首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The distance to the Orion Nebula cluster (ONC) is estimated using the rotational properties of its low-mass pre-main-sequence (PMS) stars. Rotation periods, projected equatorial velocities and distance-dependent radius estimates are used to form an observational sin  i distribution (where i is the axial inclination), which is modelled to obtain the distance estimate. A distance of  440 ± 34 pc  is found from a sample of 74 PMS stars with spectral types between G6 and M2, but this falls to  392 ± 32 pc  when PMS stars with accretion discs are excluded on the basis of their near-infrared excess. Since the radii of accreting stars are more uncertain and probably systematically underestimated, then this closer distance is preferred. The quoted uncertainties include statistical errors and uncertainties due to a number of systematic effects including binarity and inclination bias. This method is geometric and independent of stellar evolution models, though does rely on the assumption of random axial orientations and the Cohen & Kuhi effective temperature scale for PMS stars. The new distance is consistent with, although lower and more precise, than most previous ONC distance estimates. A closer ONC distance implies smaller luminosities and an increased age based on the positions of PMS stars in the Hertzsprung–Russell diagram.  相似文献   

2.
Pavel Kroupa   《New Astronomy》2000,4(8):615-624
The results obtained by Kroupa, Petr & McCaughrean (1999) for specific models of young compact binary-rich clusters are generalised using dynamical scaling relations, to infer the candidate set of possible birth models leading to the Orion Nebula Cluster (ONC), of which the Trapezium Cluster is the core. It is found that candidate sets of solutions exist which allow the ONC to be in virial equilibrium, expanding or contracting. The range of possible solutions is quite narrow. These results will serve as guidelines for future, CPU-intensive calculations of the stellar-dynamical and astrophysical evolution of the entire ONC. These, in turn, will be essential to quantify observables that will ultimately discriminate between models, thus allowing us to understand if the ONC is in the process of assembling a rich Galactic cluster, and, if this is the case, how it occurs.  相似文献   

3.
We use numerical N -body simulations of the Orion Nebula Cluster (ONC) to investigate the possibility of substructure in its formation. There is no substructure apparent in the ONC today. However, unless there was a remarkable degree of homogeneity in the molecular cloud from which it formed, it seems unlikely that this would have been true of the cluster in its earliest phase. More plausibly, the early structure of the cluster would have consisted of groups or clumps of subclusters, following the structure of the cloud itself. We have explored the extent to which such subclusters could subsequently have merged, and find that the age of the cluster is a critical factor. The most inhomogeneous initial conditions, comprising a small number of subclusters with many members, are ruled out by an age of 2 Myr or less. There is a considerable amount of freedom in the other direction, however, which suggests that fragmentation in the original cloud is more likely to have been on the scale of small clumps, each producing fewer than 100 stars. These initial subclusters could have been very dense – perhaps two or three orders of magnitude more dense than the core of the ONC today.  相似文献   

4.
5.
Direct N -body calculations are presented of the formation of Galactic clusters using GasEx , which is a variant of the code Nbody6 . The calculations focus on the possible evolution of the Orion nebula cluster (ONC) by assuming that the embedded OB stars explosively drove out 2/3 of its mass in the form of gas about 0.4 Myr ago. A bound cluster forms readily and survives for 150 Myr despite additional mass loss from the large number of massive stars, and the Galactic tidal field. This is the very first time that cluster formation is obtained under such realistic conditions. The cluster contains about 1/3 of the initial 104 stars, and resembles the Pleiades cluster to a remarkable degree, implying that an ONC-like cluster may have been a precursor of the Pleiades. This scenario predicts the present expansion velocity of the ONC, which will be measurable by upcoming astrometric space missions. These missions should also detect the original Pleiades members as an associated expanding young Galactic-field subpopulation. The results arrived at here suggest that Galactic clusters form as the nuclei of expanding OB associations.
The results have wide implications, also for the formation of globular clusters and the Galactic-field and halo stellar populations. In view of this, the distribution of binary orbital periods and the mass function within and outside the model ONC and Pleiades is quantified, finding consistency with observational constraints. Advanced mass segregation is evident in one of the ONC models. The calculations show that the primordial binary population of both clusters could have been much the same as is observed in the Taurus–Auriga star-forming region. The computations also demonstrate that the binary proportion of brown dwarfs is depleted significantly for all periods, whereas massive stars attain a high binary fraction.  相似文献   

