首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— Sandstones are a common habitat for lithophytic microorganisms, including cryptoendoliths. We describe laboratory experiments on the colonization of impact metamorphosed sandstones from the Haughton impact structure, Canadian High Arctic. Colonization experiments with the coccoid cyanobacterium, Chroococcidiopsis sp. and the motile gram‐positive bacterium Bacillus subtilis, show that, in contrast to initially low porosity crystalline target rocks, which can become more porous as a result of impact bulking, by closing pore spaces the sedimentary cryptoendolithic habitat can be impoverished by impact. However, the heterogeneous distribution of collapsed pores, melt phases, and subsequent recrystallization, results in heterogeneous colonization patterns. Cavities and vesicles formed during melting can yield new habitats for both cryptoendoliths and chasmoendoliths, manifested in the natural cryptoendolithic colonization of shocked sandstones. By contrast, post‐impact thermal annealing and recrystallization of impact melt phases destroys the cavities and vesicles. In extreme cases, complete recrystallization of the rock fabric makes the material suitable only for epilithic, and potentially hypolithic, colonists. These experiments further our understanding of the influence of the target lithology on the effects of asteroid and comet impacts on habitats for lithophytic microorganisms.  相似文献   

2.
Abstract— Asteroid and comet impacts on Earth are commonly viewed as agents of ecosystem destruction, be it on local or global scales. However, for some microbial communities, impacts may represent an opportunity for habitat formation as some substrates are rendered more suitable for colonization when processed by impacts. We describe how heavily shocked gneissic crystalline basement rocks exposed at the Haughton impact structure, Devon Island, Nunavut, Arctic Canada, are hosts to endolithic photosynthetic microorganisms in significantly greater abundance than lesser‐shocked or unshocked gneisses. Two factors contribute to this enhancement: (a) increased porosity due to impact fracturing and differential mineral vaporization, and (b) increased translucence due to the selective vaporization of opaque mineral phases. Using biological ultraviolet radiation dosimetry, and by measuring the concentrations of photoprotective compounds, we demonstrate that a covering of 0.8 mm of shocked gneiss can provide substantial protection from ultraviolet radiation, reducing the inactivation of Bacillus subtilis spores by 2 orders of magnitude. The colonisation of the shocked habitat represents a potential mechanism for pioneer microorganisms to invade an impact structure in the earliest stages of post‐impact primary succession. The communities are analogous to the endolithic communities associated with sedimentary rocks in Antarctica, but because they occur in shocked crystalline rocks, they illustrate a mechanism for the creation of microbial habitats on planetary surfaces that do not have exposed sedimentary units. This might have been the case on early Earth. The data have implications for the microhabitats in which biological signatures might be sought on Mars.  相似文献   

3.
In the paper two chosen features of the comet 103P/Hartley 2 are studied. The first one are ‘cometary geysers’ which have been recorded by the camera on Deep Impact spacecraft. The numerical calculations related with this phenomenon have been carried out for large number of values of probable cometary characteristics. Our calculations confirm the assumption what also has been observed by NASA's scientists that the jets of carbon dioxide from the geysers are able to lift large chunks of water ice from the comet. The second discussed feature of the comet 103P/Hartley 2 is the lack of impact holes on the surface of its nucleus. The expected rate of impact holes on the surface of the nucleus of 103P/Hartley 2 is discussed. These holes could be the product of impacts between this comet and other small bodies orbiting in the main asteroid belt. The probability of such impacts, the total number of expected perceptible holes and changes in the luminosity of the comet caused by collisions are examined. We conclude that indeed the number of visible holes on its surface should be negligible (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
Comet 9P/Tempel 1, the target of the Deep Impact mission, has been intensively observed for a long time period before the encounter. Pre-impact ground based monitoring of the comet was an important prerequisite for the success of the first space experiment in which a comet is treated by an artificial impact. It provided the background data needed to disentangle the features caused by the impact from variations caused by the natural activity of the comet. In this paper we present results from the ESO-monitoring of the comet, conducted in the thermal infrared and optical spectral ranges during several months before the Deep Impact encounter with the comet.  相似文献   

