共查询到17条相似文献,搜索用时 78 毫秒
1.
本文在z坐标海洋数值模式HAMSOM中引入了内潮黏性项(Internal-tide viscosity term),将之运用到吕宋海峡M2内潮的生成与传播过程的数值模拟研究。研究结果表明:(1)在250 m以浅,吕宋海峡产生的M2内潮振幅于温跃层处最大,岛坡附近的内潮明显强于别处,且最大振幅可达到40 m左右;(2)M2内潮的生成源主要集中在伊特巴亚岛西北、巴丹岛西南以及巴布延群岛西北的岛坡;(3)海峡产生的M2内潮向东西2个方向传播。巴丹岛以西的西向能量在吕宋海沟斜向下传播,在到达恒春海脊附近发生反射返回海面,到达海面后再次反射回海底,在此过程中,有高模态的内潮被激发,不同模态间有相消干涉的现象产生。西传的内潮能量分为2支进入南海,产生于巴布延群岛西北的能量分支直接向西南折转进入南海海盆,而产生于伊特巴亚岛和巴丹岛岛坡附近的主要能量则以束状向南海陆架传播,在到达118°E后部分能量折向西南的海盆,其余的能量则沿西北方向传入中国近岸,陆架陆坡地形起着重要的耗散作用。伊特巴亚岛西北有最大的能量产生,向东北传入太平洋。在122°E以东,能量主要以束状向东南传入太平洋。 相似文献
2.
本文在z坐标海洋数值模式HAMSOM中引入了内潮黏性项(Interhal-tide viscosity term),将之运用到吕宋海峡M2内潮的生成与传播过程的数值模拟研究.研究结果表明:(1)在250 m以浅,吕宋海峡产生的M2内潮振幅于温跃层处最大,岛坡附近的内潮明显强于别处,且最大振幅可达到40 m左右;(2)M2内潮的生成源主要集中在伊特巴亚岛西北、巴丹岛西南以及巴布延群岛西北的岛坡;(3)海峡产生的M2内潮向东西2个方向传播.巴丹岛以西的西向能量在吕宋海沟斜向下传播,在到达恒春海脊附近发生反射返回海面,到达海面后再次反射回海底,在此过程中,有高模态的内潮被激发,不同模态间有相消干涉的现象产生.西传的内潮能量分为2支进入南海,产生于巴布延群岛西北的能量分支直接向西南折转进入南海海盆,而产生于伊特巴亚岛和巴丹岛岛坡附近的主要能量则以束状向南海陆架传播,在到达118°E后部分能量折向西南的海盆,其余的能量则沿西北方向传入中国近岸,陆架陆坡地形起着重要的耗散作用.伊特巴亚岛西北有最大的能量产生,向东北传入太平洋.在122°E以东,能量主要以束状向东南传入太平洋. 相似文献
3.
基于海洋模式HYCOM(Hybrid Coordinate Ocean Model),利用大小区嵌套技术,分别对全球海洋和西北太平洋进行了网格嵌套数值模拟,研究了吕宋海峡海域环流场的季节性变化。考虑全球海洋环流影响的西北太平洋模式,成功地刻画了黑潮的流结构及季节变化。吕宋海峡海洋环流流场在不同深度处差异较大,存在着明显的季节变化。黑潮入侵南海主要发生在500m深度以上,冬季最明显,夏秋两季不明显。在500m层常年存在一支南海暖流流入西北太平洋,在800m层南海暖流消失。一年四季黑潮主要通过吕宋海峡的南部和中部进入南海。1 000m层流场表明,黑潮主要通过吕宋海峡的中部入侵南海。在800~1 000m处主要是黑潮水流入南海。 相似文献
4.
