnetic reversals. The magnetostratigraphic tie-level ages are linearly related to the spreading distance and have been used to calculate a new magnetic polarity time scale for the Early Cretaceous and Late Jurassic. All stage boundaries in this time interval were correlated by magnetic stratigraphy to the proposed new time scale which was then used to estimate their numeric ages. These are, with the approximate relative errors of placement within the M-sequence:The absolute errors of these interpolated stage boundary ages depend on the accuracy of the tie-level ages.  相似文献   

14.
We present new 40Ar/39Ar ages and paleomagnetic data for São Miguel island, Azores. Paleomagnetic samples were obtained for 34 flows and one dike; successful mean paleomagnetic directions were obtained for 28 of these 35 sites. 40Ar/39Ar age determinations on 12 flows from the Nordeste complex were attempted successfully: ages obtained are between 0.78 Ma and 0.88 Ma, in contrast to published K–Ar ages of 1 Ma to 4 Ma. Our radiometric ages are consistent with the reverse polarity paleomagnetic field directions, and indicate that the entire exposed part of the Nordeste complex is of a late Matuyama age. The duration of volcanism across São Miguel is significantly less than previously believed, which has important implications for regional melt generation processes, and temporal sampling of the geomagnetic field. Observed stable isotope and trace element trends across the island can be explained, at least in part, by communication between different magma source regions at depth. The 40Ar/39Ar ages indicate that our normal polarity paleomagnetic data sample at least 0.1 Myr (0–0.1 Ma) and up to 0.78 Myr (0–0.78 Ma) of paleosecular variation and our reverse polarity data sample approximately 0.1 Myr (0.78–0.88 Ma) of paleosecular variation. Our results demonstrate that precise radiometric dating of numerous flows sampled is essential to accurate inferences of long-term geomagnetic field behavior. Negative inclination anomalies are observed for both the normal and reverse polarity time-averaged field. Within the data uncertainties, normal and reverse polarity field directions are antipodal, but the reverse polarity field shows a significant deviation from a geocentric axial dipole direction.  相似文献   

15.
Zircon U–Pb dating using LA-ICP-MS was applied to six Quaternary tephras in Boso Peninsula, central Japan: J1, Ks4, Ks5, Ks10, Ks11, and Ch2 in descending order. Accurate age determination of these tephras is of critical importance because they are widespread tephras in Japan and also relevant to a candidate site for the global boundary stratotype section and point of the early–middle Pleistocene boundary. Twenty grains were dated for each tephra and the following results were obtained. The J1 tephra had only 5 grains that yielded <2 Ma. The obtained age was ∼0.2 m.y. older than the stratigraphic age. No Quaternary ages were obtained from the Ks4 tephra. The Ks5 and Ks10 tephras had 10–12 grains that were ∼0.1–0.3 m.y. older than the stratigraphic age. The Ks11 tephra had 14 grains that yielded a weighted mean age of 0.52 ± 0.04 Ma (error reported as 95% confidence level), which was in agreement with the stratigraphic age. The Ch2 tephra had 16 grains that yielded a weighted mean age of 0.61 ± 0.02 Ma, which was also in agreement with the stratigraphic age. The good agreement between zircon U–Pb ages and the stratigraphy for Ks11 and Ch2 tephras validates the reliability of the established stratigraphy and our dating approach. The other tephras that yielded ∼0.1–0.3 m.y. older ages than the stratigraphy may indicate that the analyzed zircons were antecrysts that crystallized before eruption or they were detrital zircons incorporated during deposition.  相似文献   

