首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Structural evolution of the Kamchatka–Aleutian junction area in late Mesozoic and Tertiary was generally controlled by (1) the processes of subduction in Kronotskiy and Proto-Kamchatka subduction zones and (2) collision of the Kronotskiy arc against NE Eurasia margin. Two structural zones of the pre-Pliocene age and six structural assemblages are recognized in studied region. 1: Eastern ranges zone comprises SE-vergent thrust folded belt, which evolved in accretionary and collisional setting. Two structural assemblages (ER1 and ER2), developed there, document shortening in the NW–SE direction and in the N–S direction, respectively. 2: Eastern Peninsulas zone generally corresponds to Kronotskiy arc terrane. Four structural assemblages are recognized in this zone. They characterize (1) precollisional deformations in the accretionary wedge (EP1) and in the fore-arc basin and volcanic belt (EP2), and (2) syn-collisional deformation of the entire Kronotskiy terrane in plunging folds (EP3) and deformations in the foreland basin (EP4). Analysis of paleomagnetic declinations versus present day structural strike in the Kronotskiy arc terrane shows that originally the arc was trending from west to east. Relative position of the accretionary wedge, fore-arc basin and volcanic belt, as well as northward dipping thrusts in accretionary wedge indicate, that a northward dipping subduction zone was located south of the arc. The accretionary wedge developed from the Late Cretaceous through the Eocene, and it implies that the subduction zone maintained its direction and position during this time. It implies that Kronotskiy arc was neither a part of the Pacific nor Kula plates and was located on an individual smaller plate, which included the arc and Vetlovka back-arc basin. Motion of the Kronotskiy arc towards Eurasia was connected only with NW-directed subduction at Kamchatka margin since Middle Eocene (42–44 Ma). Emplacement of the Kronotskiy arc at the Kamchatka margin occurred between Late Eocene and Early Miocene. This is based on the age of syn-collisional plunging folds in Kronotskiy terrane, and provenance data for the Upper Eocene to Middle Miocene Tyushevka basin, which indicate in situ evolution of the basin with respect to Kamchatka. Collision was controlled by the common motion of the Kronotskiy arc with Pacific plate towards the northwest, and by the motion of the Eurasian margin towards the south. The latter motion was responsible for the southward deflection of the western part of the Kronotskiy arc (EP3 structures), and for oblique transpressional structures in the collisional belt (ER2 structures).  相似文献   

2.
Organic-walled phytoplankton assemblages from Eocene and Oligocene reference sections of western Kamchatka are analyzed. They are close in taxonomic composition to coeval assemblages of northern Japan and Sakhalin that is a good opportunity to correlate regional units and verify their age. The euryhaline species Trinovantedinium boreale that is associated with Paralecaniella indentata and Micrhystridium preferring shallow low-salinity waters, on the one hand, and taxa dwelling in normal-salinity open sea environments, on the other, are dominant in most assemblages, which are examined. The suggested variant of bed succession with dinocyst assemblages may be valid for Japan, Sakhalin, Kamchatka, and the Bering Sea.  相似文献   

3.
First biogeographic maps are proposed for the late Eocene-Oligocene of the North Pacific. The maps are compiled based on distribution of 120 molluscan species studied in 30 reference sections of the region. The analyzed Machigar (Sakhalin), Rategin, Amanina-Gakh (western Kamchatka), Asagai-Momidziyama (Japan) type assemblages and their age analogues are well known and described long ago. Over 50 schematic biogeographic maps illustrate distribution areas of different taxa in the late Eocene, early Oligocene, and late Oligocene epochs. Some of them characterize distribution areas of individual species, while the others depict habitat areas of typical (Machigar and Rategin) assemblages or certain genera different in terms of their thermotropism. Analysis of the maps resulted in recognition of the Japan-Kamchatka and Kamchatka-North American paleoprovinces, and indications of general gradual seawater temperature decrease during the Oligocene are defined. The attention is paid to the commenced diversification of North Pacific biota that leads to formation of boreal communities and also to different-rank the amphipacific dusjunctions.  相似文献   

