首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Glaciations took place in five long intervals of the geologic history, called glacioeras: Kaapvaal (Late Archean), Huronian (Early Proterozoic), African (Late Proterozoic), Gondwanan (Paleozoic), and unfinished Antarctic (Late Cenozoic). The glacioeras were similar in structure, duration, and dynamics of evolution. They consisted of three to six glacioperiods including several discrete glacio-epochs. The glacioeras lasted ~ 200 Myr. They started with small regional glaciations, which expanded, reached intercontinental sizes, and then quickly degraded. There were serious differences between the Precambrian and Phanerozoic glacioeras. A series of ecologic crises related to numerous glacial events led first to abiotic and then to biotic factors. Glaciations caused extinction and stagnation of the Earth’s biota, the appearance of bionovations and new biota, and acceleration of evolution processes. Thus, the glacioeras were the turning intervals of the biosphere evolution.  相似文献   

2.
Mafic-ultramafic fragments of a dismembered ophiolite complex are abundant in the late Precambrian Pan African belt of the Eastern Desert of Egypt and north-east Sudan. The ultramafic bodies in the Eastern Desert of Egypt are mostly characterised by the harzburgite–dunite–chromitite association. Because of their severe metamorphism, almost all primary silicates were converted to secondary minerals and we use the chrome spinel as a reliable petrogenetic indicator. The podiform chromitite deposits are common as small and irregularly shaped masses in the central and southern parts of the Eastern Desert. They strongly vary in texture, degree of alteration and chemical composition of chrome spinel. The podiform chromitites exhibit a wide range of composition from high Cr to high Al varieties. The Cr of chrome spinel ranges from 0.65 to 0.85 in dunite, quite similar in the high-Cr chromitite, whereas it is around 0.5 in harzburgite. Primary hydrous mineral inclusions, amphibole and phlogopite, in chrome spinel are reported for the first time from the Pan African Proterozoic podiform chromitites. The petrological characteristics of Pan African podiform chromitites and associated peridotites of Egypt are similar to those of Phanerozoic ophiolites. The Proterozoic podiform chromitites may have formed in the same way as the Phanerozoic ones, namely by melt-harzburgite reaction and subsequent melt mixing. The similarity of the mantle section of the late Proterozoic and the Phanerozoic ophiolites suggests that the thermal conditions controlling genesis of the crust–mantle system basically have not changed since the late Proterozoic era. The Pan African harzburgite is very similar to abyssal peridotite at fast-spreading ridges, and the high-Cr, low-Ti character of spinel in chromitite and dunite indicates a genetic link with a supra-subduction zone setting. The late Proterozoic ophiolites of Egypt are possibly a fragment of oceanic lithosphere modified by arc-related magmatic rocks, or a fragment of back-arc basin lithosphere. Received: 26 October 1999 / Accepted: 28 June 2000  相似文献   

3.
The synthesis of data on the paleobiology and geochemistry of the Archean and Proterozoic and the ecology, biochemistry, and comparative genomics of living organisms provides a means for reconstructing the development of biological complexity on the subcell, organism, and ecosystem levels. The conditions and time of the origin of oxygenic photosynthesis, eukaryotic cells, and multicellular animals were determined. These evolutionary events had a profound influence on the global biogeochemical cycles, sedimentogenesis, and climate of the Earth. Irreversible geochemical changes in the biosphere and the biochemical evolution of living systems are described as complementary processes. A decrease in hydrogen concentration in the early biosphere, an increase in oxygen concentration in the ocean, and changes in the bioavailability of metals (Fe, Ni, Co, V, W, Cu, Mo, etc.) known as enzyme activators were considered as key factors of eukaryotization. The reasons for variations in the availability of the metals in the biosphere were distinguished. The continuity of life was maintained owing to the preservation of the functionality of archaic metabolism types through the compartmentalization of biochemical reactions and the complication of cellular metabolic networks. The metabolic cascades of living cells probably recapitulate this prolonged evolutionary process. The exhaustion of abiogenic hydrogen sources stimulated the symbiosis of hydrogen-producing and hydrogen-consuming prokaryotes and the involvement of simple hydrogen-bearing volatile compounds (CH4, NH3, H2S, and, finally, H2O) as a substrate for life, which eventually predefined the chemical composition of the terrestrial atmosphere strongly dominated by nitrogen and oxygen as by-products of exchange reactions. The oxygenation of the ocean diminished the mobility and bioavailability of some metals that had served as the earliest enzyme activators. The evolutionary response to this process was the formation of mechanisms of extraction, accumulation, and the retention of ancient activator metals (e.g., Fe, W, and Ni) in the cell and in the ecosystem, as well as the active involvement of new metals (e.g., Mo, Cu, and Zn). Oceanic biota became the main concentrator and reservoir for these metals. The appearance of eukaryotic cells, the increasing role of heterotrophy, an increase in biodiversity, the complication of trophic relationships, the acceleration of the cycle of biophile elements, and other features of the biosphere eukaryotization were to large extent a response to the narrowing of the geochemical basis of life. A pivotal point in the prolonged process of biosphere eukaryotization was a series of glaciations at the end of the Proterozoic (750–540 Ma) and the active oxygenation of the ocean, which enabled the global expansion of eukaryotic organisms.  相似文献   

