首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
南海北部上层鱼类浮游生物多样性和丰度的季节变化   总被引:1,自引:0,他引:1  
The objective of this study was to investigate the seasonal variations of ichthyoplankton diversity and abun-dance in the northern South China Sea based on the data collected during summer, winter and spring. In total, 95 taxa of larval fishes were identified. The greatest number of species was recorded in spring, followed by summer and winter. The number of species was distributed mainly in the coastal waters from the east of Leizhou Peninsula to the southeast of Hainan Island during the surveyed periods of summer and spring, but in the offshore waters during winter. The abundance of larval fish was lowest in winter, increased in spring, and reached the maximum in summer. High abundance of larval fish was generally restricted to coastal waters with the isobaths less than 50 m. Seasonal variations of larval fish richness, abundance and diversity index were significant (P〈0.001). Carangidae was the most common and abundant taxon in summer and winter, whileSardinella sp.,Thrissa mystax andLeiognathus sp. were dominant in spring. High diversity and abundance of larval fish might be attributed to increased temperature and coastal upwelling in spring and summer.  相似文献   

2.
On the basis of seasonal investigations at 23°30'~33°00'N,118°30'~128°00'E of the East China Sea during 1997~2000,dynamics on the density and diversity of Ostracoda was discussed.Results showed that totally 26 species were identified.The Ostracoda diversity was opposite to the change of its density in most seasons which reflected an uneven assignment of Ostracoda density among its different species.The Ostracoda density was 0.70 ind./m3 in spring,1.72 ind./m3 in summer,2.57 ind./m3 in autumn and 0.90 ind./m3 in winter.Euconchoecia chierchiae in spring and winter,Euconchoecia maimai in summer and Cypridina dentata in autumn were main dominant species in each season.The Ostracoda density did not show an obvious linear relationship with the hydrologic factors in summer and autumn,but was related to the surface salinity in spring and the surface temperature in winter.Its high density areas mainly distributed in the north offshore in all the seasons while in the south offshore in winter and in spring,and the south nearshore in summer and autumn,implied the zooplankton was a typical warm water animal,whose high density distribution in autumn were located in a similar position to Todarodes pacificus,Navodon Septentrionalis,Scomber japonicus and other fishes in the sea,so as to be an important indicator for fishing ground.The main species dominating in Ostracoda now are different from the species twenty years ago probably attributes to global warming.  相似文献   

3.
According to two cruises investigation information in summer and winter during 1998 and1999, the phosphorous concentration distribution and changes of summer and winter were discussed pri-marily in the South China Sea. The results show that the phosphate concentration of surface seawater insummer is distinctly lower than that in winter, averaging 0.04 μmol/dm3 in summer and 0.35 μmol/dm3 in winter. The organic phosphorous concentration of surface seawater in summer is higher than thatin winter, averaging 0.12μmol/dm3 in summer and 0.04 μmol/dm3 in winter respectively. The season-al changes of total phosphorus are similar to phosphate, averaging 0.22 μmol/dm3 in summer and 0.61μmol/dm3 in winter respectively. In vertical direction, phosphate, TDP and TP content are the lowestin upper 50 m water column, and increase in linearity rapidly with water depth, increasing slowly under500 m, reach to maximum about 1 000 m, then decrease slightly with water depth increasing. The ver-tical distribution is typical in summer, and there is small dispersed for phosphorus concentration for thesame depth of different stations. However, in winter there is a large disperse for phosphate, TDP andTP, specifically for phosphate at 200 m at which the concentration is maximum. This result indicatesthat there are large differences in hydrology and biology conditions that affect largely the chemical envi-ronment of the South China Sea. The organic phosphorus is the predominant in surface seawater of theSouth China Sea, but the inorganic phosphorus is the predominant in layers below depth of 150 m. Theorganic phosphorus concentration in deep water usually decreases with water depth increasing. The or-ganic phosphorus in summer is remarkably more than that in winter because of the strong biology activi-ties in summer.  相似文献   