吕宋海峡水交换季节变化的数值研究 总被引:4,自引:0,他引:4
提要利用POM(Princeton Ocean Model)对吕宋海峡附近的环流情况进行数值模拟,结果表明,吕宋海峡净流量季节变化明显,除5月和6月为东向净流外,全年自7月至翌年4月皆为西向净流。7月至11月净流量由1.6Sv(1Sv=1×106m3/s)持续增加至14Sv,12月至翌年4月净流量从13.8Sv持续减小至3.1Sv。年平均值为5.7Sv。500m以上,秋、冬季有明显的黑潮分支进入南海,而在春、夏季黑潮南海分支消失或者较弱。在500m以下,黑潮位置由于北赤道流分岔位置的变化而发生南北移动,从而影响黑潮深层入侵南海。作者以保持与表层流速方向相一致的最大深度为界将流场分为上下两层,上层西向(入)流区域占据吕宋海峡南部、中部,秋、冬季范围最大,夏季向中部收缩,其深度空间分布呈东浅西深结构,在吕宋海峡入口处,入流深度呈南北浅中间深的结构。上层东向(出)流主要分布在海峡北部,夏季向南部扩展,范围最大。120.75°E断面除9月和10月外,下层净输运量与上层反方向。9月和10月上、下层净输运量皆为西向。上层年平均净流量为?7.6Sv(这里"?"表示净流量向西,下同),下层为1.8Sv。上层出入流深度随季节上下浮动范围可达数百米,海峡中部入、出流最深可达1800m。 相似文献
5.
基于一套环流-潮汐耦合模型的模拟结果,本文探究并比较了2015—2016年的三种黑潮形态下,吕宋海峡全日内潮以及全日非相干内潮生成与传播的空间分布特征。结果表明,当黑潮以流套形态流经吕宋海峡时,全日内潮非相干性最强,具体表现为全日非相干内潮能量生成最大,全日内潮的传播速度变化率最大。由于传播速度的变化会改变全日内潮的位相,进而会影响全日内潮的非相干性,导致在吕宋海峡内全日内潮的非相干性最强。本研究结果对理解黑潮背景动力过程下吕宋海峡内潮的时空变化有重要意义。 相似文献
6.
内潮对吕宋海峡地转流动力计算的影响 总被引:1,自引:0,他引:1
利用2008年8~9月份吕宋海峡121°E断面上19.5°N~21°N之间4个连续站的CTD资料,讨论了内潮引起的温、盐剖面扰动对地转流诊断计算的影响,指出:在吕宋海峡,内潮引起的温、盐剖面扰动对地转流诊断计算的干扰不可忽略。因此,地转流诊断计算必须剔除温、盐剖面中的"内潮噪声"。另外,本文根据4个连续站时间平均后的温、盐剖面,通过动力计算法得到了吕宋海峡121°E断面上的地转流场,得出结论如下:吕宋海峡地转流速度较大部分多位于350 m以浅,流速最大值出现在表层;黑潮入侵南海主要发生于19.8°N~21°N的上层;在19.5°N~21°N之间,50~1 700 m深度范围内,海水体积通量呈现"上进下出"的垂向结构,350 m以浅为入流,流量约为2.6 Sv(1 Sv=1×106m3.s-1),350 m以深为出流,流量约为3.1 Sv。同期观测所得121°E断面上的盐度分布验证了本文所得地转流场的合理性。 相似文献
7.
吕宋海峡内波吸引子的三维数值模拟 总被引:1,自引:0,他引:1
Internal waves propagate along wave beams that are inclined with respect to the horizontal plane. It is conjectured that the internal waves generated in the Luzon Strait may be confined between the double ridges in the strait and concentrate to a closed trajectory, the so-called internal wave attractor, due to the reflection of wave beams from the lateral boundaries, sea surface and bottom. This work carried out two experiments using a three dimensional non-hydrostatic general circulation model, MITgcm, to investigate the possibility that the ridges in the Luzon Strait allows for internal wave attractors. Baroclinic current in both of the experiments demonstrate the forming of ring-like patterns in some section around 20° and 21°N, indicating that the development of the internal wave attractors are allowed in the Luzon Strait. The different resolutions and initial conditions in the two experiments also reveal that the internal-wave-attractor phenomenon is robust in this region. 相似文献
8.