4.
Western Uganda is a key region for understanding the development of the western branch of the East African rift system and its interaction with pre-existing cratonic lithosphere. It is also the site of the topographically anomalous Rwenzori Mountains, which attain altitudes of >5000 m within the rift. New structural and geochronological data indicate that western Uganda south and east of the Rwenzori Mountains consists of a WSW to ENE trending fold and thrust belt emplaced by thick-skinned tectonics that thrust several slices of Proterozoic and Archaean units onto the craton from the south. The presence of Archaean units within the thrust stack is supported by new Laser-ICP-MS U–Pb age determinations (2637–2584 Ma) on zircons from the Rwenzori foothills. Repetition of the Paleoproterozoic units is confirmed by mapping the internal stratigraphy where a basal quartzite can be used as marker layer, and discrete thrust units show distinct metamorphic grades. The thrust belt is partially unconformably covered by a Neoproterozoic nappe correlated with the Kibaran orogenic belt. Even though conglomerates mark the bottom of the Kibaran unit, intensive brittle fault zones and pseudotachylites disprove an autochthonous position. The composition of volcanics in the Toro-Ankole field of western Uganda can be explained by the persistence of a cratonic lithosphere root beneath the northwardly thrusted Archaean and Palaeoproterozoic rocks of westernmost Uganda. Volcanic geochemistry indicates thinning of the lithosphere from >140 km beneath Toro-Ankole to ca. 80 km beneath the Virunga volcanic field about 150 km to the south. We conclude that the western branch of the East African rift system was initiated in an area of thinner lithosphere with Palaeoproterozoic cover in the Virunga area and has propagated northwards where it now abuts against thick cratonic lithosphere covered by a thrust belt consisting of gneisses, metasediments and metavolcanics of Neoarchaean to Proterozoic age.  相似文献   

5.
The diamond bearing pipe rocks in Majhgawan-Hinota (more than four pipes) occur as intrusives in sandstones of Kaimur Group. These Proterozoic (974 ±30-1170 ±20 Ma) intrusive rocks, occupying the southeastern margin of Aravalli craton, were called as ‘micaceous kimberlite’ in tune with the reported kimberlite occurrences from other parts of the world. Judging from the definition of kimberlite, as approved by the IUGS Subcommission on Systematics of Igneous Rocks, it is not justified to call these rocks as ‘micaceous kimberlite’. Rather the mineralogical assemblages such as absence of typomorphic mineral monticellite (primary), abundance of phlogopite cognate, frequent presence of barite and primary carbonate mostly as calcite coupled with ultrapotassic and volatile-rich (dominantly H2O) nature and high concentration of incompatible elements (such as Ba, Zr, Th, U), low Th/U ratios, low REE and no Eu-anomaly clearly indicate a close similarity with that of South African orangeites. Thus orangeites of Proterozoic age occur outside the Kaapvaal craton of South Africa which are much younger (200 Ma to 110 Ma) in age.  相似文献   

