首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We introduce a new computational model designed to simulate and investigate reach-scale alluvial dynamics within a landscape evolution model. The model is based on the cellular automaton concept, whereby the continued iteration of a series of local process ‘rules’ governs the behaviour of the entire system. The model is a modified version of the CAESAR landscape evolution model, which applies a suite of physically based rules to simulate the entrainment, transport and deposition of sediments. The CAESAR model has been altered to improve the representation of hydraulic and geomorphic processes in an alluvial environment. In-channel and overbank flow, sediment entrainment and deposition, suspended load and bed load transport, lateral erosion and bank failure have all been represented as local cellular automaton rules. Although these rules are relatively simple and straightforward, their combined and repeatedly iterated effect is such that complex, non-linear geomorphological response can be simulated within the model. Examples of such larger-scale, emergent responses include channel incision and aggradation, terrace formation, channel migration and river meandering, formation of meander cutoffs, and transitions between braided and single-thread channel patterns. In the current study, the model is illustrated on a reach of the River Teifi, near Lampeter, Wales, UK.  相似文献   

2.
The extensive Gangetic alluvial plains are drained by rivers which differ strongly in terms of hydrological and sediment transport characteristics. These differences are manifested in the geomorphic diversity of the plains. The Western Gangetic Plains (WGP) are marked by a degradational topography with incised channels and extensive badland development in some parts, while the Eastern Gangetic Plains (EGP) are characterized by shallow, aggrading channels with frequent avulsions and extensive flooding. We interpret such geomorphic diversity in terms of differences in stream power and sediment supply from the catchment areas. The rivers draining the western plains are marked by higher stream power and lower sediment yield that result in degradation. In comparison, the rivers draining the eastern Gangetic Plains have lower stream power and higher sediment yield that result in aggradation. The variation of stream power, a function of channel slope and high sediment yield, is attributed to differences in rainfall and rate of uplift in the hinterland. It is suggested that such differences have resulted in a marked geomorphic diversity across the plains. It is also suggested that such diversity has existed for a fairly long time because of climatic and tectonic variance.  相似文献   

3.
Interactions between aeolian and fluvial systems in dryland environments   总被引:14,自引:0,他引:14  
Historically, fluvial and aeolian processes in dryland environments have been viewed as mutually exclusive. However, recent research indicates that in many regions dryland aeolian and fluvial systems do not operate independently. There are interactions between the two systems that have important implications for the geomorphology of the landscape. This paper reviews the factors controlling the transfer of sediments between aeolian and fluvial systems, focusing on moisture availability, sediment supply and the magnitude/frequency characteristics of fluvial and aeolian events. We conclude by highlighting areas of future research that will contribute greatly to our understanding of aeolian–fluvial relationships in dryland areas.  相似文献   

4.
Great interest has recently been focused on dating and interpreting alluvial-fan surfaces. As a complement to the radiometric methods often used for surface-exposure dating, this paper illustrates a rapid method for correlating and dating fan surfaces using the cross-sectional shape of gullies incised into fan surfaces. The method applies a linear hillslope-diffusion model to invert for the diffusivity age, κt (m2), using an elevation profile or gradient (slope) profile. Gullies near the distal end of fan surfaces are assumed to form quickly following fan entrenchment. Scarps adjacent to these gullies provide a measure of age. The method is illustrated on fan surfaces with ages of approximately 10 ka to 1.2 Ma in the arid southwestern United States. Two areas of focus are Death Valley, California, and the Ajo Mountains piedmont, Arizona. Gully-profile morphology is measured in two ways: by photometrically derived gradient (slope) profiles and by ground-surveyed elevation profiles. The κt values determined using ground-surveyed profiles are more consistent than those determined using photo-derived κt values. However, the mean κt values of both methods are comparable. The photometric method provides an efficient way to quantitatively and objectively correlate and relatively-date alluvial-fan surfaces. The κt values for each surface are determined to approximately 30–50% accuracy.  相似文献   