吕宋海峡水交换季节和年际变化特征的数值模拟研究 总被引:1,自引:0,他引:1
利用ROMS(Regional Ocean Modeling System)建立了一套覆盖西北太平洋的涡尺度分辨率环流模型,并对吕宋海峡附近的环流进行了模拟研究。结果表明,吕宋海峡120.75°E断面净流量季节变化显著,全年均为西向输运,6月份达到最小,为0.40×106 m3/s,然后逐渐增大,在12月份达到最大,为6.14×106 m3/s,全年平均流量为3.04×106 m3/s。在500 m以浅,秋、冬季都有明显的黑潮流套存在,并伴有黑潮分支入侵南海,而春、夏季黑潮南海分支减弱或消失,黑潮入侵不明显。在500 m以深,冬、春季,吕宋海峡以东有非常明显的南向流存在,流速约10 cm/s,而到了夏、秋季该南向流出现明显的减弱,黑潮与南海的水交换主要通过吕宋海峡以北的吕宋海沟进行。在垂向结构上,120.75°E断面浅层呈多流核结构,并且流核的位置和强弱受黑潮的季节性变化影响显著,深层流的季节变化不大。在年际尺度方面,吕宋海峡年际体积输运量异常与Niño3.4滞后6个月相关系数达到41.6%,吕宋海峡水交换与ENSO现象有较为显著的正相关关系,并存在2~3 a和准8 a周期的年际变化。 相似文献
9.
吕宋海峡內潮的季节变化特征及其对背景流的响应研究 总被引:1,自引:0,他引:1
基于2008年秋季至2009年夏季共9个月的锚定潜标流速资料,分析了吕宋海峡西南內潮的时空特征.谱分析结果显示,该观测点全日內潮和半日內潮较为显著,尤其体现在顺时针旋转部分.除春季第二模态占优外,全日內潮主在其余三个季节均以第一模态为主,而半日內潮呈现变化的多模态结构.此外,全日內潮的动能具有明显的季节差异,冬季能量最强,夏季紧随其后,而在春、秋两季能量最小.通过分析发现,非相干运动对此季节性特征起主要作用,它反映了內潮与背景场的相互作用.然而,半日內潮却没有显著的季节性差异,而且能量较全日內潮更小,尤其在冬季,只有全日內潮动能的三分之一.同时,半日內潮的不规则变化也是与多变的背景场相关的.半日內潮的非相干部分占到了半日內潮总能量的37%左右,而全日內潮更小一些,只有22.2%. 相似文献
10.
本文使用一种简便的三维潮波模式,研究了东海东北部M2潮流的分布,特别是该海域潮流的垂直变化。所得结果与观测符合良好。本研究所用计算方法的主要特点是:1)将潮流的垂直变化作为其深度平均速度的函数求解。2)能应用不同形式的垂直涡动粘性系量。3)有着较好的垂直分解度,尤其是在近底层。所以,该方法不仅能使我们较容易地得到稳定解,而且能较好地反映摩擦对垂直变化的影响。 相似文献
11.
Based on the z-coordinate ocean model HAMSOM,we introduced the internal-tide viscosity term and applied the model to numerically investigate the M2 internal tide generation and propagation in the Luzon Strait (LS).The results show that (1) in the upper 250 m depth,at the thermocline,the maximum amplitude of the generated internal tides in the LS can reach 40 m;(2) the major internal tides are generated to the northwest of Itbayat Island,the southwest of Batan Island and the northwest of the Babuyan Islands;(3) during the propagation the baroclinic energy scattering and reflection is obvious,which exists under the effect of the specific topography in the South China Sea (SCS);(4) the westward-propagating internal tides are divided into two branches entering the SCS.While passing through 118 E,the major branch is divided into two branches again.The strongest internal tides in the LS are generated to the northwest of Itbayat Island and propagate northeastward to the Pacific.However,to the east of 122 E,most of the internal tides propagate southeastward to the Pacific as a beam. 相似文献
12.