6.
Along with the progress in research on the Precambrian, Molar-tooth carbonates (simplified as MT, or microsparite carbonates or MT structure) which were formed in the Middle-Late Proterozoic have become a hot subject recently. The Proterozoic Molar-tooth (MT) carbonate rocks refer to those Meso- to Neoproterozoic (1600-650 Ma) carbonates with MT structure, i.e., a series of peculiar, ptygmatically folded and spar-filled cracks in fine-grained carbonates of Precambrian age, located in the environment of mid- to inner ramp and shallow platform. MTS, like a bridge connecting the inorganic world with the organic one, are closely related to the evolution of paleo-oceans, atmosphere and biosphere. Their development and/or recession are/is related to the origin of life and the abruption of sedimentary geochemistry events of marine carbonates. By using modern instruments and testing methods adequately, the contents of oxides in sandstones were measured and the REE distribution pattern curves were established; an accurate value of isotopic ratio of 87Sr/86Sr was obtained, that is, the age of MT formation is about 750-900 Ma; C and O isotopes of some fresh micrite limestone samples were analyzed; the energy spectrum analysis revealed that the MT consists mainly of microspar calcite, while as for its chemical composition, the matrix shows outstanding peaks of Ca, Mg, Al, Si, and K. The geochemical indicators proved that Neoproterozoic MT carbonates in the Jilin-Liaoning region were developed at the margin of a stable continent, in the torrid zone where the paleo-temperature was about 50℃, the seawater had normal salinity when MT was formed during the Wanlong period in southern Jilin and during the Yingchengzi and Xingmincun periods in eastern Liaoning. The sedimentary environment was located in the inner ramp. In summary, it is of great importance to understand the origin of MT, ascertain the paleo-climate and paleo-environment characteristics, constrain the age and the stratigraphic division and comparison of the Proterozoic so as to study the geochemical characteristics of MT carbonates and their formation environment.  相似文献   

7.
Bacteria and protoctists dominated the biosphere in the Archean and Proterozoic, their affinities being deduced by studies of their comparative morphology, palaeoecology, biogeochemistry, and wall ultrastructure. However, exact phylogenetic relationships are uncertain for most such microfossils. Because of the limitations imposed by the simple morphology and small dimensions of such microorganisms and their little known biochemistry, new techniques in microscopy, tomography and spectroscopy are applied to examine individual microfossils at the highest attainable spatial resolution. TEM/SEM studies of the wall ultrastructure of sphaero- and acanthomorphic acritarchs have revealed complex, single to multilayered walls, having a unique texture in sub-layers and an occasionally preserved trilaminar sheath structure (TLS) of the external layer. A variety of optical characteristics, the electron density and texture of fabrics of discrete layers, and the properties of biopolymers may indicate the polyphyletic affiliations of such microfossils and/or the preservation of various stages (vegetative, resting) in their life cycle. Primarily, wall ultrastructure allows discrimination between fossilized prokaryotic and eukaryotic cells. Composite wall ultrastructure provides evidence that some Proterozoic and Cambrian leiosphaerids are of algal affinities (but not, per se, that they are referable to “Leiosphaeridia”). Certain Cambrian specimens represent chlorophyceaens, having the multilayered composite wall with TLS structure known from vegetative and resting cells in modern genera of the Chlorococcales and Volvocales. The wall ultrastructure of the studied Cambrian and Proterozoic acanthomorphs resembles the resting cysts of green microalgae, but there is no evidence to suggest a close relationship of these taxa to dinoflagellates. It is apparent that although there is no single and direct method to recognize the precise phylogenetic relations of such microfossils, ultrastructural studies of their preserved cell walls and encompassing sheaths, combined with biochemical analyses and other advanced methods, may further elucidate their affinities to the modern biota.  相似文献   

8.
Orogenic peridotites occur enclosed in Proterozoic gneissesat several localities in the Western Gneiss Region (WGR) ofwestern Norway; garnet peridotites typically occur as discretezones within larger bodies of garnet-free, chromite-bearingdunite and are commonly closely associated with pyroxenitesand eclogites. The dunites of the large Almklovdalen peridotitebody have extremely depleted compositions (Mg-number 92–93·6);the garnet peridotites have lower Mg-number (90·6–91·7)and higher whole-rock Ca and Al contents. Post-depletion metasomatismof both rock types is indicated by variable enrichment in thelight rare earth elements, Th, Ba and Sr. The dunites can bemodelled as residues after very high degrees (>60%) of meltextraction at high pressure (5–7 GPa), inconsistent withthe preservation of lower degrees of melting in the garnet peridotites.The garnet peridotites are, therefore, interpreted as zonesof melt percolation, which resulted in refertilization of thedunites by a silicate melt rich in Fe, Ca, Al and Na, but notTi. Previous Re–Os dating gives Archaean model ages forthe dunites, but mixed Archaean and Proterozoic ages for thegarnet peridotites, suggesting that refertilization occurredin Proterozoic time. At least some Proterozoic lithosphere mayrepresent reworked and transformed Archaean lithospheric mantle. KEY WORDS: Archaean mantle; Proterozoic mantle; Western Gneiss Region, Norway; mantle metasomatism; garnet peridotite  相似文献   

