首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
To constrain the origins of meteoritic nanodiamonds, the abundance ratios of stable C isotopes in acid residues from the carbonaceous chondritic meteorite Allende CV3 were measured using coordinated atom‐probe tomography (APT) and transmission electron microscopy (TEM). We combined our data with previously published APT data. A statistical analysis of this combined data set suggests an upper bound of 1 in 102 on the subpopulation that could have a large isotopic enrichment in 13C relative to 12C, consistent with the possible detection by secondary ion mass spectrometry of a similar enrichment in a 1 in 105 fraction, abundant enough to account for the Xe‐HL anomalous isotopic component carried by the acid residues. Supernovae are believed to be the source of Xe‐HL, leading to the mystery of why all other supernova minerals do not carry Xe‐HL. The lack of Xe‐HL in low‐density disordered supernova graphite suggests that the isotopically anomalous component is the nanodiamonds, but the disordered C in the residue is not ruled out. We discuss possible origins of the disordered C and implications of our results for proposed formation scenarios for nanodiamonds. At least 99% of the meteoritic acid residue exhibits no unambiguous evidence of presolar formation, although production with solar isotope ratios in asymptotic giant branch stars is not ruled out. Comparison of TEM and APT results indicates that a minority of the APT reconstructions may preferentially sample disordered C rather than nanodiamonds. If this is the case, a presolar origin for a larger fraction of the nanodiamonds remains possible.  相似文献   

2.
Photoluminescence spectra show that silicon impurity is present in lattice of some nanodiamond grains (ND) of various chondrites as a silicon‐vacancy (SiV) defect. The relative intensity of the SiV band in the diamond‐rich separates depends on chemical composition of meteorites and on size of ND grains. The strongest signal is found for the size separates enriched in small grains; thus, confirming our earlier conclusion that the SiV defects preferentially reside in the smallest (≤2 nm) grains. The difference in relative intensities of the SiV luminescence in the diamond‐rich separates of individual meteorites are due to variable conditions of thermal metamorphism of their parent bodies and/or uneven sampling of nanodiamond populations. Annealing of separates in air eliminates surface sp2‐carbon; consequently, the SiV luminescence is enhanced. Strong and well‐defined luminescence and absorption of the SiV defect is a promising feature to locate cold (<250 °C) nanodiamonds in space.  相似文献   

3.
Abstract— A series of experiments carried out by Koscheev et al. (1998, 2001, 2004, 2005) showed that the bimodal release of heavy noble gases from meteoritic nanodiamonds can be reproduced by a single implanted component. This paper investigates the implications of this result for interpreting the noble gas compositions of meteoritic nanodiamonds and for their origin and history. If the bimodal release exhibited by meteorite diamonds reflects release of the P3 noble gas component, then the composition inferred for the pure Xe‐HL end member changes slightly, the excesses of heavy krypton isotopes that define Kr‐H become less extreme, evidence appears for a Kr‐L component, and the nucleosynthetic contribution to argon becomes much smaller. After correction for cosmogenic neon inherited from the host meteorites, the neon in presolar diamonds shows evidence for pre‐irradiation, perhaps in interstellar space, and a nucleosynthetic component perhaps consistent with a supernova source. After a similar correction, helium also shows evidence for presolar irradiation and/or a nucleosynthetic component. For the case of presolar irradiation, due to the small size of the diamonds, a large entity must have been irradiated and recoiling product nuclei collected by the nanodiamonds. The high 3He/21Ne ratio (?43) calls for a target with a (C + O)/heavier‐element ratio higher than in chondritic abundances. Bulk gas + dust (cosmic abundances) meet this criteria, as would solids enriched in carbonaceous material. The long recoil range of cosmogenic 3He argues against a specific phase. The excess 3He in presolar diamonds may represent trapped cosmic rays rather than cosmogenic 3He produced in the vicinity of the diamond crystals.  相似文献   