5.
Abstract— The thermal and shock histories of ureilites can be divided into four periods: 1) formation, 2) initial shock, 3) post‐shock annealing, and 4) post‐annealing shock. Period 1 occurred ?4.55 Ga ago when ureilites formed by melting chondritic material. Impact events during period 2 caused silicate darkening, undulose to mosaic extinction in olivines, and the formation of diamond, lonsdaleite, and chaoite from indigenous carbonaceous material. Alkali‐rich fine‐grained silicates may have been introduced by impact injection into ureilites during this period. About 57% of the ureilites were unchanged after period 2. During period 3 events, impact‐induced annealing caused previously mosaicized olivine grains to become aggregates of small unstrained crystals. Some ureilites experienced reduction as FeO at the edges of olivine grains reacted with C from the matrix. Annealing may also be responsible for coarsening of graphite in a few ureilites, forming euhedral‐appearing, idioblastic crystals. Orthopyroxene in Meteorite Hills (MET) 78008 may have formed from pigeonite by annealing during this period. The Rb‐Sr internal isochron age of ?4.0 Ga for MET 78008 probably dates the annealing event. At this late date, impacts are the only viable heat source. About 36% of ureilites experienced period 3 events, but remained unchanged afterwards. During period 4, ?7% of the ureilites were shocked again, as is evident in the polymict breccia, Elephant Moraine (EET) 83309. This rock contains annealed mosaicized olivine aggregates composed of small individual olivine crystals that exhibit undulose extinction. Ureilites may have formed by impact‐melting chondritic material on a primitive body with heterogeneous O isotopes. Plagioclase was preferentially lost from the system due to its low impedance to shock compression. Brief melting and rapid burial minimized the escape of planetary‐type noble gases from the ureilitic melts. Incomplete separation of metal from silicates during impact melting left ureilites with relatively high concentrations of trace siderophile elements.  相似文献   

6.
Impact craters on the lunar surface have a variety of morphometric characteristics that are very useful in understanding the evolutionary history of lunar landscape morphologies. Based on digital elevation model data and photographs from China’s Chang’E-1 lunar orbiter, we develop morphologic parameters and quantitative methods for presenting the morphometric characteristics of impact craters, analyzing their relational distribution, and estimating the relative order of their formation. We also analyze features in profile where craters show signs of having formed on the edge of previously existing craters to show that superimposed impacts affect morphologic reconstructions. As a result, impact craters have significant effects on the reconstruction of ancient topography and the estimation of relative formation ages.  相似文献   

7.
The possibility of impacts between comets belonging to the Jupiter Family and other small bodies orbiting in the main asteroid belt, and the consequences in relation to cometary activity are discussed. The probability of such events and the jumps in cometary brightness caused by impacts are examined. The results are compared with the results of the Deep Impact mission to Comet 9P/Tempel 1. The main conclusion of this paper is in agreement with previous findings, namely that an impact mechanism cannot be the main cause of the outburst activity of comets.  相似文献   

8.
Abstract— Impact cratering is an important geological process on the terrestrial planets and rocky and icy moons of the outer solar system. Impact events generate pressures and temperatures that can melt a substantial volume of the target; however, there remains considerable discussion as to the effect of target lithology on the generation of impact melts. Early studies showed that for impacts into crystalline targets, coherent impact melt rocks or “sheets” are formed with these rocks often displaying classic igneous structures (e.g., columnar jointing) and textures. For impact structures containing some amount of sedimentary rocks in the target sequence, a wide range of impact‐generated lithologies have been described, although it has generally been suggested that impact melt is either lacking or is volumetrically minor. This is surprising given theoretical constraints, which show that as much melt should be produced during impacts into sedimentary targets. The question then arises: where has all the melt gone? The goal of this synthesis is to explore the effect of target lithology on the products of impact melting. A comparative study of the similarly sized Haughton, Mistastin, and Ries impact structures, suggests that the fundamental processes of impact melting are basically the same in sedimentary and crystalline targets, regardless of target properties. Furthermore, using advanced microbeam analytical techniques, it is apparent that, for the structures under consideration here, a large proportion of the melt is retained within the crater (as crater‐fill impactites) for impacts into sedimentary‐bearing target rocks. Thus, it is suggested that the basic products are genetically equivalent but they just appear different. That is, it is the textural, chemical and physical properties of the products that vary.  相似文献   