6.
7.
We present 3D hydrodynamical simulations of the superbubble M17, also known as the Omega Nebula, carried out with the adaptive grid code yguazú-a , which includes radiative cooling. The superbubble is modelled considering the winds of 11 individual stars from the open cluster inside the nebula (NGC 6618), for which there are estimates of the mass-loss rates and terminal velocities based on their spectral types. These stars are located inside a dense interstellar medium, and they are bounded by two dense molecular clouds. We carried out three numerical models of this scenario, considering different line-of-sight positions of the stars (the position in the plane of the sky is known, thus fixed). Synthetic thermal X-ray emission maps are calculated from the numerical models and compared with ROSAT observations of this astrophysical object. Our models successfully reproduce both the observed X-ray morphology and the total X-ray luminosity, without taking into account the thermal conduction effects.  相似文献   

8.
The existence of older stars within a young star cluster can be interpreted to imply that star formation occurs on time-scales longer than a free-fall time of a pre-cluster cloud core. Here, the idea is explored that these older stars are not related to the star formation process forming the young star cluster but rather that the orbits of older field stars are focused by the collapsing pre-cluster cloud core. Two effects appear: the focusing of stellar orbits leads to an enhancement of the density of field stars in the vicinity of the centre of the young star cluster; and due to the time-dependent potential of the forming cluster some of these stars can get bound gravitationally to the cluster. These stars exhibit similar kinematical properties to the newly formed stars and cannot be distinguished from them on the basis of radial velocity or proper motion surveys. Such contaminations may lead to a wrong apparent star formation history of a young cluster. In the case of the ONC, the theoretical number of gravitationally bound older low-mass field stars agrees with the number of observed older low-mass stars.  相似文献   

9.
对著名老年疏散星团M67的成员星进行了两点相关函数分析,讨论了团星的空间分布情况及质量分层现象.结果表明:M67成员星的两点相关函数能很好地用幂律形式来描述,其成员星在空间分布上具有显著的成团性和自相似性.对M67不同光度成员星两点自相关函数的分析表明,亮星相比暗星具有更强的相关强度和更大的相关指数,说明在星团内部出现了明显的空间质量分层现象,亮星比暗星具有更强的成团性和更大的中心聚度.不同光度成员星间两点交叉相关函数的分析进一步表明,不同光度成员星之间并没有表现出绝对的空间质量分层现象,亮星和暗星在空间分布上相互交织、相互渗透.  相似文献   

10.
11.
We report on the results of a time-series photometric survey of M50 (NGC 2323), a  ∼130 Myr  open cluster, carried out using the Cerro Tololo Inter-American Observatory (CTIO) 4-m Blanco telescope and Mosaic-II detector as part of the Monitor project. Rotation periods were derived for 812 candidate cluster members over the mass range  0.2 ≲ M /M≲ 1.1  . The rotation period distributions show a clear mass-dependent morphology, statistically indistinguishable from those in NGC 2516 and M35 taken from the literature. Due to the availability of data from three observing runs separated by ∼10 and 1 month time-scales, we are able to demonstrate clear evidence for evolution of the photometric amplitudes, and hence spot patterns, over the 10 month gap. We are not able to constrain the time-scales for these effects in detail due to limitations imposed by the large gaps in our sampling, which also prevent the use of the phase information.  相似文献   

12.
Star clusters are often hard to find, as they may lie in a dense field of background objects or, because in the case of embedded clusters, they are surrounded by a more dispersed population of young stars. This paper discusses four algorithms that have been developed to identify clusters as stellar density enhancements in a field, namely stellar density maps from star counts, the nearest neighbour method and the Voronoi tessellation, and the separation of minimum spanning trees. These methods are tested and compared to each other by applying them to artificial clusters of different sizes and morphologies. While distinct centrally concentrated clusters are detected by all methods, clusters with low overdensity or highly hierarchical structure are only reliably detected by methods with inherent smoothing (star counts and nearest neighbour method). Furthermore, the algorithms differ strongly in computation time and additional parameters they provide. Therefore, the method to choose primarily depends on the size and character of the investigated area and the purpose of the study (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
We describe the results of a very deep imaging survey of the Trapezium cluster in the IJH bands, using the UKIRT high-resolution camera UFTI. Approximately 32 per cent of the 515 point sources detected are brown dwarf candidates, including several free-floating objects with masses below the deuterium-burning (planetary) threshold at 0.013 M, which are detectable because of their extreme youth. We have confidence that almost all the sources detected are cluster members, since foreground contamination is minimal in the 33-arcmin2 area surveyed, and the dense backdrop of OMC-1 obscures all background stars at these wavelengths. Extinction is calculated from the ( J − H ) colours, permitting accurate luminosity estimates, and temperatures are derived from the dereddened ( I − J ) colours. There is some evidence for a cut-off in the luminosity function below the level corresponding to several Jupiter masses, which may represent the bottom end of the initial mass function . Since star formation is complete in the Trapezium, this limit could have wide significance, if confirmed. However, it could well be an effect of the dispersal of the molecular cloud by the central O-type stars, a process for which the time-scale will vary between star formation regions.  相似文献   