4.
Abstract– We report Mg‐Al and Ca‐Ti isotopic data for meteoritic nanodiamonds separated from the Allende CV3 and Murchison CM2 meteorites. The goal of this study was to search for excesses in 26Mg and 44Ca, which can be attributed to the in situ decay of radioactive and now extinct 26Al and 44Ti, respectively. Previous work on presolar SiC and graphite had shown that 26Al/27Al and 44Ti/48Ti ratios in presolar grains can be used to discriminate between different types of stellar sources. Aluminum and Ti concentrations are low in the meteoritic nanodiamonds of this study. Murchison nanodiamonds have higher Al and Ti concentrations than the Allende nanodiamonds. This can be attributed to contamination and the presence of presolar SiC in the Murchison nanodiamond samples. 26Mg/24Mg and 44Ca/40Ca ratios are close to normal in Allende nanodiamonds with upper limits on the initial 26Al/27Al and 44Ti/48Ti ratios of approximately 1 × 10?3. These ratios are factors of 10–1000 and, respectively, 1–1000 lower than those of presolar SiC and graphite grains from supernovae. The 26Al/27Al and 44Ti/48Ti data for nanodiamonds are compatible with an asymptotic giant branch star or solar system origin, but not with a supernova origin of a major fraction of meteoritic nanodiamonds. The latter possibility cannot be excluded, though, as the diamond separates may contain significant amounts of contaminating Al and Ti, which would lower the inferred 26Al/27Al and 44Ti/48Ti ratios considerably.  相似文献   

5.
Atom‐probe tomography (APT) is currently the only analytical technique that, due to its spatial resolution and detection efficiency, has the potential to measure the carbon isotope ratios of individual nanodiamonds. We describe three different sample preparation protocols that we developed for the APT analysis of meteoritic nanodiamonds at sub‐nm resolution and present carbon isotope peak ratios of meteoritic and synthetic nanodiamonds. The results demonstrate an instrumental bias associated with APT that needs to be quantified and corrected to obtain accurate isotope ratios. After this correction is applied, this technique should allow determination of the distribution of 12C/13C ratios in individual diamond grains, solving the decades‐old question of the origin of meteoritic nanodiamonds: what fraction, if any, formed in the solar system and in presolar environments? Furthermore, APT could help us identify the stellar sources of any presolar nanodiamonds that are detected.  相似文献   

6.
Abstract— ‐The elemental and isotopic abundances of Te and Pd have been measured by thermal ionization mass spectrometry in a purified sample of interstellar nanodiamonds from the Allende meteorite, after combustion of the diamonds in an oxygen plasma. Small positive anomalies were found in 128Te (4.0 ± 1.5 %0) and 130Te (9.3 ± 2.8 %0) from three analyses of the Allende nanodiamond sample EB, and in 110Pd (9.4 ± 5.7 %0) from two analyses of the same sample. No other anomalies of a significant nature were found in either Te or Pd. These results are consistent with the neutron burst model (Meyer et al., 2000), and the r‐process based rapid separation model of Ott (1996) in that 128, 130Te and 110Pd are enhanced relative to their solar abundances. However, in the framework of the neutron burst model, some separation between stable products and radioactive precursors may be required in order to be consistent with the full data set of Te isotopes. In the framework of the rapid separation scenario, our data suggests a separation time of approximately 4000 s, based on the magnitudes of the precursor life‐times for 128Te and 130Te. The elemental abundance ratio Te‐H/Xe‐H agrees with the prediction of the rapid separation model, provided little fractionation occurred during trapping of the exotic components by the diamonds, but differs significantly from expectations based on the neutron burst model. Differences in the inferred 128Te/130Te ratio between our work and that of Richter et al. (1998) point to the need for further investigations.  相似文献   