9.
The northeastern part of Madagascar is characterized by Archaean to early Proterozoic rocks composed principally of Archaean granite and greenstone/amphibolite as well as reworked migmatite with subordinate Proterozoic paragneisses. The southern part is mostly occupied by Proterozoic rocks, composed mostly of Meso to Neo-Proterozoic and less metamorphic metasediments (Itremo Group) in the northwest, para- and ortho-gneisses in most other areas, with minor granitic gneisses with some Archaean components in the southeast. The north-northwest trending Central Granite-Gneiss-Migmatite Belt (CGGMB) is situated at the western margin of the Archaean-early Proterozoic terrain. The CGGMB is composed of granite, gneiss and migmatite with distinct lithologies and structures. They are: i) many types of granites including alkaline to mildly alkaline granites, and calc-alkaline granites; ii) batholitic granites, migmatitic granites and granite dyke swarm, iii) eclogite, and iv) the Ankazobe-Antananarivo-Fianarantsoa Virgation.

The CGGMB was formed by the collision of the palaeo-Dharwar Craton to the east and the East African Orogen to the west at ca. 820-720 Ma and suffered indentation by a part of the western part of the East African Orogen at ca. 530 Ma that produced the Ankazobe-Antananarivo-Fianarantsoa Virgation at the centre of the CGGMB. Thus, the CGGMB is proposed to be the continuation of the eastern suture between the palaeo Dharwar Craton and the East African Orogen, and carries the main feature of the Pan-African collisional event in Madagascar.  相似文献   


10.
The technique of single zircon dating from the thermal evaporation of 207Pb/206Pb (Kober 1986, 1987) provides a means of dating successive periods of growth and nucleation of zircons in polymetamorphic assemblages. In contrast Nd model ages may provide a measure of the period of crustal residency for the sample or its protolith. These two techniques have been combined to elucidate the tectonic history of the Proterozoic mobile belt of southern India, exposed south of the Palghat-Cauvery Shear Zone that marks the southern boundary of the Archaean craton of Karnataka. The two main tectonic units of this mobile belt comprise the Madurai and Trivandrum Blocks, both of which are characterised by massive charnockite uplands and low-lying polymetamorphic metasedimentary belts that have undergone a complex tectonic history throughout the Proterozoic. Evidence for early Palaeoproterozoic magmatism is restricted to the Madurai Block where single zircon evaporation ages from a metagranite (2436 ± 4 Ma) are similar to model Nd ages from a range of lithologies suggesting crustal growth at that time. The Trivandrum Block, to the south of the Achankovil shear zone, is comprised of the Kerala Khondalite Belt, the Nagercoil charnockites and the Achankovil metasediments. Single zircon evaporation ages, together with conventional zircon and garnet chronometry, suggest that all three units underwent upper-amphibolite facies metamorphism at ∼1800 Ma, an event unrecorded in the metagranite from the Madurai Block. This implies that the Madurai and Trivandrum blocks represent distinct terrains throughout the Palaeoproterozoic. Model Nd ages from the Achankovil metasediments are much younger (1500–1200 Ma) than those from the adjacent Kerala Khondalite Belt and Madurai Blocks (3000–2100 Ma), but there is no evidence for zircon growth in these metasediments during the Mesoproterozoic. Hence the comparatively young model Nd ages of the metasediments are indicative of a mixed provenance rather than a discrete period of crustal growth. Zircon overgrowths from the Madurai Block (547 ± 17 Ma) and Achankovil metasediments (530 ± 21 Ma) suggest that all tectonic units of the Proterozoic mobile belt of South India shared the same metamorphic history from the early Palaeozoic. This event has been recognised in the basement lithologies of Sri Lanka and East Antarctica, confirming that the constituent terrains of East Gondwana had assembled by this time. Received: 10 October 1995 / Accepted: 27 October 1997  相似文献   