14.
We fit the colour–magnitude diagrams of stars between the zero-age main-sequence and terminal-age main sequence in young clusters and associations. The ages we derive are a factor of 1.5–2 longer than the commonly used ages for these regions, which are derived from the positions of pre-main-sequence stars in colour–magnitude diagrams. From an examination of the uncertainties in the main-sequence and pre-main-sequence models, we conclude that the longer age scale is probably the correct one, which implies that we must revise upwards the commonly used ages for young clusters and associations. Such a revision would explain the discrepancy between the observational lifetimes of protoplanetary discs and theoretical calculations of the time to form planets. It would also explain the absence of clusters with ages between 5 and 30 Myr.
We use the  τ2  statistic to fit the main-sequence data, but find that we must make significant modifications if we are to fit sequences which have vertical segments in the colour–magnitude diagram. We present this modification along with improvements to the methods of calculating the goodness-of-fit statistic and parameter uncertainties.
Software implementing the methods described in this paper is available from http://www.astro.ex.ac.uk/people/timn/tau-squared/ .  相似文献   

15.
A deep ROSAT PSPC image centred on the Orion Trapezium has been reduceda second time using an improved version of the PSF to fit the data. The outer rim of the field of view was also included. The new catalogue contains 316 X‐ray sources which are easily identified with pre‐main sequence stars of the Ori OB1 Ic and Id association. All 316 sources were tested for variability. No variations were found inside the single exposures of about 45 minutes length each. Between the 4 exposures spaced over 5 days about 1/3 of the sources show signs of activities of various forms. As above 25% of these have somewhat regular lights curves (monotonically rising or falling or hill‐shaped) we infer that at least some outbursts with time scales longer than a day are present and that past searches for X‐ray flares of pre‐main sequence stars were biased towards shorter time scales.  相似文献   

16.
The effect of gas ejection on the structure and binding energy of newly formed stellar clusters is investigated. The star formation efficiency (SFE), necessary for forming a gravitationally bound stellar cluster, is determined.
Two sets of numerical N -body simulations are presented. As a first simplified approach we treat the residual gas as an external potential. The gas expulsion is approximated by reducing the gas mass to zero on a given time-scale, which is treated as a free parameter. In a second set of simulations we use smoothed particle hydrodynamics (SPH) to follow the dynamics of the outflowing residual gas self-consistently. We investigate cases where gas outflow is induced by an outwards propagating shock front and where the whole gas cloud is heated homogeneously, leading to ejection.
If the stars are in virial equilibrium with the gaseous environment initially, bound clusters only form in regions where the local SFE is larger than 50 per cent or where the gas expulsion time-scale is long compared with the dynamical time-scale. A small initial velocity dispersion of the stars leads to a compaction of the cluster during the expulsion phase and reduces the SFE needed to form bound clusters to less than 10 per cent.  相似文献   

17.
18.
Star clusters are born in a highly compact configuration, typically with radii of less than about 1 pc roughly independently of mass. Since the star formation efficiency is less than 50 per cent by observation and because the residual gas is removed from the embedded cluster, the cluster must expand. In the process of doing so it only retains a fraction f st of its stars. To date there are no observational constraints for f st, although N -body calculations by Kroupa, Aarseth & Hurley suggest it to be about 20–30 per cent for Orion-type clusters. Here we use the data compiled by Testi et al., Testi, Palla & Natta and Testi, Palla & Natta for clusters around young Ae/Be stars and by de Wit et al. and de Wit et al. around young O stars and the study of de Zeeuw et al. of OB associations and combine these measurements with the expected number of stars in clusters with primary Ae/Be and O stars, respectively, using the empirical correlation between maximal stellar mass and star cluster mass of Weidner & Kroupa. We find that   f st < 50  per cent with a decrease to higher cluster masses/more massive primaries. The interpretation would be that cluster formation is very disruptive. It appears that clusters with a birth stellar mass in the range  10–103 M  keep at most 50 per cent of their stars.  相似文献   

19.
20.
We examine the effects of dynamical evolution in clusters on planetary systems or protoplanetary discs orbiting the components of binary stars. In particular, we look for evidence that the companions of host stars of planetary systems or discs could have their inclination angles raised from zero to between the threshold angles (39.23° and 140.77°) that can induce the Kozai mechanism. We find that up to 20 per cent of binary systems have their inclination angles increased to within the threshold range. Given that half of all extrasolar planets could be in binary systems, we suggest that up to 10 per cent of extrasolar planets could be affected by this mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号