5.
Historical and modern scientific contexts are provided for the 2006 Binghamton Geomorphology Symposium on the Human Role in Changing Fluvial Systems. The 2006 symposium provides a synthesis of research concerned with human impacts on fluvial systems — including hydrologic and geomorphic changes to watersheds — while also commemorating the 50th anniversary of the 1955 Man's Role in Changing the Face of the Earth Symposium [Thomas, Jr., W. L. (Ed.), 1956a. Man's Role in Changing the Face of the Earth. Univ. Chicago Press, Chicago. 1193 pp]. This paper examines the 1955 symposium from the perspective of human impacts on rivers, reviews current inquiry on anthropogenic interactions in fluvial systems, and anticipates future directions in this field.Although the 1955 symposium did not have an explicit geomorphic focus, it set the stage for many subsequent anthropogeomorphic studies. The 1955 conference provided guidance to geomorphologists by recommending and practicing interdisciplinary scholarship, through the use of diverse methodologies applied at extensive temporal and geographical scales, and through its insistence on an integrated understanding of human interactions with nature. Since 1956, research on human impacts to fluvial systems has been influenced by fundamental changes in why the research is done, what is studied, how river studies are conducted, and who does the research. Rationales for river research are now driven to a greater degree by institutional needs, environmental regulations, and aquatic restoration. New techniques include a host of dating, spatial imaging, and ground measurement methods that can be coupled with analytical functions and digital models. These new methods have led to a greater understanding of channel change, variations across multiple temporal and spatial scales, and integrated watershed perspectives; all changes that are reflected by the papers in this volume. These new methods also bring a set of technical demands for the training of geomorphologists. The 2006 Binghamton Geomorphology Symposium complements the 1956 symposium by providing a more specific and updated view of river systems coupled with human interactions. The symposium focuses on linkages between human land use, structures, and channel modification with geomorphology, hydrology, and ecology. The emergence of sustainability as a central policy guideline in environmental management should generate greater interest in geomorphic perspectives, especially as they pertain to human activities. The lack of theories of anthropogeomorphic change, however, presents a challenge for the next generation of geomorphologists in this rapidly growing subfield.  相似文献   

6.
Carol P. Harden   《Geomorphology》2006,79(3-4):249
South America delivers more freshwater runoff to the ocean per km2 land area than any other continent, and much of that water enters the fluvial system from headwaters in the Andes Mountains. This paper reviews ways in which human occupation of high mountain landscapes in the Andes have affected the delivery of water and sediment to headwater river channels at local to regional scales for millennia, and provides special focus on the vulnerability of páramo soils to human impact. People have intentionally altered the fluvial system by damming rivers at a few strategic locations, and more widely by withdrawing surface water, primarily for irrigation. Unintended changes brought about by human activities are even more widespread and include forest clearance, agriculture, grazing, road construction, and urbanization, which increase rates of rainfall runoff and accelerate processes of water erosion. Some excavations deliver more sediment to river channels by destabilizing slopes and triggering processes of mass-movement.The northern and central Andes are more affected by human activity than most high mountain regions. The wetter northern Andes are also unusual for the very high water retention characteristics of páramo (high elevation grass and shrub) soils, which cover most of the land above 3000 m. Páramo soils are important regulators of headwater hydrology, but human activities that promote vegetation loss and drying cause them to lose water storage capacity. New data from a case study in southern Ecuador show very low bulk densities (median 0.26 g cm− 3), high organic matter contents (median 43%), and high water-holding capacities (12% to 86% volumetrically). These data document wetter soils under grass than under tree cover. Effects of human activity on the fluvial system are evident at local scales, but difficult to discern at broader scales in the regional context of geomorphic adjustment to tectonic and volcanic processes.  相似文献   

7.
A vast bajada consisting of coalescing low-gradient (< 0.3°) alluvial fans exceeding 100 km in length formed along the southwestern margin of the Oman Mountains. It comprises an old fan sequence of inferred Miocene to Pliocene age termed Barzaman Formation, diagenetically highly altered to dolomitic clays, and a thin veneer of weakly cemented Quaternary gravels. A combination of remote sensing, lithological analyses and luminescence dating is used to interpret the complex aggradation history of the Quaternary alluvial fans from the interior of Oman in the context of independent regional climate records. From satellite imagery and clast analysis four fans can be discerned in the study area. While two early periods of fan formation are tentatively correlated to the Miocene–Pliocene and the Early Pleistocene, luminescence dating allows the distinction of five phases of fan aggradation during the Middle–Late Pleistocene. These phases are correlated with pluvial periods from Marine Isotope Stage (MIS) 11 through 3, when southern Arabia was affected by monsoonal precipitation. It is concluded that the aggradation of the alluvial fans was triggered by the interplay of increased sediment production during arid periods and high rainfall with enhanced erosion of hillslopes and transport rates during strong monsoon phases. However, the lack of fine-grained sediments, bioturbation and organic material implies that although the Quaternary fans are sourced by monsoonal rains they formed in a semi-arid environment. Thus, it appears that, in contrast to the Oman Mountains, the interior was not directly affected by monsoonal precipitation.  相似文献   