11.
The Guelb Moghrein Fe oxide–Cu–Au–Co (IOCG) deposit is located in the northern part of the Mauritanides chain at the western edge of the West African Craton. It is commonly held that the orogenic belt has experienced a polyphase tectonothermal evolution, including two Panafrican and one Variscan event. Dating of two distinct morphological types of hydrothermal monazite and xenotime from Guelb Moghrein yielded in situ U–Pb ages of 2492 ± 9 and 1742 ± 12 Myr respectively. Such ages have not been reported previously from the region which is conspicuous by the widespread occurrence of banded iron formations, more akin to Proterozoic or Archean than to Paleozoic settings. The supracrustal rocks are thought, therefore, to represent a greenstone terrane that was mineralized by hydrothermal fluids during the late Archean and reactivated by middle Proterozoic fluid flow. Final emplacement at the current position on the West African Craton was at ~300 Ma during Gondwana–Laurentia collision.  相似文献   

12.
The structure of an early Proterozoic volcanic—sedimentary belt in northeastern Ghana is inferred from the distribution of lithologic units and interpretation of Bouguer gravity anomaly associated with the belt. It is shown from gravity modelling that the vertical thickness (depth) of the volcanic—sedimentary succession is ca. 3 km and that the structure of the western part of the belt is an overturned anticline, an interpretation consistent with facing data. This structure provides the basis from which the stratigraphic order of the mapped lithic units is deduced: (1) fine-grained epiclastic sediments interbedded with minor felsic tuffs, followed by (2) tholeiitic basaltic lavas, which are overlain by (3) calc-alkaline andesitic and dacitic lavas and tuffs; the youngest volcanic unit belonging to the sequence is a calc-alkaline mafic tuff (4). A manganese-rich chemical sediment is preserved at the boundary between the tholeiitic mafic lava and calc-alkaline intermediate volcanic rock units. The early Proterozoic sequence, which is unconformably overlain by coarse fluviatile sediments, is estimated to be ca. 8500 m thick. The stratigraphic sequence in the study area contrasts strongly with the conceptual stratigraphic schemes which are currently held to be valid for similar lithologic associations of early Proterozoic age (Birimian) in the West African shield.  相似文献   

13.
微亮晶(臼齿)碳酸盐岩:21世纪全球地学研究的新热点   总被引:25,自引:2,他引:25  
国际地质对比计划委员会批准启动了 IGCP44 7-元古代臼齿碳酸盐岩和地球演化项目 ( 2 0 0 1~ 2 0 0 5 )〔1〕。本文简要地回顾了臼齿碳酸盐岩的研究历史和最新进展。臼齿碳酸盐岩是一种具有类似大象臼齿的肠状褶皱构造的岩石 ,具有特殊的时限范围 (中 -新元古代 )。试图解释其成因和可能用于古大陆地层对比是本项目研究的重要课题 ,其重要意义还在于它们是解决前寒武纪生物学和地球化学事件的关键。臼齿碳酸盐岩的发育和衰退关系到地球生命起源和海洋碳酸盐岩沉积地球化学的突变。 87Sr/86 Sr年龄同位素测定证明 ,微亮晶 (臼齿 )碳酸盐消失的时限很可能为75 0 Ma。另外 ,中 -新元古代碳酸盐岩地层具有重要的生烃潜力。  相似文献   