7.
Abstract— MacAlpine Hills (MAC) 87300 and 88107 are two unusual carbonaceous chondrites that are intermediate in chemical composition between the CO3 and CM2 meteorite groups. Calcium‐aluminum‐rich inclusions (CAIs) from these two meteorites are mostly spinel‐pyroxene and melilite‐rich (Type A) varieties. Spinel‐pyroxene inclusions have either a banded or nodular texture, with aluminous diopside rimming Fe‐poor spinel. Melilite‐rich inclusions (Åk4–42) are irregular in shape and contain minor spinel (FeO <1 wt%), perovskite and, more rarely, hibonite. The CAIs in MAC 88107 and 87300 are similar in primary mineralogy to CAIs from low petrologic grade CO3 meteorites but differ in that they commonly contain phyllosilicates. The two meteorites also differ somewhat from each other: melilite is more abundant and slightly more Al‐rich in inclusions from MAC 88107 than in those from MAC 87300, and phyllosilicate is more abundant and Mg‐poor in MAC 87300 CAIs relative to that in MAC 88107. These differences suggest that the two meteorites are not paired. The CAI sizes and the abundance of melilite‐rich CAIs in MAC 88107 and 87300 suggests a genetic relationship to CO3 meteorites, but the CAIs in both have suffered a greater degree of aqueous alteration than is observed in CO meteorites. Aluminum‐rich melilite in CAIs from both meteorites generally contains excess 26Mg, presumably from the in situ decay of 26Al. Although well‐defined isochrons are not observed, the 26Mg excesses are consistent with initial 26Al/27Al ratios of approximately 3–5 times 10?5. An unusual hibonite‐bearing inclusion is isotopically heterogeneous, with two large and abutting hibonite crystals showing significant differences in their degrees of mass‐dependent fractionation of 25Mg/24Mg. The two crystals also show differences in their inferred initial 26Al/27Al ratios, 1 × 10?5 vs. ≤3 × 10?6.  相似文献   

8.
Abstract— We present results from an ongoing study of the infrared (IR) and optical properties of nanodiamonds, an objective of which is to identify spectral features in the laboratory that could also be used telescopically to trace the presence of these particles in the interstellar medium (ISM). Fourier transform mid-and far-infrared spectra of nanodiamond residue extracted from the Orgueil (CI) chondrite were acquired. All of the mid-IR bands initially present were found to diminish, with the exception of a band at ~1100 cm?1, following additional oxidation of the diamonds. The ~1100 cm?1 band can be predominantly attributed to adsorbed species, especially an ether-type linkage, while the “oxidisable” features seem to be associated with less stable, surface-bonded species and residual carbonaceous material. We obtained three far-IR features but are uncertain about the origin of those at 475 and 188 cm?1. We did not obtain a feature at ~120 cm?1 reported by another group but do not discount the possibility that the band at 188 cm?1 could be related to it. The weak absorption band at 475 cm?1 (21 μm) is especially interesting because it may be strong in emission from hot nanodiamonds and, therefore, related to the unidentified infrared feature (UIF) observed at this wavelength in the spectra of some C-rich protoplanetary nebulae.  相似文献   

9.
We hypothesize the formation of neon associated with isotopically anomalous xenon (Xe-HL) in meteoritic nanodiamonds and designated as Ne-X through the mixing of the Ne-HL and Ne-S subcomponents. The Ne-HL subcomponent is neon from the helium (He/C) zone of a type II supernova or a mixture of neon from this zone and its hydrogen zone, while the Ne-S subcomponent is spallation neon formed during a supernova explosion in nuclear spallation reactions induced by high-energy protons. Based on this hypothesis and the presumed abundances of neon isotopes in the zones of a high-mass (25M ) supernova after its explosion, we have calculated the abundances of neon components in nanodiamond separates and its grain-size fractions. Our calculations have shown the following. (1) The main source of Ne-HL is neon from the helium zone of the supernova; as a result, the 20Ne/22Ne and 21Ne/22Ne ratios for Ne-X are 0.26 ± 0.03 and 0.19 ± 0.04, respectively. The isotopic composition of Ne-X is identical to that for Ne-A2 if Ne-HL is produced by the mixing of neon from the helium and hydrogen zones in proportion 1: 1.06. (2) In meteoritic nanodiamonds, the main neon abundance is determined by neon of the P3 component (Ne-P3). Ne-P3 is retained during thermal metamorphism, because it is sited in traps of the crystal lattice of diamond with a high energy of its activation. (3) The Ne-X/Ne-P3 ratio increases with nanodiamond grain size; as a result, there is no need to invoke an additional neon component (Ne-P6) to interpret the data on neon in meteoritic nanodiamonds.  相似文献   