9.
We show that plowing of the lunar and mercurian regoliths by dense meteoroid swarms (the remnants of degassed comet nuclei) can be considered as the most probable mechanism of swirl formation. Frequently discussed mechanical and thermal effects of coma gas in cometary encounters with the Moon or Mercury are shown to be negligible as compared to those of the impact of a compact cometary nucleus. The result of such an impact does not differ substantially from that of denser impactors, so impacts of comets with compact nuclei can hardly be the mechanism of swirl formation. On the other hand, the projectile swarm consisting of numerous fragments of previously disrupted cometary nucleus produces many small craters and ejecta in a large area. The particles of the ejecta go through numerous collisions with each other. This may result in formation of the characteristic swirl pattern and dust component of the regolith. This can also decrease surface micro-roughness, which is consistent with photometric observations. Regolith plowing to depths up to a few meters excavates the immature regolith to the surface but cannot noticeably change the initial chemical composition of the upper layers in the area of swarm fall. This is generally in agreement with the results obtained from Clementine spectral data. Swirls are expected to be more numerous on Mercury due to more frequent swarm encounters and more dense clouds of debris in the vicinity of the Sun.  相似文献   

10.
Beech  Martin  Gauer  Kai 《Earth, Moon, and Planets》2000,88(4):211-221
We have produced top ten ranked lists of impact velocity, mainbelt asteroid region dwell times and impact probabilities for a selection of short period comets. The comet with the combined highest ranking with respect to impact probability and impact velocity is Comet C/1766 G1 Helfenzrieder. Since it is not clear that this comet still exists, the highest ranked, presently active, comet with respect to the likelihood of suffering impacts from meter-sized objects while in the main belt asteroid region is Comet 28P/Neujmin 1. We find no evidence to support the existence of a distinctive sub-set of the short period comets liable to show repeated outburst or splitting behavioursdue to small body, meter-sized, asteroid impacts. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
Abstract– Meteorite impacts, one of the most ubiquitous processes in the solar system, have the ability to destroy as well as create habitats for life. The impact process can increase the translucency and porosity of the target substrate, as well as mobilize biologically relevant elements within the substrate. For endolithic organisms, this process has important implications, especially in extreme environments where they are forced to seek refuge in the interior of rocks. Here, we show that unshocked target rocks and rocks that have experienced pressures up to about 80 GPa from the Haughton impact structure, Devon Island, Canada, possess a small, but discernible change in bulk chemistry within the major oxide analysis. However, changes in the distribution of elements did occur with increasing shock level for both the sedimentary and crystalline target. Both the crystalline and sedimentary target rocks contain significant amounts of glasses at higher shock levels (up to about 95% by volume), which would improve the availability of these elements to potential microbial endoliths as glasses are more easily dissolved by organic acids. The implication that impact events do not impoverish their capacity to serve as a “substrate” through volatilization is important with respect to analogous impact structures on Mars. After the deleterious effects of the direct meteorite impact, any microorganisms on Mars would have benefited from the input of heat, the mobilization of a possible frozen groundwater system, as well as increased translucency, porosity, and trace nutrient availability of the target substrate.  相似文献   

12.
Abstract— Impact cratering is a ubiquitous geological process on the terrestrial planets. Meteorite impact craters are the most visible product of impact events, but there is a growing recognition that large aerial bursts or airbursts should occur relatively frequently throughout geological time. In this contribution, we report on an unusual impact glass‐the Dakhleh Glass (DG)–which is distributed over an area of ?400 km 2of the Dakhleh Oasis, Egypt. This region preserves a rich history of habitation stretching back to over 400,000 years before the emergence of Homo sapiens. We report on observations made during recent fieldwork and subsequent analytical analyses that strengthen previous suggestions that the DG formed during an impact event. The wide distribution and large size of DG specimens (up to ?50 cm across), the chemistry (e.g., CaO and Al2O3 contents up to ?25 and ?18 wt, respectively), the presence of lechatelierite and burnt sediments, and the inclusion of clasts and spherules in the DG is inconsistent with known terrestrial processes of glass formation. The age and other textural characteristics rule out a human origin. Instead, we draw upon recent numerical modeling of airbursts to suggest that the properties of DG, coupled with the absence of a confirmed crater, can best be explained by melting of surficial sediments as a result of a large airburst event. We suggest that glass produced by such events should, therefore, be more common in the rock record than impact craters, assuming that the glass formed in a suitable preserving environment.  相似文献   