4.
桦甸盆地始新世孢粉特征及其古气候指示意义   总被引:1,自引:0,他引:1  
系统研究了桦甸盆地始新世植物孢粉的特征,并采用共存因子分析法定量重建该区始新世气候变化。通过详细鉴定和统计,桦甸盆地始新世桦甸组共鉴定出孢粉85属100种,以被子植物花粉占绝对优势,其中栎粉、椴粉、桤木粉和榆粉含量较高,裸子植物花粉和蕨类植物孢子含量较低,孢粉组合中热带-亚热带分子较多,但含量低于温带及亚热带,属北亚热带温暖湿润气候。通过共存分析获得的桦甸盆地始新世气候参数:年均温为13.6℃~18.4℃、最热月均温23.6℃~27.9℃、最冷月均温5.5℃~7.8℃、年降雨量887~1 206 mm、最湿月降雨量187~236 mm、最干月降雨量16~41mm、最温暖月降雨量45~143 mm。相比较于吉林东部珲春盆地始新世的孢粉植物群和古气候,差异不大,均属典型的温暖湿润的气候环境。  相似文献   

5.
Five species belonging to five genera and an unidentified rhynchonellid have been recognised in a Late Eocene (Priabonian) brachiopod assemblage from Castelnuovo in the Euganean Hills, north-eastern Italy. One genus and two species are new, i. e. Venetocrania euganea gen. et sp. nov. and “Terebratulaitalica sp. nov. Orthothyris pectinoides (von Koenen 1894) is recorded for the first time from Italy. The other species are Terebratulina sp. cf. T. tenuistriata (Leymerie 1846) and Lacazella mediterranea (Risso 1826), both already known from the Italian Eocene.  相似文献   

6.
Diatom assemblages from the marine Paleogene of Western Kamchatka (the Kovachina, Viventek, and Kuluven formations) are studied. The shallow-water neritic assemblage from the Kovachina Formation of the Pyatibratskii Cape section is tentatively attributed to the middle Eocene, as it is lacking zonal index species. A high abundance and great taxonomic diversity are characteristic of diatoms from the upper part of the Viventek Formation in the Kovran River section. The zonal index species Cavitatus rectus identified here among the diatoms suggests that the respective assemblage is macerated from the synonymous diatom zone of the middle Oligocene (29.6?28.2 Ma). According to its taxonomic composition and structure, this assemblage is indicative of transgression environments and the presumable influence of the middle Oligocene climatic optimum. The Rocella gelida (upper part) and Thalassiosira praefraga diatom zones of the Oligocene-Miocene transition are established in the Kuluven Formation sediments of the Mt. Uvuch section in Kovachina Bay.  相似文献   

7.
Forty-seven samples from Upper Cretaceous sections penetrated by the Kachi-1 and Inga-1 wells in the South Yellow Sea Basin have been analysed for their spore and pollen content. Thirty-five species of 18 spore genera and 54 species of 28 pollen genera are documented. One new monotypic genus, Diporocolpopollenites, and its type species, D. kachiensis sp. nov., are erected, and Dilwynites Harris, 1965, and its type species, D. granulatus Harris, 1965, are emended. There are also three new combinations: Ephedripites eocaenicus (Selling, 1944), E. praeclarus (Chlonova, 1961), and Retitricolpites anguloluminosus (Anderson, 1960). Two palynological zones are erected: anAquilapollenites attenuatus Assemblage Zone, which encompasses deposits that are considered to be latest Campanian–Early Maastrichtian in age, and an Aquilapollenites eurypteronus Assemblage Zone for sections that have been dated as Late Maastrichtian. The assemblages are typical of the Yenisey-Amur Subprovince of the Aquilapollenites (floral) Province. Lowland floodplain to shallow, commonly mesotrophic, lacustrine environments of deposition are indicated. The climate was probably wet subtropical, with rainfall being somewhat higher during the Late Maastrichtian than through the latest Campanian–Early Maastrichtian.  相似文献   