8.
During the conference “The fluvial system — past and present dynamics and controls" held at the Department of Geography of Bonn University from 16 to 22 of May 2005 the participants organised in 12 international organisations working in the fluvial environment were asked about their opinions about the main aspects to be considered for sustainable progress in future research projects. The individual comments can be grouped by the following headlines: integration and application of experiences, considering system analytical approaches, considering effects of climate and global change, interdisciplinary work, regarding extreme events and their frequencies and quantification of human impact. Detailed explanations and selected references of previous studies initially considering the mentioned aspects are given as a review.  相似文献   

9.
The geomorphology of the western sector of the Mid-Channel Anticline (MCA), Santa Barbara, southern California suggests the actively growing fold is laterally propagating to the west. The presence of fold scarps and cross faults that segment the structure suggests that buried faults that are producing the folding are present at shallow depths. The summit area of the anticline at the Last Glacial Maximum (22 to 19 ka) was probably a small late Pleistocene island. Evidence for presence of the island includes what appears to be terrestrial erosion and is supported by assumption of sea level change and rates of uplift and subsidence.Pockmarks and domes ranging in diameter from  10 to 100 m, and several meters deep are present along the crest and flanks of the MCA. These features appear to be the result of hydrocarbon emission. Their formation has significantly modified the surface features, producing simple to complex erosional and/or constructional topography. A large pockmark near the anticline crest dated by two calibrated AMS radiocarbon dates of 25.3 and 36.9 ka continues to emit hydrocarbon gases. We term the topography produced by hydrocarbon emission as Hydrocarbon Induced Topography (HIT).  相似文献   

10.
The Late Glacial and Holocene geomorphology of the Manx uplands has received scant attention in previous researches. Solifluction deposits and terraces provide the earliest evidence for geomorphic activity after deglaciation. Fluvial incision into drift-choked valleys is correlated with the formation of the large mountain front alluvial fans that flank the Manx uplands. Formation of these alluvial fans is constrained to 15,000–10,500 cal. years BP by 14C dates on organic deposits beneath and above the alluvial fan gravels. Alluvial fan and river terraces along four valleys postdate this incision. Optically Stimulated Luminescence (OSL) and 14C dating provide a tentative chronology for these landforms. The higher terraces are Late Glacial fluvial surfaces that were probably occupied by rivers into the Holocene. Incision during the Late Holocene led to the abandonment of the higher surfaces, producing a suite of younger river terraces and alluvial fan surfaces. Independent dating constrains this fluvial activity to post-Bronze Age (3500–2800 cal. years BP). Increased human activity and climatic change during the Late Holocene are possible causes for this increased geomorphic activity.  相似文献   

11.
Three alluvial fans in the Ribera de Biescas, upper Gállego Valley, and central Spanish Pyrenees, have been studied in order to explain the most recent changes and to identify the spatial organization of the sediment. In the alluvial fans surveyed, the proximal area is dominated by debris flows, which pass downslope into transitional and fluvial deposits. The relative importance of each type of sediment is closely related to the size and gradient of the alluvial fan, as well as to the gradient in the final stretch of the stream. In general, the size of the sediment decreases from the proximal to the distal area, while the roundness increases. Nevertheless, there are noticeable irregularities in the trend both in longitudinal and transverse transects, due mainly to the sedimentary dynamics of the debris flows, as they advance towards the inner part of each alluvial fan during the most intense peak flows. A sudden shrinkage of the most active area and incision along the fan channels has been assessed and related to land-use changes in the catchments.  相似文献   

12.
Widely used models of meander evolution relate migration rate to vertically averaged near-bank velocity through the use of a coefficient of bank erosion (E). In applications to floodplain management problems, E is typically determined through calibration to historical planform changes, and thus its physical meaning remains unclear. This study attempts to clarify the extent to which E depends on measurable physical characteristics of the channel boundary materials using data from the Sacramento River, California, USA. Bend-average values of E were calculated from measured long-term migration rates and computed near-bank velocities. In the field, unvegetated bank material resistance to fluvial shear (k) was measured for four cohesive and noncohesive bank types using a jet-test device. At a small set of bends for which both E and k were obtained, we discovered that variability in k explains much of the variability in E. The form of this relationship suggests that when modeling long-term meander migration of large rivers, E depends largely on bank material properties. This finding opens up the possibility that E may be estimated directly from field data, enabling prediction of meander migration rates for systems where historical data are unavailable or controlling conditions have changed. Another implication is that vegetation plays a limited role in affecting long-term meander migration rates of large rivers like the Sacramento River. These hypotheses require further testing with data sets from other large rivers.  相似文献   