13.
The SWAN instrument observed the coma of Comet 9P/Tempel 1 at Lyman alpha around the Deep Impact event. From these observations, a water production rate profile for 3 weeks after the impact was derived. The comet could not be identified in images taken before the impact because of the relatively low production rates. The most important feature of the profile is that the production rate increases by about a factor of two more than a week after the impact. This is too late to be directly caused by the impact plume itself. Although it is not impossible that the impact triggered a resurfacing event, the comet is known to show sudden outburts, and the elevated production rate is similar to what has been reported on previous apparitions.  相似文献   

14.
The paper considers results of collisions between comets and meteoroids. We re‐discuss the five different approaches to estimate the sizes of holes created during such collisions. The results of the Deep Impact and the Stardust‐NExT missions to comet 9P/Temple 1 are applied to the estimation of these methods. We use the observed amount of ejected mass, the jump of brightness of the comet 9P/Tempel 1 as well as the diameter of the excavated crater. In the paper the simple way of estimation of impact consequences by use of the conception of the fragmentation energy of comet is also discussed. The numerical calculations were carried out for reasonable assumed values of a large range of cometary characteristics. The main conclusion of this paper confirms a general presumption that the main factor which determines the size of the impact crater on the comet 9P/Tempel 1 is the kinetic energy of impactor and strength or fragmentation energy of cometary material. In the considered case the gravitation of a comet has a minor meaning (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
The meteoroid streams associated to short-period comets 9P/Tempel 1 (the target of the Deep Impact mission). and 67P/Churyumov-Gerasimenko (the target of the Rosetta mission) are studied. Their structure is overwhelmingly under the control of Jupiter and repeated relatively close encounters cause a reversal of the direction of the spatial distribution of the stream relative to the comet* an initial stream trailing the comet as usually seen eventually collapses, becomes a new stream leading the comet and even splits into several components. Although these two comets do not produce meteor showers on Earth, this above feature shows that meteor storms can occur several years before the perihelion passage of a parent body.  相似文献   

16.
The satellite impact interpretation of the surface distribution of lunar maria is presented according to Barricelli and Metcalfe (1969). It is emphasized that the formation of molten rock (lava) which, according to the Apollo 11 findings, seems to have been the origin of the material of which maria are composed, can be the result of heat developed by the impacts which created the respective maria (Gilbert 1893) and does not necessarily imply a volcanic or internal origin of this material.The distribution of mascons and some of its possible interpretations are discussed.Present address: Oslo Universitet, Dept. of Mathematics, Blindern, Norway.  相似文献   

17.
The Puchezh‐Katunki impact structure, 40–80 km in diameter, located ~400 km northeast of Moscow (Russia), has a poorly constrained age between ~164 and 203 Ma (most commonly quoted as 167 ± 3 Ma). Due to its relatively large size, the Puchezh‐Katunki structure has been a prime candidate for discussions on the link between hypervelocity impacts and extinction events. Here, we present new 40Ar/39Ar data from step‐heating analysis of five impact melt rock samples that allow us to significantly improve the age range for the formation of the Puchezh‐Katunki impact structure to 192–196 Ma. Our results also show that there is not necessarily a simple relationship between the observed petrographic features of an impact melt rock sample and the obtained 40Ar/39Ar age spectra and inverse isochrons. Furthermore, a new palynological investigation of the postimpact crater lake sediments supports an age significantly older than quoted in the literature, i.e., in the interval late Sinemurian to early Pliensbachian, in accordance with the new radioisotopic age estimate presented here. The new age range of the structure is currently the most reliable age estimate of the Puchezh‐Katunki impact event.  相似文献   