8.
系统研究了抚顺盆地东露天煤矿主煤层古城子组植物孢粉组合特征,并采用共存分析法(coexistence approach)定量分析了该区早始新世古气候。笔者在古城子组共发现孢粉化石71属159种,其中,被子植物花粉莫米粉(Momipites)、山核桃粉(Caryapollenites)、榆粉(Ulmipollenits)和栎粉(Quercoidites)含量较高;裸子植物花粉含量高,以杉粉(Taxodiaceaepollenites)和无口器粉(Inaperturopollenites)占绝对优势;蕨类植物孢子以水龙骨单缝孢(Polypodiaceaesporites)及紫萁孢(Osmundacidites)为主。亚热带类群丰富且花粉含量较高(56.3%~91.8%)。孢粉组合反映了该盆地分布以杉科(Taxodiaceae)丰富为特征的沼泽湿地林,可能为重要的成煤植物;盆地低山地带分布有常绿和阔叶落叶混交林为主的森林植被。通过共存分析法获得抚顺盆地早始新世年均温为14.9℃~15.8℃,年均降水量为1011.3~1163 mm。孢粉植物群特征及古气候参数综合分析,抚顺盆地早始新世属于温暖湿润的亚热带气候。  相似文献   

9.
10.
The Oligocene depositional history of the Thrace Basin documents a unique paleogeographic position at a junction between the Western Tethys and the Eastern Paratethys. As part of the Tethys, shallow marine carbonate platforms prevailed during the Eocene. Subsequently, a three-staged process of isolation started with the Oligocene. During the Early Rupelian, the Thrace Basin was still part of the Western Tethys, indicated by typical Western Tethyan marine assemblages. The isolation from the Tethys during the Early Oligocene is reflected by oolite formation and endemic Eastern Paratethyan faunas of the Solenovian stage. The third phase reflects an increasing continentalisation of the Thrace Basin with widespread coastal swamps during the Late Solenovian. The mollusc assemblages are predominated by mangrove dwelling taxa and the mangrove plant Avicennia is recorded in the pollen spectra. The final continentalisation is indicated by the replacement of the coastal swamps by pure freshwater swamps and fluvial plains during the Late Oligocene (mammal zone MP 26). This paleogeographic affiliation of the Thrace Basin with the Eastern Paratethys after ~32 Ma contrasts all currently used reconstructions which treat the basin as embayment of the Eastern Mediterranean basin.  相似文献   

11.
Orthophragminids from the Bartonian Fulra Limestone in Kutch, India and the coeval units in Sulaiman Range in Pakistan suggest the establishment of a significant number of endemic species in the Indian subcontinent (Eastern Tethys). Among a total of fifteen species of Discocyclina, Orbitoclypeus and Asterocyclina, six of them appear to be confined to Indian subcontinent while seven species are common both to the peri-Mediterranean/Europe region (Western Tethys) and Indian subcontinent. Two species, Asterocyclina sireli, a four-ribbed species of possibly Indo-Pacific origin, and Orbitoclypeus haynesi that form large populations in Fulra Limestone, appear to have spread into North Africa and Turkey but not into European platforms as a response to Middle Eocene Climatic Optimum (MECO). The lack of Lutetian and Priabonian fauna in the studied sections, either due to a hiatus or unsuitable depositional environments, hampers the establishment of the actual stratigraphic ranges of the identified taxa. Our record provides us to characterize the orthophragminids in shallow benthic zone (SBZ) 17 for Eastern Tethys in detail by comparing the data from the above localities with those from the North Africa, Europe and Turkey, showing the change in diversity.  相似文献   