16.
We report the first 39Ar–40Ar ages from the three early basic shield-like massifs of Tenerife, Canary islands, and couple these with detailed major and trace element chemistry to constrain the nature and timing of the mantle melting processes. The massifs have chemically different sources, and independent evolutionary histories. The Teno and Roque del Conde massifs appear chemically to represent the products of single mantle melting cycles, with progressive decrease in mean melt fraction and increase in mean melting depth in younger rocks. The Teno massif (NW) was erupted in a short time period around 6.0–6.4 Ma, while at least the lower half of the Roque del Conde massif (SW) is older than 11 Ma. In contrast, the Anaga massif (NE) is polygenetic, with 39Ar–40Ar ages ranging from 8.0–4.2 Ma, and no simple stratigraphic chemical progression. These ages run counter to published suggestions of progressive younging of Canary shield stages to the southwest. Basic rocks in all three massifs are the result of much deeper melting and smaller melt fractions than equivalent units in Gran Canaria, but nevertheless the melting column must have extended significantly into the spinel facies, requiring substantial disruption of the local lithosphere. The age and melting relationships broadly support the mantle blob model for Canary magmatism proposed by Hoernle and Schmincke (Hoernle, K., Schminke, H.-U., 1993. The role of partial melting in the 15-Ma geochemical evolution of Gran Canaria: a blob model for the Canary hotspot. J. Petrol. 34, 599–626). In all three massifs, extensive fractional crystallisation has taken place at crustal levels so that mean MgO contents are only some 6–7%. The fractionation sequence is olivine–clinopyroxene–magnetite in basaltic compositions, with the involvement of plagioclase, amphibole and apatite only to generate the infrequent more evolved hawaiites to benmoreites. Despite the abundance of basanitic magmas in the Tenerife older massifs, these follow a differentiation trend towards weakly undersaturated benmoreite rather than to phonolite. This probably reflects early crystallisation of magnetite, perhaps resulting from somewhat high oxygen fugacity. The chemical evidence for replenished magma chambers in Tenerife described by Neumann et al. (Neumann, E.R., Wulff-Oedersen, E., Simonsen, S.L., Pearson, N.J., Martí, J., Mitjavila, J., 1999. Evidence for fractional crystallisation of periodically refilled magma chambers in Tenerife, Canary Islands. J. Petrol. 40, 1089–1123) is a consequence of treating as a single cogenetic suite the products of several magmatic systems that differ in parental melt fraction.  相似文献   

17.
Gravity and magnetic methods have been applied to the Tenerife Island, to provide new information about its internal structure. For this study, 365 gravity stations covering the central part of the island have been selected. The anomalous density maps at different depths were obtained by means of an inversion global adjustment, on fixed density contrast, to describe the three-dimensional (3D) geometry of the anomalous bodies. On the other hand, several analysis techniques, such as reduction to the pole, spectral analysis, low-pass filtering, terrain correction and forward modelling, were applied to process the high-resolution data obtained in an aeromagnetic survey, completed with marine and terrestrial data.The joint analysis of gravity and magnetic anomalies has shown tectonic and volcanic features that define some fundamental aspects of the structural framework and volcanic evolution of the island. A strong gravity anomaly produced by a large and deep source has been associated with an uplifted block of the basement beneath the southern part of Tenerife. The sources of the observed gravity highs from 8 km b.s.l. may be associated with the growth of the submarine shield stage that was clearly controlled by regional tectonic.The long-wavelength magnetic anomalies reveal highly magnetic sources, interpreted as gabbro-ultramafic cumulates associated with the root zone of a large dyke swarm. This intrusive body could be topped by the emplacement zone of magma chambers that correlate with a magnetic horizon at 5.7±0.8 km depth. Rooted in this highly magnetic zone, two dike–like structures can be associated with the magmatic feeding system of large recent basaltic volcanoes. A shallow magnetic horizon (1.4 km a.s.l.) can be correlated with the bottom phonolites of the Las Cañadas Edifice.In the central part of the island the coincidence of some gravity and magnetic lows is consistent with the presence of low-density and low-magnetic materials, that infill a collapsed caldera system. The structures close to the surface are characterised by low-density areas connected with the recent volcanism, in particular the minimum over the Teide volcano. Hydrothermal alteration is assumed to be the cause of a short-wavelength magnetic low over the Teide volcano.  相似文献   