14.
The Western Australian Shield consists of two large Archaean cratons that are partly covered by remnant Proterozoic sedimentary basins and partly surrounded by Proterozoic mobile belts. Archaean terrains are either granitoid-greenstone, or high-grade gneiss, the regional distribution of which influences the style of Proterozoic tectonism.Granitoid-greenstone terrains consist of thick volcanogenic sequences, now occurring as dismembered synclinal keels within voluminous granitoidand display features that are uniquely Archaean. The gneiss terrains, although severely modified and dismembered by metamorphism and plutonism, seem to display a more uniformitarian tectonic style than the granitoid-greenstones.Mounting evidence in the Yilgarn Block suggests that the gneiss terrains represent a pre-greenstone basement, which was probably very extensive, both outside and within the greenstone areas. The most extensive area of gneiss lies in a huge arc around the western part of the Yilgarn Block, creating a novel situation where older rocks seemingly “wrap around” younger rocks. It is postulated that the precursors of the two major granitoidgreenstone terrains were huge, discrete, somewhat rounded volcanic basins that developed within extensive and perhaps continuous crust. At least in the Pilbara, there is a phenomenally continuous volcanic stratigraphy. Despite the basic similarities there are sufficient differences between the two volcanic basins to suggest independent evolution, whereby similar processes operated in different places in different times.These granite—greenstone areas had largely stabilised by about 2500 m.y. and, during the Proterozoic, behaved as cratonic blocks that tended not to participate in the mobile belts. Thus, the Capricorn Orogen developed as an ensialic geosyncline, on gneiss basement, between the two cratons. Where Proterozoic sedimentary basins transgress on to the cratons, they are preserved as gently folded and virtually unmetamorphosed covers. Within the orogenic zone itself, trough sedimentation, prograde metamorphism, basement reworking, multiple deformation and granitoid emplacement were active over the period 2000-1600 m.y. Superimposed on the Capricorn Orogen is the intracratonic Bangemall Basin (about 1100-1000 m.y.) which displays patterns of cratonic deformation that relate closely to the underlying structures.Along the southeastern margin of the Yilgarn Block is the Albany-Fraser Province which developed over an interval from 1900 m.y., or older, to 1100 m.y. Tectonic zonation is expressed by a linear striping of contrasting rocks that become younger away from the Yilgarn Block. Rather than an accretionary origin, voluminous granitoid, basemeni reworkingand absence of geosynclinal sedimentation suggest a discrete zone of high crustal strain and high thermal activity, and the belt is likened to an arrested rift in a continental setting.  相似文献   

15.
《Precambrian Research》1987,37(1):19-28
The Mauritanide, Bassaride and Rokelide orogens occur along the western edge of the West African Craton. These record a polyphase tectonothermal evolution, including Pan African I (c. 650 Ma) and Pan African II (c. 550 Ma) events together with local Hercynian (late Paleozoic) overprinting. Pan African I activity is most penetratively recorded in the Bassarides, and resulted from late Proterozoic collision of a western continental structural block. Pan African II orogenesis increases in intensity from the southern Mauritanides through the Bassarides and dominates the Rokelides. This tectonothermal activity appears to reflect collision of the West African and Guyanean Cratons during assembly of Gondwana. Hercynian activity is concentrated along the margin of a western continental block which underwent relative eastward translation during collision of Gondwana and Laurentia. This resulted in extensive thrusting of intracontinental foreland sequences (external nappes) and more ductile imbrications of pre-deformed and metamorphosed late Proterozoic rift sequences and western calc-alkaline igneous successions (internal nappes).  相似文献   

16.
The geological structure, age, and genesis of sedimentary—volcanogenic, metamorphic, and metasomatic rocks from the Terskii greenstone belt fringing the southern Imandra—Varzuga structure in the southeastern Kola Peninsula are discussed with defining main stages in endogenic activity of the region in the Late Archean and Early Proterozoic. The U-Pb method (SHRIMP-II, ID-TIMS, and Pb-LS techniques) was used to determine the age of volcano-sedimentary rocks of the Imandra Group as well as that of magmatic and superimposed metamorphic and metasomatic processes. The basic—intermediate metavolcanics of the Imandra Group are dated at 2.67 Ga, which corresponds to the Lopingian Gimol’skii Superhorizon (Late Archean). The Archean metavolcanics were subjected to Early Proterozoic regional metamorphism 2.1 Ga ago and metasomatic processes in the period of 1.85 to 1.77 Ga ago. The obtained data indicate multistage evolution of rock formation in the Terskii greenstone belt located in the southern flank of the Imandra—Varzuga structure in the Kola Peninsula.  相似文献   