12.
New Taxa of Chrysomelidae (Insecta:Coleoptera)from Rovno Amber,Late Eocene   总被引:1,自引:1,他引:0  
<正>Leaf beetles Chrysomelidae of Rovno amber,from the Late Eocene,are recorded and described. Chrysomelidae of Rovno amber are represented by three subfamilies:Galerucinae(Alticini),Chrysomelinae,and Eumolpinae.Two new genera and three new species of Alticini:Manobiomorpha Nadein,gen.nov.(type species Manobiomorpha eocenica Nadein,sp.nov.),Psyllototus Nadein,gen.nov.(type species Psyllototus progenitor Nadein,sp.nov.),and Crepidodera decolorata Nadein et Perkovsky,sp.nov.are described.A new chrysomeline genus and species Paleophaedon minutus Nadein gen.nov.et sp.nov.is described.Probable trophic association of Crepidodera decolorata sp.nov.,the taxonomic positions of Manobiomorpha gen.nov.and Psyllototus gen.nov., and the composition of leaf beetle faunas of Middle and Late Eocene of Europe are discussed.  相似文献   

13.
The Pirkoh and Drazinda formations in the Sulaiman Range, central Pakistan, yielded assemblages of (early) Bartonian orthophragminids, characterized predominantly by discocyclinids with a significant number of species probably endemic to Indian Subcontinent. The rarity of Asterocyclina and the absence of Orbitoclypeus and Nemkovella are noteworthy. Ten species of Discocyclina Gümbel and two species of Asterocyclina Gümbel, referable to the Shallow Benthics Zone (SBZ) 17 are described for the first time from Pakistan. The discocyclinids, i.e. Discocyclina praeomphalus, D. sulaimanensis, D. kutchensis, along with the new taxa established here, D. zindapirensis sp. nov., D. rakhinalaensis sp. nov., and D. pseudodispansa sp. nov., seem to be confined to the Indo-Pakistani region (Eastern Tethys). The Discocyclina dispansa, D. discus, D. nandori, and D. augustae lineages known from Western Tethys are also common in the Indian Subcontinent, as are asterocyclinids, such as Asterocyclina sireli and A. stellata. The upper part of the Drazinda Formation (‘Pellatispira beds’), referable to latest Bartonian and/or the early Priabonian, is poor in orthophragminids and is characterized by the occurrence of reticulate Nummulites, Heterostegina, Pellatispira and Silvestriella. The records of ‘Lepidocyclina of Caribbean affinity’ with large embryons from the Eocene of the Indian Subcontinent correspond to misidentified Discocyclina discus.  相似文献   

14.
A very rich and diversified dasycladalean algal assemblage has been discovered from the Sylhet Limestone Formation (lower-middle Eocene) of the Bengal Basin of India for the first time. The depositional environments of the Sylhet Limestone Formation have been discussed based on the presence of the 11 species of the dasycladalean algae belonging to the three families Dasycladaceae (Cymopolia inflataramosa Segonzac, C. mayaenese Johnson and Kaska, C. paronai Raineri, Cymopolia sp.), Triploporaceae (Dissocladella lunata Segonzac, Dissocladella sp., Jodotella sloveniaensis Deloffre and Radoicic) and Acetabulariaceae (Clypeina socanensis Deloffre and Radoicic, Clypeina sp., Terquemella sp., Neomeris sp.). The lower Eocene Sylhet Limestone Formation revealed predominance of dasycladalean algal assemblage with the halimedacean and udoteacean algae and rare occurrence of coralline algae. This suggests their luxuriant growth in the open lagoonal to shelf environment at the depth of 5–6 m in the warm waters. There is a gradual decrease in the dasycladalean species and genera in the middle Eocene Sylhet Limestone Formation. The predominance of coralline algae associated with the Sporolithon indicates that the limestone of middle Eocene Sylhet Limestone Formation have been deposited at the littoral to shallow, high energy open shelf marine environments at a depth of about 40–60 m in warm tropical waters.  相似文献   

