首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We investigated whether techniques developed to evaluate qualitative lake-level changes in the temperate zone can be used in sub-arctic and arctic Alaska. We focused on aquatic pollen records and sediment properties (loss-on-ignition and magnetic susceptibility) from centrally-located sediment-surface samples and cores, as these are the most commonly reported data in the literature. Modern aquatic pollen values are generally low (< 5%) and may be zero, even in lakes with abundant aquatic macrophytes. Greater diversity and higher values of aquatic pollen are likely at depths < 5 m, but pollen is found in depths up to 15 m. It is absent at depths > 20 m. Spores of Isoetes and Equisetum and Pediastrum cell-nets, when present, tend to be widely distributed, even in deep water. At Birch Lake, interior Alaska, trends in aquatic taxa and sediment characteristics for the last ca. 12,000 14C yrs recorded in a single, deep-water core reflect the same water-level changes as do transect-based lake-level reconstructions - if modern distributional characteristics of pollen and spores are taken into account. The lake rose from extremely low levels at ca. 12,000 14C yr B.P. After a period of fluctuation, it rose to a relatively high level by ca. 8000 14C yr B.P. and then stabilized. A preliminary survey of aquatic pollen trends from other lake-sediment records suggests that the period ca. 11,000-8000 14C yr B.P. may have seen relatively low lake levels in north-western and interior Alaska and high levels thereafter. Changes in aquatic pollen and sediments are evident in north-eastern interior lakes at the same time, but they are more difficult to interpret. Aquatic pollen productivity in Alaskan lakes may partly depend on factors other than water depth (e.g. temperature, pH, nutrient status, or length of the ice-free season). An Alaska-wide reconstruction of late-Quaternary lake levels based on extant single-core data would be best done after further study of contributing factors that may control sediment properties and aquatic pollen distribution.  相似文献   

2.
Wetlands and lakes in the Tanana Valley, Alaska, have provided important resources for prehistoric humans who inhabited this region. We examine an ~11,200?cal?yr BP record of environmental and paleolimnological changes from Quartz Lake in the middle Tanana Valley. Our data are also presented in the context of recent archaeological findings in the lake??s general vicinity that have 18 associated AMS 14C dates. We analyzed the stable-carbon and nitrogen isotope composition of total organic matter from the core, coupled with oxygen and carbon isotope analyses of Pisidiidae shells (fingernail clams), in addition to chironomid assemblage changes. Lacustrine sediments began to accumulate at ~11,200?cal?yr BP. Initially, autochthonous production was low and allochthonous organic input was negligible between 11,000 and 10,500?cal?yr BP, and were associated with relatively cool conditions at Quartz Lake at ~10,700?cal?yr BP. After 10,500?cal?yr BP, autochthonous production was higher coincident with a shift to chironomid assemblages dominated by taxa associated with warmer summer climates. A decrease in ??13C values of total organic carbon (TOC) and organic content of the sediment between 9,000 and 4,000?cal?yr BP may indicate declining autochthonous primary production. This period ended with an abrupt (~7???) decrease in the ??18O values from Pisidiidae shells at ~3,000?cal?yr BP, which we hypothesize represented an episodic connection (flood) of the lake with flow from the nearby (~6?km) Tanana River. Our findings coincide with evidence for major flooding at other locations connected to the Tanana River and further afield in Alaska. From ~3,000?cal?yr BP Quartz Lake subsequently appeared to become a relatively closed system, as indicated by the ??18OPisidiidae and ??13CPisidiidae data that are positively correlated and generally higher, which also correlates with a shift to moderately higher abundances of littoral chironomids. The cause of the transition to closed-basin conditions may have been geomorphic rather than climatic. This evidence of a progressively stronger evaporative influence on the lake??s closed hydrology after ~3,000?cal?yr BP is consistent with our modern ??18O and ??D water data from Quartz Lake that plot along a regional evaporative line we base on isotopic measurements from other local lakes and rivers.  相似文献   