Numerical study of baroclinic tides in Luzon Strait 总被引:5,自引:1,他引:5
The spatial and temporal variations of baroclinic tides in the Luzon Strait (LS) are investigated using a three-dimensional
tide model driven by four principal constituents, O1, K1, M2 and S2, individually or together with seasonal mean summer or winter stratifications as the initial field. Barotropic tides propagate
predominantly westward from the Pacific Ocean, impinge on two prominent north-south running submarine ridges in LS, and generate
strong baroclinic tides propagating into both the South China Sea (SCS) and the Pacific Ocean. Strong baroclinic tides, ∼19
GW for diurnal tides and ∼11 GW for semidiurnal tides, are excited on both the east ridge (70%) and the west ridge (30%).
The barotropic to baroclinic energy conversion rate reaches 30% for diurnal tides and ∼20% for semidiurnal tides. Diurnal
(O1 and K1) and semidiurnal (M2) baroclinic tides have a comparable depth-integrated energy flux 10–20 kW m−1 emanating from the LS into the SCS and the Pacific basin. The spring-neap averaged, meridionally integrated baroclinic tidal
energy flux is ∼7 GW into the SCS and ∼6 GW into the Pacific Ocean, representing one of the strongest baroclinic tidal energy
flux regimes in the World Ocean. About 18 GW of baroclinic tidal energy, ∼50% of that generated in the LS, is lost locally,
which is more than five times that estimated in the vicinity of the Hawaiian ridge. The strong westward-propagating semidiurnal
baroclinic tidal energy flux is likely the energy source for the large-amplitude nonlinear internal waves found in the SCS.
The baroclinic tidal energy generation, energy fluxes, and energy dissipation rates in the spring tide are about five times
those in the neap tide; while there is no significant seasonal variation of energetics, but the propagation speed of baroclinic
tide is about 10% faster in summer than in winter. Within the LS, the average turbulence kinetic energy dissipation rate is
O(10−7) W kg− 1 and the turbulence diffusivity is O(10−3) m2s−1, a factor of 100 greater than those in the typical open ocean. This strong turbulence mixing induced by the baroclinic tidal
energy dissipation exists in the main path of the Kuroshio and is important in mixing the Pacific Ocean, Kuroshio, and the
SCS waters. 相似文献
13.
The wide presence of internal solitary waves (ISWs) in the northern South China Sea (SCS) has been confirmed by both Synthetic Aperture Radar (SAR) images and in situ observations. These ISWs are believed being generated over the varying topography in the Luzon Strait. They typically propagate westwards into the SCS with a diurnal or semidiurnal period. Their generation sites are, however, not yet solidly identified. To obtain a clear picture of the ISWs, we designed numerical experiments to analyze the generation and propagation of the ISWs in the Luzon Strait using a 2-dimensional non-hydrostatic model. The model current is forced by barotropic or baroclinic currents imposed at open boundaries. The experiments show that the tidal current serves as a kind of triggering force for the ISWs over the submarine ridges in the strait. Under the forcing of tidal currents, depressions are formed near the ridges. The ISWs then split from the depressions through a process different from lee-wave generation mechanism. The appearance of the ISWs is influenced by the strength and period of the forcing current:the ISWs are more likely to be generated by a stronger tidal current. That is why the ISWs in the Luzon Strait are frequently observed during spring tide. Compared with diurnal tidal current, the ISWs generated by semidiurnal tidal current with the same amplitude is much more energetic. It is partly because that the wave beams in diurnal frequency have a larger angle with the vertical direction, thus are more likely to be reflected by the topography slope. The impact of the Kuroshio to the ISWs is also analyzed by adding a vertical uniform or shear current at boundaries. A vertically uniform current may generate ISWs directly. On the other hand, a vertically shear current, which is more realistic to represent the Kuroshio branch, seems to have little influence on the generation process and radiating direction of the ISWs in the Luzon Strait. 相似文献
14.