10.
The common appearance of hygroscopic brine (“sweating”) on ordinary chondrites (OCs) from Oman during storage under room conditions initiated a study on the role of water‐soluble salts on the weathering of OCs. Analyses of leachates from OCs and soils, combined with petrography of alteration features and a 11‐month record of in situ meteorite and soil temperatures, are used to evaluate the role of salts in OC weathering. Main soluble ions in soils are Ca2+, SO42?, HCO3?, Na+, and Cl?, while OC leachates are dominated by Mg2+ (from meteoritic olivine), Ca2+ (from soil), Cl? (from soil), SO42? (from meteoritic troilite and soil), and iron (meteoritic). “Sweating meteorites” mainly contain Mg2+ and Cl?. The median Na/Cl mass ratio of leachates changes from 0.65 in soils to 0.07 in meteorites, indicating the precipitation of a Na‐rich phase or loss of an efflorescent Na‐salt. The total concentrations of water‐soluble ions in bulk OCs ranges from 600 to 9000 μg g?1 (median 2500 μg g?1) as compared to 187–14140 μg g?1 in soils (median 1148 μg g?1). Soil salts dissolved by rain water are soaked up by meteorites by capillary forces. Daily heating (up to 66.3 °C) and cooling of the meteorites cause a pumping effect, resulting in a strong concentration of soluble ions in meteorites over time. The concentrations of water‐soluble ions in meteorites, which are complex mixtures of ions from the soil and from oxidation and hydrolysis of meteoritic material, depend on the degree of weathering and are highest at W3. Input of soil contaminants generally dominates over the ions mobilized from meteorites. Silicate hydrolysis preferentially affects olivine and is enhanced by sulfide oxidation, producing local acidic conditions as evidenced by jarosite. Plagioclase weathering is negligible. After completion of troilite oxidation, the rate of chemical weathering slows down with continuing Ca‐sulfate contamination.  相似文献   

11.
Abstract– The isotope fractionation of Zn in meteorites has been measured for the first time using thermal ionization mass spectrometry and a double spiking technique. The magnitude of δZn ranged from ?0.29 to +0.38‰ amu?1 for five stone meteorites whereas the iron meteorite Canyon Diablo displays δZn of 1.11 ± 0.11‰ amu?1. The results for chondrites in this work can be divided into positive and negative δZn, supporting a previous proposal that chondrites are a mixture of materials from two different temperature sources. The Zn isotope fractionation present in meteorites may represent a primordial heterogeneity formed in the early solar system. An anomalous isotopic composition of Zn obtained for the Redfields iron meteorite suggests large‐scale inherited isotope heterogeneity of the protosolar nebula, or the presence of a parent body that has formed within its own isotopically anomalous reservoir. These anomalies are in the same direction but smaller than nuclear field shift effects observed in chemical exchange reactions. The isotope dilution mass spectrometry (IDMS) technique was used to measure Zn concentration, yielding a range from 20.1 μg g?1 to 302 μg g?1 in five stone meteorites and from 0.019 to 26 μg g?1 in seven iron meteorites. The IDMS‐measured abundance of Zn in Orgueil is 302 ± 14 μg g?1 and should be considered for future compilations of the abundance of Zn in the solar system.  相似文献   