3.
A pollen record from Rock Lake in the Mission Mountains, northwestern Montana reveals a four-zone sequence reflecting Holocene vegetation change. Chronologic control is provided by two well-known tephras, Glacier Peak (11 200 yr B.P.) and Mazama (6800 yr B.P.). The presence of Glacier Peak tephra above the basal inorganic sediments indicates deglaciation prior to 11 200 yr B.P. Colonizing vegetation (Zone I) after the fall of Glacier Peak tephra was dominated byArtemisia (sage) andAlnus (alder). The presence ofAbies needles,Picea needles, and oneTaxus needle in the core demonstrates that these taxa were at Rock Lake at the time Zone II sediments were deposited. The increase inPinus,Picea, andAbies pollen in Zone II (10 850-4750 yr B.P.) suggests warmer and drier conditions prevailed, and may record the Hypsithermal. The pervasiveness ofPicea andAbies pollen in Pollen Zone III (4750-3350 yr B.P.) suggests the emergence of the modern subalpine forest. Pollen Zone IV (3350 yr B.P.-present) is characterized by relatively little change in the pollen assemblages. One noted change, however, is the increase of Cyperaceae (sedge), which may indicate an expansion of shore-line around the lake, possibly reflecting increased precipitation.This is the 5th in a series of papers published in this special AMQUA issue. These papers were presented at the 1994 meeting of the American Quaternary Association held 19–22 June, 1994, at the University of Minnesota, Minneapolis, Minnesota, USA. Dr Linda C. K. Shane served as guest editor for these papers.  相似文献   

4.
Because of differential isostatic rebound, many lakes in Canada have continued to change their extent and depth since retreat of the Laurentide Ice Sheet. Using GIS techniques, the changing configuration and bathymetry of Lake of the Woods in Ontario, Manitoba, and Minnesota were reconstructed for 12 points in time, beginning at 11,000 cal yr B.P. (9.6 14C ka B.P.), and were also projected 500 years into the future, based on the assumption that Lake of the Woods continued to have a positive hydrological budget throughout the Holocene. This modeling was done by first compiling a bathymetric database and merging that with subaerial data from the Shuttle Radar Topography Mission (SRTM). This DEM file was then adjusted by: (1) isobase data derived from Lake Agassiz beaches prior to 9000 cal yr B.P. (8.1 14C ka B.P.) and (2) modeled isostatic rebound trend analysis after 9000 cal yr B.P. Just after the end of the Lake Agassiz phase of Lake of the Woods, only the northernmost part of the basin contained water. Differential rebound has resulted in increasing water depth. In the first 3000 years of independence from Lake Agassiz, the lake transgressed >50 km to the south, expanding its area from 858 to 2857 km2, and more than doubling in volume. Continued differential rebound after 6000 cal yr B.P. (5.2 14C ka B.P.) has further expanded the lake, although today it is deepening by only a few cm per century at the southern end. In addition, climate change in the Holocene probably played a role in lake level fluctuations. Based on our calculation of a modern hydrological budget for Lake of the Woods, reducing runoff and precipitation by 65% and increasing evaporation from the lake by 40% would end overflow and cause the level of the lake to fall below the outlets at Kenora. Because this climate change is comparable to that recorded during the mid-Holocene warming across the region, it is likely that the area covered by the lake at this time would have been less than that determined from differential isostatic rebound alone.  相似文献   

5.
The vegetation history and development of three different types of lakes, lakes Valday, Kubenskoye and Vishnevskoye (northwest of the East European Plain) were reconstructed using paleolimnological techniques. Watershed vegetation demonstrates a close connection with climate fluctuations: gradual expansion of the southern broad-leaved trees to the North during the Holocene with the maximum extent during the climate optimum (8000–5000 BP); and their subsequent retreat afterwards; followed by the extension of spruce during the cold and dry Subboreal time; and dominance of pine-spruce-birch forests in the Subatlantic time. The Late Pleistocene and Holocene climate changes resulted in lake-level fluctuations and other ecosystem changes. Valday Lake was formed ca. 12,500 BP as an oligotrophic, deep water basin. The lake level decreased during the dry Boreal, then increased again during the humid Atlantic period. The large shallow Kubenskoye Lake was formerly a part of an ice margin lake, which was then separated (ca. 13,000 BP) and developed into the Sukhona Basin with an outflow to the northwest. During the Atlantic, the outflow direction changed to the east. As a result, the ancient Sukhona Lake disappeared and Kubenskoye Lake formed in its modern size and shape. Vishnevskoye Lake, on the Karelian Isthmus, was formed at the beginning of the Preboreal after the disappearance of the Baltic Ice Lake. It was flooded by waters of the Boreal Ancylus transgression of the Baltic Basin and had become a small eutrophic lake by the time.  相似文献   