4.
Phytoplankton growth rates and mortality rates were experimentally examined at 21 stations during the 2017 spring intermonsoon(April to early May) in the northern and central South China Sea(SCS) using the dilution technique, with emphasis on a comparison between the northern and central SCS areas which had different environmental factors. There had been higher temperature but lower nutrients and chlorophyll a concentrations in the central SCS than those in the northern SCS. The mean rates of phytoplankton growth(μ_0) and microzooplankton grazing(m) were(0.88±0.33) d~(–1) and(0.55±0.22) d~(–1) in the central SCS, and both higher than those in the northern SCS with the values of μ_0((0.81±0.16) d~(–1)) and m((0.30±0.09) d~(–1)), respectively.Phytoplankton growth and microzooplankton grazing rates were significantly coupled in both areas. The microzooplankton grazing impact(m/μ_0) on phytoplankton was also higher in the central SCS(0.63±0.12) than that in the northern SCS(0.37±0.06). The microzooplankton abundance was significantly correlated with temperature in the surface. Temperature might more effectively promote the microzooplankton grazing rate than phytoplankton growth rate, which might contribute to higher m and m/μ_0 in the central SCS. Compared with temperature, nutrients mainly affected the growth rate of phytoplankton. In the nutrient enrichment treatment,the phytoplankton growth rate(μn) was higher than μ_0 in the central SCS, suggesting phytoplankton growth in the central SCS was nutrient limited. The ratio of μ_0/μn was significantly correlated with nutrients concentrations in the both areas, indicating the limitation of nutrients was related to the concentrations of background nutrients in the study stations.  相似文献   

5.
On the basis of the four-season investigation in 23°30′~33°N and 118°30′~128°E of the East China Sea from 1997 to 2000, the seasonal distribution of Calanus sinicus was studied with aggregation intensity, regression contribution and other statistical methods. It was inferred that C. sinicus’s predominance presented from winter to summer, especially in spring and summer, because its dominance amounted to 0.62 and 0.29 respectively. The percent of its abundance in copepod abundance was 76.71% in summer, greater than 66.60% in spring, greater than 19.02% in winter, greater than 4.02% in autumn. The occurrence frequency in winter and spring was 83.08% and 93.89%, higher than that in summer and autumn, 76.71% and 73.87%. Compared with other dominant species of copepods, C. sinicus’s contribution to the copepod abundance was obviously greater than that of the other species in winter, summer and spring, but smaller in autumn. C. sinicus tended to have an aggregated distribution. The clumping index peaked in summer (50.19), followed in spring (19.60), declined in autumn (13.18) and was the lowest in winter (3.04). The abundance changed in different seasons and areas, relating to temperature but not salinity in spring and autumn, to salinity but not temperature in summer; to neither temperature nor salinity in winter. In spring and summer, its high abundance area was often located in the mixed water mass formed by the Taiwan Warm Current, the Huanghai Sea Cold Water Mass, the coastal water masses and the Changjiang Dilute Water. In spring and autumn, its abundance was affected by the warm current, as well as the runoff from continental rivers affected it in summer. It can be inferred that C. sinicus was adapted to wide salinity and temperature, as a euryhalinous and eurythermous species in the East China Sea.  相似文献   

6.
To study the water quality influenced by the anthropogenic activities and its impact on the phytoplankton diversity in the surface waters of Miaodao Archipelago, the spatiotemporal variations in phytoplankton communities and the environmental properties of the surface waters surrounding the Five Southern Islands of Miaodao Archipelago were investigated, based on seasonal field survey conducted from November 2012 to August 2013. During the survey, a total of 109 phytoplankton species from 3 groups were identified in the southern waters of Miaodao Archipelago, of which 77 were diatoms, 29 were dinoflagellates, and 3 were chrysophytes. Species number was higher in winter (73), moderate in autumn (70), but lower in summer (31) and spring (27). The species richness index in autumn (5.92) and winter (4.28) was higher than that in summer (2.83) and spring (1.41). The Shannon-Wiener diversity index was high in autumn (2.82), followed by winter (1.99) and summer (1.92), and low in spring (0.07). The species evenness index in autumn (0.46) and summer (0.39) was higher than that in winter (0.32) and spring (0.02). On the basis of principal component analysis (PCA) and redundancy analysis (RDA), we found that dissolved inorganic nitrogen (DIN) and chemical oxygen demand (COD) in spring, COD in summer, pH in autumn, and salinity and oil pollutant in winter, respectively, showed the strongest association with the distribution of phytoplankton diversity. The spatial heterogeneity of the southern waters of Miaodao Archipelago was quite obvious, and three zones, i.e., northeastern, southwestern and inter-island water area, were identified by cluster analysis (CA) based on key environmental variables.  相似文献   