17.
M. M. Aksirov 《GeoJournal》1995,37(4):391-403
In studying the problem of the origin and history of rotation of the Sun and the planets, the author has concluded that the present speed of the Earth's rotation has increased during geological history. Therefore, material (physical) evidence of this phenomenon should exist in the planet's interior. This conclusion is fully confirmed by the vast amount of information contained in the Earth's sedimentary cover.On this basis of the overall geological data and changes in rotation of the Earth in the Proterozoic, we should assume that at the end of the Archean the planet had an opposite rotation relative to the present.In the Late Proterozoic the speed of direct rotation of the Earth, which by this time already transformed from retrograde to direct, was growing steadily by almost one rotation per year, for which there is ample evidence in the sedimentary cover. Correspondingly, the duration of the day during that period was lengthening as well. In the Cambrian, the planet's period of rotation equalled its orbital circulation. Therefore, duration of the solar day at that time reacted its maximum, and the day and night interchange reversed the succession. In the Late Proterozoic and Post-Cambrian Palaeozoic, palaeodays were long enough so that the climate was subjected to cycle variations of a large scale and for very different latitudes. At that time, the transition to the shadow side was accompanied by low latitude phases of glaciation, while on the insolated side, high temperature indicators were formed and an intense process of dolomite formation was in progress. During a long palaeoday the flux density of solar radiation changed very slowly. As a result, a period of one day consisted of several epochs, in each of which the climate and the thermal and physical conditions of sedimentation did not undergo considerable changes. Within each such period, highly specific types of sedimentary rocks were formed, depending on the individual features of the sedimentation region. Thus, different radiation flux densities, corresponding to different stages of the day, transformed through climate and thermal conditions, are reflected in the Earth's sedimentary cover as a cyclically repetitive sequence of lithological types of rock with each change of day and night. The gradual change of solar energy flux density and the temperature trend during the long palaeoday are obviously imprinted in the carbonate cycles of the Late Proterozoic and the Palaeozoic on a large scale; Late Palaeozoic coal cyclothems which are connected to the duration of day and the level of biosphere development are particularly noticeable. For different durations of day, confined within certain limits, particular climatic and thermal conditions, as well as geological processes, were characteristic and this has been reflected in differences of variations in the content of stratigraphic subdivisions.A rapid increase in the speed of rotation of the planet and a corresponding shortening of the day's duration coincided with the Meso-Cenozoic rebuilding of the Earth's crust. Cyclic and trended changes of the climate, that were consequences of slow and accelerating rotation of the Earth in the geological past, had an extremely important influence on the biological revolution and evolution of the biosphere as a whole.  相似文献   

18.
The Proterozoic Deadhorse Creek volcaniclastic breccia complex was emplaced in Archean metasedimentary and metavolcanic rocks of the Schreiber-White River greenstone belt adjacent to the Proterozoic Coldwell alkaline complex. The western sub-complex of the Deadhorse Creek breccia consists of metasomatically-altered breccia, a U-Be-Zr-rich main mineralized zone and a Zr-Y-Th-rich carbonate vein. The main mineralized zone is enriched in beryllium, thorium, uranium, first and second row transition elements, and rare earth elements. The major minerals present include: albite; potassium feldspar; quartz; calcite; apatite; and phenakite. Accessory minerals include: aegirine-jervisite; aegirine-natalyite; allanite; barite; barylite; coffinite; Ca-Mn-silicate; magnetite; monazite-(Ce); niobian vanadian rutile; pyrite; thorite; thorogummite; thortveitite; uraninite; vanadian crichtonite; xenotime-(Y); zircon and hydrated zircon; and zircon-thorite-coffinite solid solutions. The carbonate vein consists of dolomite-ankerite and calcite with accessory zircon, xenotime, and monazite. Barite, baotite and Ba-rich feldspars, were formed during metasomatism of the earlier-formed and genetically-unrelated volcaniclastic breccia adjacent to the main mineralized zone. The complex mineral assemblage of the fault-controlled main mineralized zone is considered to have formed in three stages. An initial emplacement of a “granitic” melt/fluid was followed by introduction of CO2-bearing Cr-Nb-V-Ti-enriched alkaline fluids. The latter reacted with minerals which had crystallized from the “granitic” melt/fluid to produce the exotic V-, Sc- and Nb-bearing mineral assemblage. Subsequently, a supergene suite of minerals, consisting principally of calcite, thorogummite, hollandite and tyuyamanite, formed during post-Pleistocene alteration was superimposed onto the pre-existing Proterozoic age mineral assemblage. The major mineralogy of the main mineralized zone is essentially ‘granitic” and the melts/fluids are considered to be derived from an A-type granite source. However, the Deadhorse Creek mineralization is older (1129±6 Ma) than the A-type quartz syenites of the adjacent Coldwell complex (1108±1 Ma) which are the nearest potential sources of such melts. Thus, the source of the “granitic” melt together with that of the Cr-Nb-V-Ti-bearing alkaline fluids remains enigmatic.  相似文献   