6.
Radiocarbon and uranium-series ages of a variety of materials from the Lahontan basin indicate that the last highstand lake occurred between 14 500 and 13 000 yr B.P. Although few in number, existing radiocarbon and uranium-series age data also indicate that lakes in the western Lahontan subbasins were small or moderate in size between 30 000 and 25 000 yr B.P. Existing data do not support the conclusions of Bradbury et al. (1989) who did not find evidence of a 14 000±yr B.P. highstand lake in the sediments of the Walker Lake subbasin. These data also do not support the existence of a highstand lake in the Walker Lake subbasin between 30 000 and 25 000 yr B.P.  相似文献   

7.
Climatic and environmental changes since the last glacial period are important to our understanding of global environmental change. There are few records from Southern Tibet, one of the most climatically sensitive areas on earth. Here we present a study of the lake sediments (TC1 core) from Lake Chen Co, Southern Tibet. Two sediment cores were drilled using a hydraulic borer in Terrace 1 of Lake Chen Co. AMS 14C dating of the sediments showed that the sequence spanned >30,000 years. Analyses of present lake hydrology indicated that glacier melt water is very important to maintaining the lake level. Sediment variables such as grain size, TOC, TN, C/N, Fe/Mn, CaCO3, and pollen were analyzed. Warm and moderately humid conditions dominated during the interval 30,000–26,500 cal year BP. From 26,500 to 20,000 cal year BP, chemical variables and pollen assemblages indicate a cold/dry environment, and pollen amounts and assemblages suggest a decline in vegetation. From 20,000 to 18,000 cal year BP, the environment shifted from cold/dry to warm/humid and vegetation rebounded. The environment transitioned to cold/humid during 16,500–10,500 cal year BP, with a cold/dry event around 14,500 cal year BP. After 10,500 cal year BP, the environment in this region tended to be warm/dry, but exhibited three stages. From 10,500 to 9,000 cal year BP, there was a short warm/humid period, but a shift to cold/dry conditions occurred around 9,000 cal year BP. Thereafter, from 9,000 to 6,000 cal year BP, there was a change from cold/dry to warm/humid conditions, with the warmest period around 6,000 cal year BP. After 6,000 cal year BP, the environment cooled rapidly, but then displayed a warming trend. Chemical variables indicate that a relatively warm/dry event occurred around 5,500–5,000 cal year BP, which is supported by time-lagged pollen assemblages around 4,800 cal year BP. Our lake sediment sequence exhibits environmental changes since 30,000 cal year BP, and most features agree with records from the Greenland GISP2 ice core and with other sequences from the Tibetan Plateau. This indicates that environmental changes inferred from Lake Chen Co, Southern Tibet were globally significant.  相似文献   