12.
We present here the Raman spectroscopic study of silicate and carbonaceous minerals in three ordinary chondrites with the aim to improve our understanding the impact process including the peak metamorphic pressures present in carbon‐bearing ordinary chondites. The characteristic Raman vibrational peaks of olivines, pyroxenes, and plagioclase have been determined on three ordinary chondrites from India, Dergaon (H5), Mahadevpur (H4/5), and Kamargaon (L6). The Raman spectra of these meteorite samples show the presence of nanodiamonds at 1334–1345 cm?1 and 1591–1619 cm?1. The full‐width at half maximum (FWHM) of Raman peaks for Mahadevpur and Dergaon reflect the nature of shock metamorphism in these meteorites. The frequency shift in Raman spectra might be because of shock effects during the formation of the diamond/graphite grains.  相似文献   

13.
Abstract— Acapulcoites and lodranites are believed to originate on a common parent body and to represent some of the earliest events in the differentiation of the chondritic asteroids. We have conducted isotopic studies of the noble gases He, Ne, Ar, Kr, and Xe, and determinations of the concentrations of the major elements and of the radionuclides 10Be, 26Al, and 36Cl in an attempt to constrain the cosmic‐ray exposure history of two members of the acapulcoite‐lodranite clan recovered in Antarctica: Frontier Mountain (FRO) 95029 and Graves Nunataks (GRA) 95209. From cosmic‐ray‐produced 3He, 21Ne, and 38Ar and appropriate production rates, we derive parent‐body breakup times of 4.59 ± 0.60 and 6.82 ± 0.60 Ma for FOR 95029 and GRA 95209, respectively. These times are consistent with those obtained from the pairs 10Be‐21Ne and 26Al‐21Ne; whereas the times inferred from the pair 36Cl‐36Ar are slightly longer, perhaps because the 36Cl activities decreased as a result of decay on Earth. Terrestrial ages up to ~50 ka for the two meteorites are consistent with the measured 36Cl activities of the metal phases. All acapulcoites and lodranites dated until now show cosmic‐ray exposure ages in the range of 4–10 Ma. This is the same range as that found for the major exposure age cluster of the H chondrites. As a common parent body is improbable on the basis of the O‐isotopic systematics, a common set of impactors might have affected the asteroid belt 4–10 Ma ago.  相似文献   

14.
Edward Anders 《Icarus》1975,24(3):363-371
The place of origin of stony meteorites can be determined from their trapped solar-wind gases. “Gas-rich” meteorites have only 10?3?10?4 the solar noble gas content and ?10?2?10?4 the surface exposure age of lunar soils. These differences suggest that the gas implantation took place between 1 and 8 AU from the Sun, in a region where the cratering rate was 102?103 times higher than at 1 AU. Both characteristics point to the asteroid belt. The predicted Ne20 content a gas-rich meteorite formed at 2.5 AU is 1.2 × 10?5 cc STP g?1, compared to an observed mean for H-chondrites of 0.5 × 10?5 cc STP g?1. The observed prevalence of gas-rich meteorites (40–100% among carbonaceous chondrites, 2–33% among other classes) requires that the parent body remained long enough in the asteroid belt to develop a substantial regolith. This condition can be met by asteroids (~ 10% of mass converted to regolith.in 4.5 × 109 yr), but not by short period comets (~0.04% converted in 107 yr). It appears that a cometary origin can be ruled out for all stony meteorite clases that have gas-rich members. This includes carbonaceous chondrites.  相似文献   

15.
Abstract— Antarctic meteorites are considerably smaller, on average, than those recovered elsewhere in the world, and seem to represent a different portion of the mass distribution of infalling meteorites. When an infall rate appropriate to the size of Antarctic meteorites is used (1000 meteorites 10 grams or larger/km2/106 years), it is found that direct infall can produce the meteorite accumulations found on eight ice fields in the Allan Hills region in times ranging from a few thousand to nearly 200 000 years, with all but the Allan Hills Main and Near Western ice fields requiring less than 30 000 years. Meteorites incorporated into the ice over time are concentrated on the surface when the ice flows into a local area of rapid ablation. The calculated accumulation times, which can be considered the average age of the exposed ice, agree well with terrestrial ages for the meteorites and measured ages of exposed ice. Since vertical concentration of meteorites through removal of ice by ablation is sufficient to explain the observed meteorite accumulations, there is no need to invoke mechanisms to bring meteorites from large areas to the relatively small blue-ice patches where they are found. Once a meteorite is on a bare ice surface, freeze-thaw cycling and wind break down the meteorite and remove it from the ice. The weathering lifetime of a 100-gram meteorite on Antarctic ice is on the order of 10 000 ± 5000 years.  相似文献   