18.
 The 3.9- to 2.9-Ma Waianae Volcano is the older of two volcanoes making up the island of Oahu, Hawaii. Exposed on the volcanic edifice are tholeiitic shield lavas overlain by transitional and alkalic postshield lavas. The postshield "alkalic cap" consists of aphyric hawaiite of the Palehua Member of the Waianae Volcanics, overlain unconformably by a small volume of alkalic basalt of the Kolekole Volcanics. Kolekole Volcanics mantle erosional topography, including the uppermost slopes of the great Lualualei Valley on the lee side of the Waianae Range. Twenty new K–Ar dates, combined with magnetic polarity data and geologic relationships, constrain the ages of lavas of the Palehua member to 3.06–2.98 Ma and lavas of the Kolekole Volcanics to 2.97–2.90 Ma. The geochemical data and the nearly contemporaneous ages suggest that the Kolekole Volcanics do not represent a completely independent or separate volcanic event from earlier postshield activity; thus, the Kolekole Volcanics are reduced in rank, becoming the Kolekole Member of the Waianae Volcanics. Magmas of the Palehua and Kolekole Members have similar incompatible element ratios, and both suites show evidence for early crystallization of clinopyroxene consistent with evolution at high pressures below the edifice. However, lavas of the Kolekole Member are less fractionated and appear to have evolved at greater depths than the earlier Palehua hawaiites. Postshield primary magma compositions of the Palehua and Kolekole Members are consistent with formation by partial melting of mantle material of less than 5–10% relative to Waianae shield lavas. Within the section of Palehua Member lavas, an increase with respect to time of highly incompatible to moderately incompatible element ratios is consistent with a further decrease in partial melting by approximately 1–2%. This trend is reversed with the onset of eruption of Kolekole Member lavas, where an increase in extent of partial melting is indicated. The relatively short time interval between the eruption of Palehua and Kolekole Member lavas appears to date the initial formation of Lualualei Valley, which was accompanied by a marked change in magmatic conditions. We speculate that the mass-wasting event separating lavas of the Palehua and Kolekole Members may be related to the formation of a large submarine landslide west and southwest of Waianae Volcano. Enhanced decompression melting associated with removal of the equivalent volume of this landslide deposit from the edifice is more than sufficient to produce the modeled increase of 1–2% in extent of melting between the youngest Palehua magmas and the posterosional magmas of the Kolekole Member. The association between magmatic change and a giant landsliding event suggests that there may be a general relationship between large mass-wasting events and subsequent magmatism in Hawaiian volcano evolution. Received: 1 September 1996 / Accepted: 26 November 1996  相似文献   

19.
A new method has been discovered for calculating ages of the main shield building stages of volcanoes along the Hawaiian chain from Kilauea to the Hawaiian-Emperor bend. The method is based on a graphical technique for hypothetical subtraction of distance intervals that theoretically represent regions of simultaneous volcanism along adjacent or nearly en-echelon loci of volcanism. Distances along the chain, measured from Kilauea, when progressively foreshortened by the distances of hypothetical “collapse” and plotted versus existing age data are found to give linear age-distance relationships. A calibration graph is presented that agrees closely with the measured ages in 17 of the 20 existing dated volcanoes. The criterion for simultaneous activity on different loci is based on the concept of equal azimuths of synchronous volcanic propagation within coeval segments of the chain. This is the predicted relationship when magmatic fluids inject the lithosphere along directions normal to a nearly horizontal least principal stress. It appears that the Pacific plate has been subjected to oscillatory, but principally clockwise, rotations of horizontal stress components during the last 40 m.y.  相似文献   

20.
New contributions to Chinese Plio-Pleistocene magnetostratigraphy   总被引:14,自引:0,他引:14  
A new collection of over 500 orientated hand-samples (of which 180 are red clays) from a 195 m loess/red clay section near Xian (109° 12′ E, 34° 12′ N), China, has been dated by magnetic stratigraphy. Biostratigraphic and previous magnetostratigraphic investigations gave a maximum age for the Chinese loess of 2.4 Ma, implying that the underlying Red Clay Formation is Pliocene in age. The present study yields a clearly defined magnetic polarity stratigraphy in good agreement with a polarity time scale developed by earlier workers. An interpretation of this magnetostratigraphy suggests a basal age for the loess series in this region of 2.5 Ma, and a minimum age for the base of the Red Clay Formation, which is also the base of the section, of 5.0 Ma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号