8.
Sevier Lake is the modern lake in the topographically closed Sevier Lake basin, and is fed primarily by the Sevier River. During the last 12 000 years, the Beaver River also was a major tributary to the lake. Lake Bonneville occupied the Sevier Desert until late in its regressive phase when it dropped to the Old River Bed threshold, which is the low point on the drainage divide between the Sevier Lake basin and the Great Salt Lake basin. Lake Gunnison, a shallow freshwater lake at 1390 m in the Sevier Desert, overflowed continuously from about 12 000 to 10 000 yr B.P., into the saline lake in the Great Salt Lake basin, which continued to contract. This contrast in hydrologic histories between the two basins may have been caused by a northward shift of monsoon circulation into the Sevier Lake basin, but not as far north as the Great Salt Lake basin. Increased summer precipitation and cloudiness could have kept the Sevier Lake basin relatively wet.By shortly after 10 000 yr B.P. Lake Gunnison had stopped overflowing and the Sevier and Beaver Rivers had begun depositing fine-grained alluvium across the lake bed. Sevier Lake remained at an altitude below 1381 m during the early and middle Holocene. Between 3000 and 2000 yr B.P. the lake expanded slightly to an altitude of about 1382.3 m. A second expansion, probably in the last 500 years, culminated at about 1379.8 m. In the mid 1800s the lake had a surface altitude of 1379.5 m. Sevier Lake was essentially dry (1376 m) from 1880 until 1982. In 1984–1985 the lake expanded to a 20th-century high of 1378.9 m in response to abnormally high snow-melt runoff in the Sevier River. The late Holocene high stands of Sevier Lake were most likely related to increased precipitation derived from westerly air masses.This is the first of a series of papers to be published by this journal that was presented in the paleolimnology sessions organized by R. B. Davis and H. Löffler for the XIIth Congress of the International Union for Quaternary Research (INQUA), which took place in Ottawa, Canada in August 1987. Drs. Davis and Löffler are serving as guest editors of this series.  相似文献   

9.
Geomorphology of a beach-ridge complex and adjacent lake basins along the northern shore of Lake Michigan records fluctuations in the level of Lake Michigan for the last 8000 to 10 000 14C yr B.P. (radiocarbon years Before Present). A storm berm at 204.7–206 m (671.6–675.9 ft) exposed in a sandpit provides evidence of a pre-Chippewa Low lake level that is correlated with dropping water levels of Glacial Lake Algonquin (c. 10 300–10 100 14C yr B.P.). Radiocarbon dates from organic material exposed in a river cutbank and basal sediments from Elbow Lake, Mackinac Co., Michigan, indicate a maximum age of a highstand of Lake Michigan at 6900 14C yr B.P., which reached as high as 196.7 m (645 ft), during the early-Nipissing transgression of Lake Michigan. Basal radiocarbon dates from beach swales and a second lake site (Beaverhouse Lake, Mackinac Co.) provide geomorphic evidence for a subsequent highstand which reached 192.6 m (632 ft) at 5390±70 14C yr B.P.Basal radiocarbon dates from a transect of sediment cores, along with tree-ring data, and General Land Office Surveyor notes of a shipwreck, c. A.D. 1846, reveal a late-Holocene rate for isostatic rebound of 22.6 cm/100 radiocarbon years (0.74 ft/100 radiocarbon years) for the northern shore of Lake Michigan, relative to the Lake Michigan-Lake Huron outlet at Port Huron, Michigan. Changes in sediment stratigraphy, inter-ridge distance, and sediment accumulation rates document a mid- to late-Holocene retreat of the shoreline due to isostatic rebound. This regression sequence was punctuated by brief, periodic highstands, resulting in progressive development over the past 5400 14C yr of 75 pairs of dune ridges and swales each formed over an interval of approximately 72 years. Times of lake-level fluctuation were identified at 3900, 3200, and 1000 14C yr B.P. based on changes in inter-ridge spacing, shifts in the course of Millecoquins River, and reorientation of beach-ridge lineation. Soil type, dune development, and selected pollen data provide supporting evidence for this chronology. Late-Holocene beach-ridge development and lake-level fluctuations are related to a retreat of the dominant Pacific airmass and the convergence of the Arctic and Tropical airmasses resulting in predominantly meridional rather than zonal air flow across the Great Lakes region.This is the 13th in a series of papers published in this special AMQUA issue. These papers were presented at the 1994 meeting of the American Quaternary Association held 19–22 June, 1994, at the University of Minnesota, Minneapolis, Minnesota, USA. Dr Linda C. K. Shane served as guest editor for these papers.  相似文献   