16.
Abstract— Mn‐Cr systematics in phosphates (sarcopside, graftonite, beusite, galileiite, and johnsomervilleite) in IIIAB iron meteorites were investigated by secondary ion mass spectrometry (SIMS). In most cases, excesses in 53Cr are found and δ53Cr is well correlated with Mn/Cr ratios, suggesting that 53Mn was alive at the time of IIIAB iron formation. The inferred Mn‐Cr “ages” are different for different phosphate minerals. This is presumably due to a combined effect of the slow cooling rates of IIIAB iron meteorites and the difference in the diffusion properties of Cr and Mn in the phosphates. The ages of sarcopside are the same for the IIIAB iron meteorites. Johnsomervilleite shows apparent old ages, probably because of a gain of Cr enriched in 53Cr during the closure process. Apparently, old Mn‐Cr ages reported in previous studies can also be explained in a similar way. Therefore, the IIIAB iron meteorites probably experienced identical thermal histories and thus derived from the core of a parent body. Thermal histories of the parent body of IIIAB iron meteorites that satisfy the Mn‐Cr chronology and metallographic cooling rates were constructed by computer simulation. The thermal history at an early stage (<10 Ma after CAI formation) is well determined, though later history may be more model‐dependent. It is suggested that relative timing of various events in the IIIAB parent body may be estimated with the aid of the thermal history. There is a systematic difference in Mn and Cr concentrations in various minerals (phosphates, sulfide, etc.) among the IIIAB iron meteorites, which seems to be mainly controlled by redox conditions.  相似文献   

17.
Abstract– High‐precision Cu isotopic compositions have been measured for the metal phase of 29 iron meteorites from various groups and for four terrestrial standards. The data are reported as the δ65Cu permil deviation of the 65Cu/63Cu ratio relative to the NIST SRM 976 standard. Terrestrial mantle rocks have a very narrow range of variations and scatter around zero. In contrast, iron meteorites show δ65Cu approximately 2.3‰ variations. Different groups of iron meteorites have distinct δ65Cu values. Nonmagmatic IAB‐IIICD iron meteorites have similar δ65Cu (0.03 ± 0.08 and 0.12 ± 0.10, respectively), close to terrestrial values (approximately 0). The other group of nonmagmatic irons, IIE, is isotopically distinct (?0.69 ± 0.15). IVB is the iron meteorite group with the strongest elemental depletion in Cu and samples in this group are enriched in the lighter isotope (δ65Cu down to ?2.26‰). Evaporation should have produced an enrichment in 65Cu over 63Cu (δ65Cu >0) and can therefore be ruled out as a mechanism for volatile loss in IVB meteorites. In silicate‐bearing iron meteorites, Δ17O correlates with δ65Cu. This correlation between nonmass‐dependent and mass‐dependent parameters suggests that the Cu isotopic composition of iron meteorites has not been modified by planetary differentiation to a large extent. Therefore, Cu isotopic ratios can be used to confirm genetic links. Cu isotopes thus confirm genetic relationships between groups of iron meteorites (e.g., IAB and IIICD; IIIE and IIIAB); and between iron meteorites and chondrites (e.g., IIE and H chondrites). Several genetic connections between iron meteorites groups are confirmed by Cu isotopes, (e.g., IAB and IIICD; IIIE and IIIAB); and between iron meteorites and chondrites (e.g., IIE and H chondrites).  相似文献   