13.
High resolution topographic data along fault zones are important aids in the delineation of recently active breaks. A 15 km-long portion of the south-central San Andreas Fault (SAF) along the southern Cholame segment contains well preserved tectonic landforms such as benches, troughs, scarps, and aligned ridges that indicate recurring earthquake slip. Recently acquired LiDAR topographic data along the entire southern SAF (“B4” project) have shot densities of 3–4 m− 2. Computed from the LiDAR returns, Digital Elevation Models (DEMs) of 0.25 to 0.5 m resolution using local binning with inverse distance weighting and 0.8 m or larger search radii depict the tectonic landforms at paleoseismic sites well enough to assess them confidently. Mapping of recently active breaks using a LiDAR-only based approach compares well with aerial photographic and field based methods. The fault zone varies in width from meters to nearly 1 km and is comprised of numerous en echelon meter to kilometer-length overlapping sub parallel fault surfaces bounding differentially moving blocks that elongate parallel to the SAF. The semantic variations of what constitutes “active” and the importance of secondary traces influence the breadth and complexity of the resulting fault trace maps.  相似文献   

14.
This paper analyses the factors which influence the presence or absence of tributary-junction fans in the Iberian Range, northern Spain. Two valleys were selected, both characterised by wide variations in lithology, altitude, land use and plant cover. Two groups of factors were studied: those related to the internal characteristics of the drainage basins, which particularly control sediment generation; and those related to the characteristics of the depositional area which control accommodation space and main river power. Among the internal factors, the development of alluvial fans was related to: (i) the capacity of the basin to yield large volumes of sediment, (ii) the occurrence of intense human pressure until recent times, a good indicator of sediment yield, and (iii) the capacity of the basin to quickly increase discharge during rainstorms (discharge density and torrentiality). It is suggested that the areas that were intensively cultivated in the past, and have therefore been affected by intense erosion, have played a decisive role on the development of alluvial fans. This would imply that many of these alluvial fans have a relatively recent origin, perhaps related to the beginning of a widespread deforestation. The basins without alluvial fans are characterised by relatively steep hillslope gradients (that is, slopes that never were subjected to historical cultivation), low drainage densities and dense forest and shrub cover, mostly coinciding with high altitude basins composed of quartzite and shale bedrocks. Regarding the external factors, the shape, size and longitudinal gradient of the main river to which the fans are tributary are the most relevant conditioning factors determining the development of alluvial fans.  相似文献   

15.
16.
In the Lake Guillaume-Delisle area of subarctic Québec, storm-generated alluvial fans have been active sporadically throughout the Holocene. In this study, we propose that the persistence of late-lying snowpatches in fan catchments during Holocene cold episodes promoted alluvial fan activity by lowering the precipitation threshold required to trigger a torrential event. This hypothesis was tested by characterizing the depositional processes responsible for alluvial fan formation below snowpatches, and by reconstructing the Holocene alluvial fan activity. Stratigraphic and sedimentary analyses conducted on seven alluvial fans revealed that they were deposited by torrential activity leading to waterlaid, transient, or hyperconcentrated deposition. The chronology of the storm-generated alluvial fans — based on 22 radiocarbon dates — indicates that torrential activity was enhanced during the cooler Late Holocene (i.e., after ca. 3500 cal. yr BP). Snowier winters and cooler summers were beneficial to nival activity, allowing the persistence of larger snowpatches throughout the summer and fall seasons. Rainfall-induced thaw of such snowpatches during rainstorm events is inferred to have contributed to alluvial fan activity by increasing water availability. Three peaks of alluvial activity occurred during the Late Holocene (2950–2750, 1900–1400, and 800–300 cal. yr BP) and are indicative of increased storminess resulting in higher fan activity. Increased fan activity during cooler episodes was concurrent with increased runoff activity in the immediate pronival area. This stresses the importance of nivation below snowpatches and pinpoints the role of nivation in enhancing geomorphological activity during period of cooler and more humid climate in subarctic environments.  相似文献   