7.
The sea surface height anomaly (SSHA) and geostrophic circulation in the South ChinaSea (SCS) are studied using TOPEX/POSE1DON (T/P) altimetry data. The SSHA, which is obtained after tidal correction based on the tidal results from T/P data, is predominated by seasonal alternating monsoons. The results reveal that the SSHA in the central part of the SCS is positive in spring and summer, but negative in autumn and winter. It is also found that the SSHA in the SCS can be approached with the sum of tidal constituents SA and SSA. The geostrophic circulations in the SCS are calculated according to sea surface dynamic topography, which is the sum of SSHA and mean sea surface height. It is suggested that the circulation in the upper layer of the SCS is generally cyclonic and notably western intensified during autumn and winter, while the western intensification is weak during spring and summer. It is also indicated that the Kuroshio intrudes into the northeastern SCS throuth the Luzon Strait in winter. But ther  相似文献   

8.
Samples were collected with a plankton net in the four seasonal cruises during 2006-2007 to study the seasonal variability of the zooplankton community in the southwest part of Huanghai Sea Cold Water Mass (HSCWM, Yellow Sea Cold Water Mass). The spatial and temporal variations of zooplankton species composition, biomass, abundance and biodiversity were examined. A total of 122 zooplankton species and 30 pelagic larvae were identified in the four cruises. Calanus sinicus and Aidanosagitta crassa were the most dominant species, and Themisto gaudichaudi and Euphausia pacifica were widely distributed in the HSCWM area. The spatial patterns of non-gelatinous zooplankton (removing the high water content groups) were similar to those of the total zooplankton biomass in autumn, but different significantly in the other three seasons. The seasonal means of zooplankton biomass in spring and summer were much higher than that in autumn and winter. The total zooplankton abundance averaged 283.5 ind./m~3 in spring (highest), 192.5 ind./m~3 in summer, 165.5 ind./m~3 in autumn and 65.9 ind./m~3 in winter (lowest), and the non-gelatinous groups contributed the most total abundance. Correlation analysis suggests that the non-gelatinous zooplankton biomass and abundance had a significant positive correlation in the whole year, but the relationship was insignificant between the total zooplankton biomass and abundance in spring and summer. The diversity index H of zooplankton community averaged 1.88 in this study, which was somewhat higher than historical results. Relatively low diversity in summer was related to the high dominance of Calanus sinicus, probably due to the strongest effect of the HSCWM in this season.  相似文献   

9.
Seasonal, interannual and interdecadal variations of monsoon over the South China Sea (SCS) directly influence the ocean circulation and the mass transport process, etc. , especially the changes of horizontal circulation pattern and upwelling area. These changes directly influence the nutrient transport and the photosynthesis of phytoplankton, which induce the change of the marine ecosystem in the SCS, including the change of marine primary production in this sea area. On the basis of climatic data for long-time series and primary production estimated by remote sensing, the multi-time scale variations of monsoon, seasonal and interannual variations of primary production, and the response of primary production to monsoon variations were analyzed. Furthermore, the spatio-temporal variations of primary production in different sea areas of the SCS and their relations to the monsoon variations were given. The results showed that the strong southwesterly prevailed over the SCS in summer whereas the vigorous northeasterly in winter. The seasonal primary production in the entire sea area of the SCS also produced a strong peak in winter and a suhpeak in summer. And the seasonal primary production distributions displayed different characteristics in every typical sea area. The variations of the annual and summer averaged primary production in the entire sea area of the SCS showed almost the same rising trend as the intensity of the summer monsoon. Especially for 1998, the summer monsoon reached almost the minimum in the past 54 a when the primary production was also found much lower than any other year ( 1999--2005 ). The responses of annual primary production to monsoon variation were displayed to different extent in different sea areas of the SCS ; especially it was better in the deep sea basin. Such research activities could be very important for revealing the response of marine ecosystem to the monsoon variations in the SCS.  相似文献   