15.
A bimonthly study of the spatial variations in fish assemblages in the six mangrove creeks along the western coast of Taiwan was conducted from February 1996 to February 1997. Fyke nets were used to collect fishes in each of three creeks in the north (subtropical) and south (tropical) regions. A total of 79 fish species belonging to 33 families were collected and, of these, the Gobiidae, Mugilidae, Leiognathidae, and Cichlidae were the most diverse families. The fish assemblages in each creek were dominated by a small number of small fishes, most of which are the young of commercially important species. Their life cycles occurred to some extent in estuarine environments. Analyses by classification and ordination separated the assemblages into a northern group and a southern group and showed that the assemblages were far more temporally varied in the southern creeks than in the northern creeks. Fifty fish species were recorded in the northern creeks and 49 fish species in the southern creeks, with 20 species present in both regions. No significant difference in number of species per netting was detected between the regions. The number of individuals and biomass per netting were greater in the northern creeks than in the southern creeks. Rainfall and organic content of sediments may be responsible for the difference in fish abundance between the regions. In the northern creeks the assemblages were dominated by Liza macrolepis and Liza affinis in winter and spring, but the assemblages were more diverse in summer and fall. In the southern creeks, the assemblages were always characterized by several species and their dominance varied from month to month. The differences in the assemblage structure in northern and southern mangrove creeks are likely due to the oceanic current patterns around Taiwan.  相似文献   

16.
Migmatization and granite-forming processes were widespread in the southern Sredinnyi Range of the Kamchatka Peninsula in the Early Eocene (at approximately 52 ± 2 Ma). The paper presents data on the composition and genesis of the Early Eocene granitoids. The Malka Rise contains both equigranular peraluminous garnet-bearing granites, on the one hand, and migmatites and tonalites and trondhjemites (TTG), on the other. The petrography and petrochemistry of most granites in the Malka Rise in the Sredinnyi Range (high SiO2 concentrations, the presence of muscovite and garnet, the proportions of their Al saturation index ASI and SiO2, FeOt + MgO + TiO2, and SiO2, Al2O3/TiO2, and CaO/Na2O), and the composition of biotite in these rocks highlight their similarities with S-granites. The character of the REE patterns and the Sr and Y concentrations suggest that the granites and TTG were formed via the melting of sources of two types: metasediments and metabasites. The metasedimentary nature of the protolith of most of the granitoids also follows from similarities between the REE patterns of the granitoids and host metaterrigenous rocks of the Kolpakova and Kamchatka groups. The variations in the Rb/Ba and Rb/Sr ratios of the granites imply that their protoliths could be sedimentary rocks both depleted and enriched in pelite components. The facts that, along with S-granites, some of the granites are TTG, which likely had mafic protoliths, make the Early Eocene granites generally similar to S-granites of the Cordilleran type. The collision of the Achaivayam-Valaginskii ensimatic island arc with the Kamchatka margin of Eurasia started at 55–53 Ma and predated Early Eocene magmatism. In the course of this collision, arc complexes were obducted over continental marginal rocks, and this resulted in their rapid subsidence, crustal heating, magma generation, and the derivation of the granites, tonalites, and trondhjemites at 52 ± 2 Ma at temperatures of 645–815°C. This rapid heating (duirng no more than 3–5 Ma) required an additional heat source, which was likely the mantle. The latter heated the bottom of the crust at the detachment of the slab. The influx of mantle material resulted in intrusions of the norite-cortlandite association, which was coeval with the granites and was accompanied by Cu-Ni sulfide mineralization. The composition of the granitoids and data on the intrusions of the norite-cortlandite association suggest that mantle material was involved in Early Eocene syncollisional magma generation in Kamchatka. Newly obtained U-Pb zircon SHRIMP dates of the granitoids and recently published data on the age of the norite-cortlandite intrusions indicate that they are coeval and make it possible to recognize an Early Eocene phase of magmatic activity in Kamchatka.  相似文献   