10.
Paleoshoreline evidence for postglacial tilting in Southern Manitoba   总被引:1,自引:0,他引:1  
Detailed air photo interpretation and four seasons of field mapping and surveying in southern Manitoba have revealed that the once-level paleoshorelines of Lake Winnipegosis and Dauphin Lake and the Burnside shoreline of former Lake Agassiz have been tilted up to the northeast by postglacial differential rebound. Our investigation has also revealed that Lake Winnipegosis has the best preserved paleoshoreline record of any of the large lakes in southern Manitoba, including lakes Winnipeg and Manitoba. This is because northeasterly uptilting shifts the region's lakes to the southwest. Lakes with southern outlets, like Lake Winnipegosis, undergo general regression as the outlet is lowered relative to the rest of the basin. Lakes with northern outlets, like lakes Winnipeg and Manitoba, undergo general transgression as northeasterly uptilting raises the outlet relative to the rest of the basin. Along the northeastern shore of Lake Winnipegosis a staircase of at least 32 abandoned Winnipegosis shorelines exists that is consistent with northeasterly tilting. The Dawson level represents the major mid-Holocene highstand on Lake Winnipegosis. It persisted for about 500 years, peaking at 5290 14C yr B.P. (early Dawson) and then falling about 3 m by 4740 14C yr B.P. (late Dawson). The early Dawson shoreline is tilted at 13.5 cm km-1 in a direction N24.3°E. Three other shorelines informally named shoreline 4, shoreline 3, and shoreline 2 are also tilted up to the northeast. Their radiocarbon ages (and slopes in cm km-1) are 3330 yr B.P. (2.2), 1510 yr B.P. (1.3), and 1080 yr B.P. (0.7), respectively. On Dauphin Lake shoreline IV is the oldest level mapped for this study. It has a 14C age of 7910 yr B.P. and is tilted at 21.7 cm km-1 in a direction N44.4°E. The Id shoreline marks the major mid-Holocene highstand for Dauphin Lake. It peaked at 4640 14C yr B.P. followed by a rapid decline of about 1 m to the Ib shoreline, which is dated at 4320 14C yr B.P. Id is tilted up at 8.8 cm km-1 in a direction N53.4°E. The next major shoreline is Ia3 which has a 14C age of 3020 yr B.P. and is tilted up at 5.3 cm km-1 in a direction N62.3°E. Tilt directions are significantly more easterly for the Dauphin Lake shorelines than those from Lake Winnipegosis or any of the much older Lake Agassiz shorelines. Taken together, the Winnipegosis and Dauphin isobases indicate that the direction of tilt in southern Manitoba is more complex than a simple uni-directional pattern. The observed pattern of tilting for paleoshorelines in southern Manitoba agrees better with predictions derived from the recently revised loading history model ICE-4G than with those from its predecessor ICE-3G. In general, the calculated tilt based on the ICE-3G load tends to exceed the observed tilt, while ICE-4G tends to underestimate it. Both ice load models appear to disagree most with our observed tilts in this region during the interval before about 9000 cal yr B.P., when deglaciation was proceeding rapidly and the large water load associated with Lake Agassiz covered the region. Because both of these ice load models have been estimated mainly from a global data set of relative sea level curves from marine coast sites, it is not unexpected that model tilts derived from them do not agree well with observations in the North American continental interior. The pattern of postglacial crustal deformation for southern Manitoba described in this paper could be used to further refine ice load models for the North American continental interior.  相似文献   