10.
Saltwater intrusion is a serious environmental problem in the Zhujiang River Estuary(ZRE),which threatens the water supply of fifteen million people.The hydrological observations as well as meteorological and tidal forcing in the winter of 2007/2008 were analyzed to examine the saltwater intrusion in the ZRE.The observational results suggest that the maximum vertical difference of salinity can reach 10 in the Humen Channel during neap tide,but is very small in the Hengmen Channel.The vertically averaged salinity from time series stations during spring tide is higher than that during neap tide.A three-dimensional finite difference model was developed based on the environmental fluid dynamic code(EFDC) to study the mechanism of saltwater intrusion and salinity stratification in the ZRE.By analyzing the salt transport and the temporal variation of saltwater intrusion,the authors found that the net salt transport due to the estuarine circulation during neap tide was more than that during spring tide.This caused salt to advance more into the estuary during neap tide.However,saltwater intrusion was stronger during spring tide than that during neap tide because the spring-neap variation in salt transport was small relative to the total length of the saltwater intrusion.The physical mechanism causing this saltwater intrusion was investigated by a series of sensitivity experiments,in order to examine saltwater intrusion in response to river discharge and winds.The freshwater source was a dominant influencing factor to the saltwater intrusion and controlled salinity structure,vertical stratification and length of the saltwater intrusion.The prevailing northeast monsoon during winter could increase the saltwater intrusion in the ZRE.Though the southwest wind was unfavorable to saltwater intrusion during spring tide,it could increase stratification and saltwater intrusion during neap tide.  相似文献   

11.
对中国南海表层叶绿素a季节内变化的研究有助于深入认识其海洋特征,满足渔情预报等实际应用需求。利用卫星观测资料分析南海表层叶绿素a不同季节的季节内变化特征,结果表明南海表层叶绿素a季节内振荡强度冬季最高。冬季和春季的季节内振荡最强区域都位于吕宋岛西北侧海区,夏季和秋季振荡较强的区域偏向菲律宾群岛一侧。分析表明研究海区表层温度和表层叶绿素a 存在负相关,冬强夏弱,北强南弱。大部分海区海面高度和叶绿素a 相关性不显著,但南海东南边缘海区海面高度和叶绿素a在季节内存在正相关。冬季海盆尺度逆时针旋转的环流结构应是这些现象产生的原因。除南海东南边缘海区、海南岛东南海区和吕宋岛西侧海区之外,风应力大小和热通量均与叶绿素a 在季节内呈正相关。这显示非局地风场和海流等因素、海洋动力调整过程可能在吕宋海峡以西和南海东南边缘的表层叶绿素a 季节内变化中起到重要作用。  相似文献   

12.
东亚边缘海区浮游植物春华的纬向与年际变化   总被引:1,自引:1,他引:0  
Combined studies of latitudinal and interannual variations of annual phytoplankton bloom peak in East Asian marginal seas(17°–58°N, including the northern South China Sea(SCS), Kuroshio waters, the Sea of Japan and the Okhotsk Sea) are rarely. Based on satellite-retrieved ten-year(2003–2012) median timing of the annual Chlorophyll a concentration(Chl a) climax, here we report that this annual spring bloom peak generally delays from the SCS in January to the Okhotsk Sea in June at a rate of(21.20±2.86) km/d(decadal median±SD). Spring bloom is dominant feature of the phytoplankton annual cycle over these regions, except for the SCS which features winter bloom. The fluctuation of the annual peak timing is mainly within ±48 d departured from the decadal median peak date, therefore this period(the decadal median peak date ±48 d) is defined as annual spring bloom period. As sea surface temperature rises, earlier spring bloom peak timing but decreasing averaged Chl a biomass in the spring bloom period due to insufficient light is evident in the Okhotsk Sea from 2003 to 2012. For the rest of three study domains, there are no significant interannual variance trend of the peak timing and the averaged Chl a biomass. Furthermore this change of spring phytoplankton bloom timing and magnitude in the Okhotsk Sea challenges previous prediction that ocean warming would enhance algal productivity at high latitudes.  相似文献   