18.
Abstract– We have investigated the terrestrial ages, or residence times, of 78 meteorites (representing 73 discrete falls) recovered in Western Australia, and one from South Australia, using both 14C measurements and also 14C/10Be. The samples studied included two ureilites, one CK and one EL chondrite. We have included 10Be measurements from 30 meteorites, including some meteorites for which the 14C terrestrial age was previously determined. We find that the 14C/10Be terrestrial ages are more precise than 14C alone, as we can correct for shielding effects. In general, the two different age determinations age by 14C–10Be are precise to 0.5–1 ka and 14C alone within 1–2 ka. However, measurement of the 14C age alone gives good agreement with the 14C–10Be for most samples. The study of the terrestrial ages of meteorites gives us useful information concerning the storage and weathering of meteorites and the study of fall times and terrestrial age. We have compared the terrestrial ages to weathering, degree of oxidation (estimated from Mössbauer studies) and Δ17O. In this study, we found that weathering is not well correlated with terrestrial age for Nullarbor meteorites. However, there is a good correlation between degree of oxidation and Δ17O. The implications for the study of terrestrial ages and weathering from other desert environments will be discussed.  相似文献   

19.
Abstract— 40Ar‐39Ar data are presented for the unbrecciated lunar basaltic meteorites Asuka (A‐) 881757, Yamato (Y‐) 793169, Miller Range (MIL) 05035, LaPaz Icefield (LAP) 02205, Northwest Africa (NWA) 479 (paired with NWA 032), and basaltic fragmental breccia Elephant Moraine (EET) 96008. Stepped heating 40Ar‐39Ar analyses of several bulk fragments of related meteorites A‐881757, Y‐793169 and MIL 05035 give crystallization ages of 3.763 ± 0.046 Ga, 3.811 ± 0.098 Ga and 3.845 ± 0.014 Ga, which are comparable with previous age determinations by Sm‐Nd, U‐Pb Th‐Pb, Pb‐Pb, and Rb‐Sr methods. These three meteorites differ in the degree of secondary 40Ar loss with Y‐793169 showing relatively high Ar loss probably during an impact event ?200 Ma ago, lower Ar loss in MIL 05035 and no loss in A‐881757. Bulk and impact melt glass‐bearing samples of LAP 02205 gave similar ages (2.985 ± 0.016 Ga and 2.874 ± 0.056 Ga) and are consistent with ages previously determined using other isotope pairs. The basaltic portion of EET 96008 gives an age of 2.650 ± 0.086 Ga which is considered to be the crystallization age of the basalt in this meteorite. The Ar release for fragmental basaltic breccia EET 96008 shows evidence of an impact event at 631 ± 20 Ma. The crystallization age of 2.721 ± 0.040 Ga determined for NWA 479 is indistinguishable from the weighted mean age obtained from three samples of NWA 032 supporting the proposal that these meteorites are paired. The similarity of 40Ar‐39Ar ages with ages determined by other isotopic systems for multiple meteorites suggests that the K‐Ar isotopic system is robust for meteorites that have experienced a significant shock event and not a prolonged heating regime.  相似文献   

20.
Abstract— The Xe contents in 25 individual stratospheric interplanetary dust particles were measured in two different laboratories using focused laser micro‐gas extraction and (1) a conventional low‐blank magnetic sector mass spectrometer (Washington University), and (2) a resonance ionization time of flight mass spectrometer (RELAX‐University of Manchester). Data from both laboratories yielded a remarkably similar upper‐limit 132Xe concentration in the IDPs (>2.7, 6.8 and 2.2 × 10?8ccSTP/g for Washington University Run 1, Washington University Run 2 and University of Manchester analyses, respectively), which is up to a factor of five smaller than previous estimates. The upper‐limit 132Xe/36Ar ratio in the IDPs (132Xe/36Ar > ?8 × 10?4for Run 1 and 132Xe/36Ar > ?19 × 10?4for Run 2), computed using 36Ar concentration data reported elsewhere is consistent with a mixture between implanted solar wind, primordial, and atmospheric noble gases. Most significantly, there is no evidence that IDPs are particularly enriched in primordial noble gases compared to chondritic meteorites, as implied by previous work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号