19.
The Singhbhum craton has a chequred history of mafic magmatism spanning from early Archaean to Proterozoic. However, lack of adequate isotopic age data put constraints on accurately establishing the history of spatial growth of the craton in which mafic magmatism played a very significant role. Mafic magmatism in the craton spreads from ca.3.3 Ga (oldest “enclaves” of orthoamphibolites) to about 0.1 Ga (‘Newer dolerite’ dyke swarms). Nearly contemporaneous amphibolite and intimately associated tonalitic orthogneiss may represent Archaean bimodal magmatism. The metabasic enclaves are appreciably enriched and do not fulfill the geochemical characteristics of worldwide known early Archaean (>3.0 Ga) mafic magmatism. The enclaves reveal compositional spectrum from siliceous high-magnesian basalt (SHMB) to andesite. However, the occurrence of minor depleted boninitic type within the assemblage has so far been overlooked. High magnesian basalt with boninitic character of Mesoarchaean age is also reported in association with supracrustals from southern fringe of the granitoid cratonic nucleus. The subcontinental lithospheric mantle (SCLM) below the craton is conjectured to have initiated during the early Archaean. Significantly, recurrence of depleted magma types in the craton is observed during the whole span of mafic igneous activity which has been vaguely related to “mantle heterogeneity”, although the alternative model of sequential mantle melting is also being explored. The Singhbhum craton includes the Banded Iron Formation (BIF) associated mafic lavas, MORB-like basic and komatiitic ultrabasic bimodal volcanism — documented as Dalma volcanics, Dhanjori lavas, and the Proterozoic Newer dolerite dykes. Three different types of REE fractionation patterns are observed in the BIF-associated mafic lavas. These are the REE unfractionated type is more depleted than N-MORB and some lavas with boninitic type of REE distribution. MORB-like basic and komatiitic ultrabasic (Dalma volcanics) are emplaced within the Proterozoic Singhbhum Basin (PSB). The vista of magmatism in the basin was controlled by a miniature spreading centre represented by the mid-basinal Dalma volcanic ridge. The volcano-sedimentary basinal domain of Dhanjori emerged at the interface of two subprovinces (viz. the mobile volcano-sedimentary belt of PSB and rigid granite platform) under unique stress environment related to extensional tectonic regime. Trace element distribution in Dhanjori lavas is remarkably similar to that in PSB minor intrusions and lavas (except a Ta spike in the latter). The Proterozoic Newer dolerite dykes within Singhbhum nucleus manifest an unusually wide spam of intrusive activity (ca 2100 Ma to 1100 Ma) and unexpectedly uniform mantle melting behaviour.  相似文献   

20.
The Precambrian sequences of the Avalon Zone in Canada (southeastern margin of the Appalachian Orogen) are interpreted as a Pan-African orogenic belt incorporated into the Appalachian Orogen during Palaeozoic times as its southeastern margin. The Precambrian evolution of the Avalon Zone was genetically unrelated to subsequent Palaeozoic evolution. The Avalon Zone shows marked similarities in age, tectonic history, and facies development to the Pan-African belts adjacent to the West African Craton. Precambrian evolution of the zone began with circa 800 Ma rifting of a sialic gneissic basement and deposition of a Middle Proterozoic(?) carbonate-clastic cover sequence. Early crustal rifting was associated with localized partial melting and metamorphism. Limited crustal separation led to the restricted development of circa 760 Ma oceanic volcanics. Continued rifting and subsequent closure of these narrow ocean basins led to the eruption of widespread subaerial volcanic suites, block faulting, granite plutonism, and local, late Proterozoic sedimentary basin formation. Precambrian evolution of the zone terminated with the Avalonian Orogeny (circa 650-600 Ma), a deformational event, the affects of which are most evident locally along the northwestern margin of the zone. The controlling features of the Proterozoic evolution of the Avalon Zone are a series of linear intracratonic troughs and small ocean basins that formed during thinning and separation of the crust by ductile spreading, rupture, and delamination (cf. Martin and Porada 1977). The variation in degree of crustal separation led to subsequent variation in orogenesis during late Proterozoic compression. The zone marks the original westward limit of Pan-African activity and displays no apparent genetic link with the Appalachian Orogen in Canada until Devonian times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号