17.
Early cenozoic magmatism in the continental margin of Kamchatka   总被引:1,自引:0,他引:1  
The paper presents isotopic-geochemical features of magmatic rocks that were produced at the continental margin of Kamchatka during its various evolutionary stages. Continental-margin magmatism in Kamchatka is demonstrated to have evolved from the Paleocene until the present time. The Paleocene and Middle-Late Eocene magmatic complexes show features of suprasubduction magmatism. The magmatic melts were derived from isotopically heterogeneous (depleted and variably enriched, perhaps, as a consequence of mixing with within-plate melts) mantle sources and were likely contaminated with quartz-feldspathic sialic sediments. The Miocene preaccretion stage differs from the Paleogene-Eocene one in having a different geochemical and isotopic composition of the mantle magma sources: the magmatic sources of the Miocene suprasubduction magmas contained no compositions depleted in radiogenic Nd isotopes, whereas the sources of the within-plate magmas were enriched in HFSE. The Late Pliocene-Quaternary postaccretion magmas of the Eastern Kamchatka Belt are noted for the absence of a within-plate OIB-like component.  相似文献   

18.
对窑街朱儿庄红层的孢粉和地层层序及时代进行了系统分析与对比研究。在朱儿庄红层剖面中划分出3个孢粉组合:①枫香粉属-楝粉属组合,时代为早-中始新世;②柳粉属-朴粉属-粉属组合,属始新世中、晚期;③栎粉属-柳粉属-粉属组合,属晚始新世-早渐新世。研究表明:窑街地区朱儿庄红层始新世孢粉组合与中国东、西部地区孢粉组合相似,均发育以亚热带和暖温带植物为主的亚热带型落叶阔叶林,气候炎热;始新世晚期至早渐新世则演变为以暖温带落叶阔叶树种为主的针阔叶混交林植被,气候温暖湿润。  相似文献   

19.
Pollen, plant macrofossil, and radiocarbon-dating studies of seven exposures of fluvial sediments in the Tunica Hills region of southeastern Louisiana and southwestern Mississippi provide new information on late Wisconsinan vegetation, flora, and environment of the region. The assemblages date between 25,250 and 17,530 yr B.P. Pollen and macrofossil assemblages are dominated by Picea, which comprises 40-70% of the pollen assemblages. Abies and Larix pollen and macrofossils are absent, in contrast to sites to the north in the central Mississippi Valley. Deciduous hardwoods (Quercus, Fagus, Fraxinus, Carya, Juglans nigra, Acer, Ulmus) are minor components of both pollen and macrofossil assemblages. Radiocarbon dates of Picea and Quercus wood indicate that these two genera grew contemporaneously in the region. Regional upland forests were dominated by Picea. Picea cones and cone fragments are not typical of any extant North American species, and probably represent either an extinct species or an extinct variety or subspecies of Picea glauca. Late Wisconsinan climate of the region was cooler than present, but not necessarily as cool as implied by P. glauca or other "boreal" taxa.  相似文献   

20.
对贺兰山地区上田组的植物化石开展研究,此次鉴定出12属14种,结合前人资料,上田组植物化石共计20属35种。其中,真蕨纲和种子蕨纲9属19种,占54%;苏铁纲4属6种,占17%;楔叶纲1属4种,占11%;松柏纲3属3种,占9%;银杏纲2属2种,占6%;分类位置不明的种子1属1种,占3%。该地区植物化石组合以中国北方型Danaeopsis-Bernoullia植物群的属种占主导地位,同时混生了中国南方型Dictyophyllum-Clathropteris植物群的分子Dictyophyllum,且苏铁类占一定的比例,反映了晚三叠世末期贺兰山为半干旱的亚热带大陆型气候,且正在向湿热发展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号