11.
Kettle ponds in the Cape Cod National Seashore in southeastern Massachusetts differ in their evolution due to depth of the original ice block, the clay content of outwash in their drainage basins, and their siting in relation to geomorphic changes caused by sea-level rise, barrier beach formation, and saltmarsh development. Stratigraphic records of microfossil, carbon isotope, and sediment changes also document late-glacial and Holocene climatic changes.The ponds are separated into 3 groups, each of which follow different development scenarios. Group I ponds date from the late-glacial. They formed in clay-rich outwash, have perched aquifers and continuous lake sediment deposition. The earliest pollen and macrofossil assemblages in Group I pond sediments suggest tundra and spruce-willow parklands before 12 000 yr B.P., boreal forest between 12 000 and 10 500 yr B.P., bog/heath initiation and expansion during the Younger Dryas between 11 000 and 10 000 yr B.P., northern conifer forest between 10 500 and 9500 yr B.P., and establishment of the Cape oak and pitch pine barrens vegetation after 9500 yr B.P. Sedimentation rate changes suggest lowered freshwater levels between 9000 and 5000 yr B.P. caused by decreased precipitation on the Atlantic Coastal Plain. Lake sediment deposition began in the middle Holocene in Group II ponds which formed in clay-poor outwash. These ponds date from about 6000-5000 yr B.P. In these ponds sediment deposition began as sea level rose and the freshwater lens intersected the dry basins. The basal radiocarbon dates of these ponds and stable carbon isotope analyses of the pond sediments suggest a sea-level curve for Cape Cod Bay. Holocene topographic changes in upland and the landscape surrounding the ponds is reconstructed for this coastal area.Group III ponds in the late Holocene landscape of the Provincelands dunes originated as interdunal bogs about 1000 yr B.P. and became ponds more recently as water-levels increased. Peat formation in the Provincelands reflects climatic changes evident on both sides of the Atlantic region.This is the 8th in a series of papers published in this special AMQUA issue. These papers were presented at the 1994 meeting of the American Quaternary Association held 19–22 June, 1994, at the University of Minnesota, Minneapolis, Minnesota, USA. Dr Linda C. K. Shane served as guest editor for these papers.  相似文献   

12.
Paleoenvironmental studies have documented the late Pleistocene to Holocene evolution of the lakes in the central and southern parts of the basin of Mexico (Texcoco and Chalco). No information was available, however, for the lakes in the north-eastern part of this basin. The north-eastern and the central and southern areas represent, at present, different environmental conditions: an important gradient exists between the dry north and the moister south. To investigate the late Pleistocene to Holocene characteristics of the north-eastern lakes in the basin of Mexico two parallel cores (TA and TB) were drilled at the SE shore of Lake Tecocomulco. Stratigraphy, magnetic properties, granulometry, diatom and pollen analyses performed on these sediments indicate that the lake experienced a series of changes between ca. > 42,000 yr BP and present. Chronological control is given by five radiocarbon determinations. The base of the record is represented by a thick, rhyolitic air-fall tephra that could be older than ca. 50,000 yr BP. After this Plininan event, and until ca. 42,000 yr BP, Lake Tecocomulco was a moderately deep, freshwater lake surrounded by extended pine forests that suggest the presence of cooler and moister conditions than present. Between ca. 42,000 and 37,000 yr BP, the lake became shallower but with important fluctuations and pollen suggests slightly warmer conditions. Between ca. 37,000 and 30,000 yr BP the lake experienced two relatively deep phases separated by a dry interval. A second Plinian eruption, represented in the sequence by a dacitic an air-fall tephra layer dated at 31,000 yr BP, occurred in the area by the end of this dry episode. Between ca. 30,000 and 25,7000 yr BP Tecocomulco was a fresh to slightly alkaline lake with a trend towards lower level. After ca. 25,700 yr BP very low lake levels are inferred, and after ca. 16,000 yr BP the data indicate the presence of a very dry environment that was persistent until the middle Holocene. After 3,500 yr BP lacustrine conditions were re-established and the vegetation cover shows a change towards higher percentages of herbaceous taxa.  相似文献   