13.
本文基于MITgcm非静力数值模式,采用实际地形、层结和潮流强迫,开展南海北部内潮数值模拟敏感性试验,分析夏冬两个季节南海北部深层内潮的差异。结果显示在南海北部深层,冬季K1和M2内潮流速振幅比夏季强10.1%和44.7%。垂向模态分析结果进一步表明,尽管南海北部深层冬季第一模态内潮动能密度比夏季低15.5%,但第二和第三模态内潮则是冬季比夏季高约25.1%和33.2%,导致冬季深层流速的垂向剪切大于夏季,表明冬季较强的高模态内潮可能是冬季南海深层强混合的一个原因。  相似文献   

14.
基于1988-2017年高分辨率的欧洲中尺度天气预报中心再分析数据,本文对中国近海的低空大气波导进行了统计分析.结果表明:该海域整体大气波导概率为22%,其中悬空波导占60%以上;春季最容易发生大气波导,其次是夏季、秋季和冬季.区域时空分布上,中国近海大气波导特征具有明显的月变化和区域分布特征.大气波导发生概率北部海域...  相似文献   

15.
南海U形海疆国界线(简称南海U形线)是我国的南海国界线。该研究分析多源卫星遥感和GIS数据,系统研究南海U形海疆线水域的水深地形和环境生态要素,并重点分析2014年生态要素的季节变化,首次整体展现了南海U形线立体水深分布特征。根据海底地形的平缓、波峰、波谷和递增四大特征,将南海U形线分为东北、西北、东、西和南区5个区间。南海U形线总长大于4 000 km。西北区和南区的水深浅且变化平缓(<1 000 m),西区水深呈波峰分布(平均2 303 m),东区水深由南向北递增(>2 000 m);东北区水深最深且呈波谷分布(平均3 535 m)。南海U形线的5个区间,西北区与北部湾盆地、西区与越东断裂、南区与曾母盆地、东区与南海海槽、东北区与马尼拉海沟地形构造相吻合。研究发现季风对南海U形线5个区间海洋环境季节性变化有明显影响:西北区和东北区海表温度温差大,呈冬季最低夏季最高,混合层深度冬季最深春季最浅,海表流场和海表盐度季节变化小,但西北区海表叶绿素a浓度冬季爆发,其余季节呈对数分布,而东北区冬季区内中部略有增长;西区、南区和东区海表温度盐度季节变化小,海表风场和混合层深度冬季最强春季最弱,但海表叶绿素a浓度西区季节变化小,南区区内中部冬季增长明显,东区区内南部冬季小幅增长。西北区和南区(浅地形区)呈相似的季节分布。研究阐明了5个区间具有各自明显的区域性海洋环境特征:西北区海表温度和海表叶绿素a浓度的季节变化最大、西区混合层深度季节变化最大、南区海表流场季节变化最大、东区海表盐度季节变化最大、东北区风场变化大但海表叶绿素a浓度季节变化小。研究显示,南海U形线上的台风路径时空分布南北差异大,东西不均。1945—2016年共604个台风跨过南海U形线,年均8个,路径集中在东北、西北、东3个区,112.3°E以东台风537个,112.3°E以西415个。南海U形线东北区的生态环境受台风"风泵效应"影响最大。1991—2000年为台风多发期,跨线台风年均达11个。研究提出的南海U形海疆线5区间分法,具有科学意义和实践指导作用。  相似文献   

16.
Based on a two-level nested model from the global ocean to the western Pacific and then to the South China Sea(SCS), the high-resolution SCS deep circulation is numerically investigated. The SCS deep circulation shows a basin-scale cyclonic structure with a strong southward western boundary current in summer(July), a northeastsouthwest through-flow pattern across the deep basin without a western boundary current in winter(January),and a transitional pattern in spring and autumn. The sensitivity ...  相似文献   