18.
The relationship between “punctuated equilibrium” and “impact crises” is critically examined in the light of our present knowledge of asteroids and comets. It turns out that the emphasis on relatively narrow epochs associated with occasional “NEO” impacts is probably misplaced. Rather priority should be given to the wider and more frequent epochs associated with multiple “NEO” debris impacts which result in so-called “punctuational crises” afflicting the planets. These comprise the global coolings, super-Tunguska events and generally enhanced fireball flux produced by the larger orbital debris whenever an active, dormant or dead comet fragments and produces a trail. Taken as a whole and in conjunction with the target, the response function is inevitably complex. Nevertheless we broadly expect that the strength of a punctuational crisis will vary as the progenitor comet mass, the inverse dispersion of its debris and the inverse delay since fragmentation. The encounter of P/SL-9 with Jupiter may be taken as representing an extreme punctuational crisis where the dispersion and delay were exceptionally small. The more familiar crises affecting the Earth with less extreme values of dispersion and delay, which have resulted in civilization being disturbed a good many times during recent millennia, are no less important however. Indeed, the next such threat to civilization ostensibly has a roughly 1 in 4 lifetime chance. Any support for the Spaceguard programme which detracts from consideration of these punctuational crises, whatever their strength, would seem now to be peculiarly wide of the mark.  相似文献   

19.
This work is dedicated to the application to 67P/Churyumov-Gerasimenko of a new quasi-3D approach for non-spherically shaped comet nuclei with the aim to interpret the current activity of the comet in terms of initial characteristics and to predict shape and internal stratification evolution of the nucleus. The model is applied to differently shaped nuclei taking into account the characteristics of Comet 67P/Churyumov-Gerasimenko deduced from observations. We focus our attention on the combined effects that shapes and obliquity have on the comet surface and sub-surface evolution. We discuss the results in terms of activity, local dust mantle formation and disruption, erosion of the surface and internal stratigraphy.The results show that differently shaped nuclei can have different internal structures leading to different activity patterns and behaviors. Our calculations have shown that local variations in the dust and gas fluxes can be induced by the nucleus shape. The distribution of “active” areas on Comet 67P/Churyumov-Gerasimenko is different because of different shapes, reflecting the illumination conditions on the surface. These shapes can influence the structure of the inner coma, but the coma far away from the nucleus is only marginally affected by the nucleus shape. However, different comet behaviors can arise from differently shaped comet nuclei, especially in terms of local activity, surface and sub-surface characteristics and properties. The water flux local distribution is the most influenced by the shape as it is directly linked to the illumination. Irregular shapes have large shadowing effects that can result in activity patterns on the comet surface.The effects of different pole directions are discussed to see the relations with the nucleus activity and internal structure. It is shown that the orientation of the rotation axis plays a strong role on the surface evolution of 67P/Churyumov-Gerasimenko, determining seasonal effects on the fluxes. The activity of the comet changes greatly with the nucleus obliquity leading to pre-post-perihelion differences in the activity and seasonal effects. The effects of the dust deposition and crust formation on the cometary activity have also been simulated and are discussed with respect to 67P/Churyumov-Gerasimenko observations. The dust mantling is also strongly obliquity dependent, with different surface distributions of the dust-covered regions according to the different comet pole orientations. Finally, we show that our model can reproduce the fluxes behavior near perihelion in terms of amplitude and asymmetry, and we estimate 20% of the illuminated surface to be active.  相似文献   

20.
Abstract— We have developed a Web‐based program for quickly estimating the regional environmental consequences of a comet or asteroid impact on Earth ( http:www.lpl.arizona.eduimpacteffects ). This paper details the observations, assumptions and equations upon which the program is based. It describes our approach to quantifying the principal impact processes that might affect the people, buildings, and landscape in the vicinity of an impact event and discusses the uncertainty in our predictions. The program requires six inputs: impactor diameter, impactor density, impact velocity before atmospheric entry, impact angle, the distance from the impact at which the environmental effects are to be calculated, and the target type (sedimentary rock, crystalline rock, or a water layer above rock). The program includes novel algorithms for estimating the fate of the impactor during atmospheric traverse, the thermal radiation emitted by the impact‐generated vapor plume (fireball), and the intensity of seismic shaking. The program also approximates various dimensions of the impact crater and ejecta deposit, as well as estimating the severity of the air blast in both crater‐forming and airburst impacts. We illustrate the utility of our program by examining the predicted environmental consequences across the United States of hypothetical impact scenarios occurring in Los Angeles. We find that the most wide‐reaching environmental consequence is seismic shaking: both ejecta deposit thickness and air‐blast pressure decay much more rapidly with distance than with seismic ground motion. Close to the impact site the most devastating effect is from thermal radiation; however, the curvature of the Earth implies that distant localities are shielded from direct thermal radiation because the fireball is below the horizon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号