Shenn-Yu Chao Dong-Shan Ko Ren-Chieh Lien Ping-Tung Shaw 《Journal of Oceanography》2007,63(6):897-911
The Luzon Strait is blocked by two meridional ridges at depths, with the east ridge somewhat higher than the west ridge in
the middle reaches of the Strait. Previous numerical models identified the Luzon Strait as the primary generation site of
internal M2 tides entering the northern South China Sea (Niwa and Hibiya, 2004), but the role of the west-versus-east ridge was uncertain.
We used a hydrostatic model for the northern South China Sea and a nonhydrostatic, process-oriented model to evaluate how
the west ridge of Luzon Strait modifies westward propagation of internal tides, internal bores and internal solitary waves.
The dynamic role of the west ridge depends strongly on the characteristics of internal waves and is spatially inhomogeneous.
For M2 tides, both models identify the west ridge in the middle reaches of Luzon Strait as a dampener of incoming internal waves
from the east ridge. In the northern Luzon Strait, the west ridge is quite imposing in height and becomes a secondary generation
site for M2 internal tides. If the incoming wave is an internal tide, previous models suggested that wave attenuation depends crucially
on how supercritical the west ridge slope is. If the incoming wave is an internal bore or internal solitary wave, our investigation
suggests a loss of sensitivity to the supercritical slope for internal tides, leaving ridge height as the dominant factor
regulating the wave attenuation. Mechanisms responsible for the ridge-induced attenuation are discussed. 相似文献
15.
On generation source sites of internal waves in the Luzon Strait 总被引:2,自引:0,他引:2
This effort aims to determine the generation source sites in the Luzon Strait for energetic, long-crest, transbasin internal waves (IW) observed in the northern South China Sea (NSCS). The roles of islands distributed on eastern side of the strait, Kuroshio, submarine ridges, shoaling thennocline, and strait configuration played in the IW generation are examined using the cruise data analysis, satellite data interpretation, and dynamical analysis. The islands and channels on eastern side of the strait are excluded from a list of possible IW source sites owing to their unmatched horizontal dimensions to the scale of IW crest line length, and the relative low Reynolds number. The Kuroshio has a potential to be a radiator for the long-crest IW disturbances, meanwhile, the Kurosbio west (east) wing absorbs the eastward (westward) propagating IW disturbance. Namely, the Kuroshio blockades the outside west-east propagating IW disturbances. The 3-D configuration of the Luzon Strait is characterized by a sudden, more than one order widening of the cross-section areas at the outlets on both sides, providing a favorable condition for IW type initial disturbance formation. In the Luzon Strait, the thermocline is featured by a westward shoaling all the year around, providing the dynamical conditions for the amplitude growth (declination) to the westward (eastward) propagating IW type disturbance. Thus, the west slope of western submarine ridge at the western outlet of the Luzon Strait is a high possibility source sites for energetic, long-crest, transbasin IWs in the NSCS. The interpretation results of satellite SAR images during a 13 a period from 1995 to 2007 provide the convincing evidence for the conclusions. 相似文献
16.
为了考察潮汐混合效应对吕宋海峡附近海域环流场的影响,本文使用ROMS区域海洋模式,通过无潮实验与有潮实验的对比分析指出,潮汐混合作用可以影响121°E断面上的水交换和120d平均的纬向流速分布;在模拟时段内加入潮汐后,模拟结果中台湾岛西南的反气旋涡强度大幅减弱,贴近黑潮东侧的涡旋强度明显强于无潮实验,证明潮汐作用可以引起吕宋海峡海洋环流场较大的改变,特别对黑潮以"跨隙"路径通过吕宋海峡有贡献。 相似文献
17.
The South China Sea (SCS) is a hot spot for oceanic internal solitary waves due to many factors, such as the complexity of the terrain environment. The internal solitary waves in the northern SCS mainl... 相似文献