17.
南海北部表层颗粒有机碳的季节和年际变化遥感分析   总被引:1,自引:1,他引:0  
海洋颗粒有机碳(POC)是海洋固碳的一个关键参数。为了研究南海北部陆架及海盆表层POC浓度的时空分布特征以及变化趋势,本文利用2009-2011年4个季节的实测数据,对NASA发布的MODIS/AQUA卫星月平均POC遥感产品,进行了验证和校正;并利用校正后的遥感数据分析了2003-2014年POC的时空分布特征和变化趋势。发现POC遥感产品与南海北部实测数据具有较好的线性关系(R2=0.72),但存在系统性偏高,需利用实测数据对遥感数据进行区域性校正。分析校正后的遥感数据发现,南海北部陆架POC浓度较高,平均为(33.34±8.02)mg/m3;吕宋海峡西南海域浓度较低,平均为(29.25±6.20)mg/m3;中央海盆区浓度最低,平均为(27.02±4.84)mg/m3。春夏季POC浓度较低,最低值一般出现在5月,冬季(12月至翌年1月)POC浓度达到最高。利用2003-2014年的长时间序列遥感叶绿素(Chl a)和海表温度(SST)、混合层深度(MLD)模式数据,以及实测数据对南海北部POC浓度的影响机制进行了分析。发现POC与Chl a在秋冬呈现较好的相关关系(R2=0.51),但在春夏季较离散,表明秋冬季生物作用对POC影响较大。2003-2014年期间,POC与Chl a、MLD及SST存在明显的年际变化,但并没有显著的上升或下降趋势。  相似文献   

18.
文章利用2012年冬季南海西北部的航次探空资料, 研究了寒潮过程和海洋锋面对大气波导特征演变的共同影响。文中观测发现, 航次期间的大气波导以悬空波导为主, 平均波底高度约738.64m, 平均厚度约185.17m, 平均强度10.21M单位。观测前期, 天气形势稳定, 东北季风较弱, 在锋面暖水区一侧的悬空波导较为深厚, 且高度较低。其主要成因是大气边界层顶部925hPa至850hPa高度左右存在深厚的逆温层, 且具有显著的日变化特征。航次中期的寒潮过程导致东北季风大幅增强, 使得大气边界层顶部的逆温层被破坏, 从而导致悬空波导显著变薄变弱。而锋面冷水区一侧, 低水温抑制湍流发展导致大气修正折射率(M)的负梯度扰动较弱, 较难形成稳定且有一定强度的波导层, 且无显著日变化。但当东南暖湿气流覆盖锋面冷水区上空时, 容易形成较稳定的表面波导。  相似文献   

19.
基于西北太平洋Argo数据资料,利用参数化方法,从Argo温盐剖面数据中提取出一系列特征动力参数,定量分析黑潮延伸体海域水体的三维热结构的时-空变化特征、季节变化特征及其与地形和环流的关系.结果表明:黑潮延伸体海域水体的海表面温度存在着明显的冬春弱,夏秋强的季节变化特征,冬季平均海表面温度为15℃,夏季则达到了27℃;...  相似文献   

20.
It is demonstrated that weakened wind mixing and strengthened water column stratification resulted in the anomalously low sea surface chlorophyll in the northern South China Sea during the 1997–1998 El Niño event. Remotely sensed sea surface temperature, wind and chlorophyll, which were validated by shipboard observations at the SouthEast Asian Time-series Study (SEATS) station (18°N, 116°E) in the northern South China Sea (SCS) provided the basis for this study. During the 1997–1998 winter at the SEATS station, the sea surface temperature was elevated by about 2 °C above the climatological mean, while the wind speed of the northeast monsoon was reduced from a climatological mean of 9.4 to 6.8 m/s. The concentration of surface chlorophyll-a dropped from 0.2 to 0.1 mg/m3. The monthly area-averaged integrated primary production estimated for the northern SCS area (112–119°E, 15–21°N) was reduced by about 40% of the normal winter value. Under the anomalously high sea surface temperature and weak monsoon, the mixed-layer depth would have been reduced from an average of 65 to 45 m and the nutrients in the mixed layer would have been reduced by half, according to observations at the SEATS station in more recent years. During the 1997–1998 El Niño event, the onset of warming in the northern SCS lagged behind that in the eastern equatorial Pacific by about 5 months and lingered for 11 months. This course of change resembled that of the western Pacific warm pool region. However, contrary to the northern SCS, the sea surface chlorophyll was enhanced in the warm pool region during the event, probably mainly because of the uplifted nutricline. Unlike the eastern equatorial Pacific, the dramatic recovery of biological production did not happen in the SCS in the summer of 1998. These distinctive biogeochemical responses reflect fundamental differences between the SCS and the equatorial Pacific in terms of upper water column dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号