17.
金德生  乔云峰 《地理科学进展》2016,35(11):1420-1430
作为中国现代河流地貌研究的开拓者和奠基人,沈玉昌先生对开创流水地貌实验研究的初衷,为后人创新流水地貌实验开拓了先河,特撰写本文纪念先生100周年诞辰。主要内容有:①憧憬河流地貌实验与筹建流水地貌实验室。包括先生的初衷、实验室调研与筹建、实验试运行及起步实验;②流水地貌实验室扩建及实验研究蓬勃发展。包括结合国家重大及地方委托项目开展的一系列实验研究,开拓流域地貌系统及坡面发育演变的实验,建立河流地貌过程响应实验相似型理论;③河流地貌实验的新进展。包括河流地貌实验室建设及实验装置更新,河型系统发育演变过程实验的新进展,穹隆与坳陷非均匀升降对河流地貌系统发育影响的实验等。最后进行了展望,为了使中国实验流水地貌学研究继续深化,需要进行6个方面创新探索,特别是:加强构造运动、气候变化及人类活动快速变化导致的非稳定状态河流动力地貌过程实验研究,揭示其复杂性、敏感性及前兆性特征,加强实验研究力量的协作与融合,加强流水地貌实验研究的综合性、交叉性学术交流。  相似文献   

18.
Wolfgang Rmer 《Geomorphology》2008,100(3-4):312-327
In southern São Paulo the Serra do Mar is characterized by three distinct terrain types: 1) highly dissected areas with closely spaced ridges and accordant summit heights; 2) multiconvex hills; and 3) terrains with highly elevated watershed areas, irregular summit heights, and locally subdued relief. The development of this landscape is considered to be the result of the Cenozoic block-faulting and of the influences that are exerted by the differing lithological and structural setting of block-faulted compartments on weathering and erosion processes.In areas characterized by pronounced accordant summits the close coincidence between hillslope angle and the angle of limiting stability against landsliding points to a close adjustment of hillslope gradients and the mechanical properties of the regolith. The relative height of the hillslopes is functionally related to the spacing of the valleys and the gradient of the hillslopes. In areas with a regular spacing of v-shaped valleys and uniform rocks, this leads to the intersection of valley-side slopes in summits and ridges at a certain elevation. This elevation is determined by the length and steepness of the valley-side slopes. Therefore, the heights of the summits are geometrically constrained and are likely to indicate the upper limit of summit heights or an “upper denudation level” that is adjusted by hillslope processes to the incising streams. Accordant summit heights of this type are poor indicators of formerly more extensive denudation surfaces as it is also likely that they are a result of the long-term adjustment of hillslopes to river incision.The steep mountain flanks of block-faulted compartments on the other hand, comprise regolith-covered hillslopes that are closely adjusted to the maximum stable gradient as well as rock-slopes that are controlled by the rock-mass strength. Their summits are usually not accommodated into uniform summit levels. Highly elevated watershed areas exhibiting a subdued relief are detached from the base level response. On granitoid rocks these areas are often characterized by the rocky hills and domal rock outcrops. However, differences in the elevation of interfluves and summits between rocks of differing resistance and in the elevation of lithologically distinct individual fault-blocks imply that long-term weathering and erosion has transformed and lowered these landscapes. Therefore, these areas cannot be interpreted as a remnant of a pre-uplift topography and it appears to be unlikely that the height of the summits correlates with formerly more widespread planation surfaces in the far hinterland.The studies indicate that concepts such as the parallel retreat of hillslopes cannot account for the observed differences in the landscape. It is suggested that the Serra do Mar is consumed from the Atlantic and the inland side by spatially non-uniform developmental states. These states are determined by local differences in the coupling and distance to the regional base level and sea-level or are due to lithological and structural controls between and within the block-faulted compartments.  相似文献   

19.
20.
New estimates on the Quaternary slip rate of the active transform margin of North Anatolia are provided. We investigated the area struck by a Mw 7.1 earthquake on the 12th of November 1999 that ruptured the Düzce Fault segment of the North Anatolian Fault. In order to analyze the spectacular tectonically driven cumulative landforms and the drainage pattern settings, we carried out a 1:25,000-scale geological and geomorphological mapping along the fault trace. We reconstruct and describe, as offset geomorphic markers, right-hand stream deflections and fluvial terraces inset into alluvial fan deposits. Radiocarbon dating indicates that  100 m stream deflections were built up by the last  7000 yrs of fault activity. Conversely, two documented and correlated Late Pleistocene fluvial terraces are horizontally offset by  300 and  900 m, respectively. These were dated by means of Optically Stimulated Luminescence (OSL) to  21 ka BP and 60 ka BP. Assuming a constant rate of deformation for the Düzce Fault, ages and related offsets translate to consistent slip rates that yield an average slip rate of 15.0 ± 3.2 mm/yr for the last 60 ka. Thus, the Düzce Fault importantly contributes to the North Anatolian margin deformation, suggesting a present-day partitioning of displacement rates with the Mudurnu Fault to the south and confirming its important role in the seismic hazard of the area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号