13.
Multiple proxies record aridity in the northern Great Lakes basin ~8,800–8,000 cal (8,000–7,200) BP when water levels fell below outlets in the Michigan, Huron and Georgian Bay basins. Pollen-climate transfer function calculations on radiocarbon-dated pollen profiles from small lakes from Minnesota to eastern Ontario show that a drier climate was sufficient to lower the Great Lakes, in particular Georgian Bay, to closed basins. The best modern climate analog for the early Holocene late Lake Hough stage in the Georgian Bay basin is Black Bass Lake near Brainerd MN. Modern annual precipitation at Brainerd is ~35% lower than at Huntsville ON, in the Georgian Bay catchment; warmer summers and colder, less snowy winters make Brainerd drier than the Georgian Bay snow belt. These values parallel transfer function reconstructions for the early Holocene from pollen records at five small lakes in the Georgian Bay drainage basin. Higher evaporation and evapotranspiration due to greater seasonality during the early Holocene produced a deficit in effective moisture in Georgian Bay that is recorded by the jack/red pine pollen zone that spanned ~8,800–8,200 cal (8,000–7,500) BP. This deficit drove late Lake Hough ~5 m below Lake Stanley in the Huron basin, following diversion of Laurentide Ice sheet meltwater from the Great Lakes basin. The level of Georgian Bay largely depends not on fluvial input from its own drainage basin, but rather from Lake Superior, where the early Holocene moisture deficit was greater. Reconstruction of paleoclimates in Minnesota, northwestern Ontario and Wisconsin produced a closed lake in the Superior basin, which removed the main water input to Georgian Bay. Once the inflow through the St. Marys River was reduced and inflow from other tributary streams was adjusted for isostatic and climatic differences, input was <5% of modern values. Consequent high evaporation rates produced a significant fall in lake level in the Georgian Bay basin and a negative water budget. This reduction in basin supply, together with the high conductivity of stagnant water in late Lake Hough inferred from microfossils in lowstand sediments, peaked at the end of the jack/red pine zone, ~8,300–8,200 (7,450 ± 90) BP. These major hydrologic changes resulting from climate change in the recent geologic past draw attention to possible declines of the Great Lakes under future climates.  相似文献   

14.
Three lake sediment sequences (lakes Nero, Chashnitsy, Zaozer’e) from the Rostov-Jaroslavl’ region north of Moscow were studied to provide information on palaeoclimatic and palaeoenvironmental changes during the past 15,000 cal yr. The multi-proxy study (i.e., pollen, macrofossils, mineral magnetic measurements, total carbon, nitrogen and sulphur) is chronologically constrained by AMS 14C measurements. Lake Nero provided the longest sedimentary record back to ca. 15,000 cal yr BP, while sediment accumulation began around ca. 11,000 cal yr BP in the two other lakes, possibly due to melting of permafrost. Limnic plant macrofossil remains suggest increased lake productivity and higher mean summer temperatures after 14,500 cal yr BP. While the late glacial vegetation was dominated by Betula and Salix shrubs and various herbs, it appears that Betula sect. Albae became established as early as 14,000 cal yr BP. Major hydrological changes in the region led to distinctly lower lake levels, starting 13,000 cal yr BP in Lake Nero and ca. 9000 cal yr BP in lakes Chashnitsy and Zaozer’e, which are situated at higher elevations. These changes resulted in sedimentary hiatuses in all three lakes that lasted 3500–4500 cal yr. Mixed broad-leaved – coniferous forests were widespread in the area between 8200 and 6100 cal yr BP and developed into dense, species-rich forests between 6100 and 2500 cal yr BP, during what was likely the warmest interval of the studied sequences. Agricultural activity is documented since 500 cal yr BP, but probably began earlier, since Rostov was a major capital by 862 A.D. This apparent gap may be caused by additional sedimentary hiatuses around 2500 and 500 cal yr BP.  相似文献   

15.
This study summarizes the results of micropaleontological, sedimentological, and isotope geochemical analyses of cuttings from five deep wells drilled in the Great Salt Lake (Utah, USA). Spanning the last 5.0 million yrs, our environmental history of the Great Salt Lake distinguishes four intervals based on paleobiological and sedimentological characteristics, using a previously developed tephrochronology for age control. For most of its history, the Great Salt Lake Basin has been occupied by a mixture of marsh, shallow lacustrine and sand flat conditions. In contrast, open lake conditions, typical of the Bonneville cycles and the modern Great Salt Lake apparently have only dominated the basin for the past 0.6-0.8 Ma. The two main structural basins in the study area (the North and South Basins) experienced different lacustrine histories. Large but frequently saline lakes occupied the North Basin after about 0.6 Ma. In the South Basin, ephemeral, saline lacustrine conditions started at 2.1 Ma and developed to full lacustrine conditions at 0.3 Ma. Our paleoenvironmental interpretations are broadly consistent with the aquatic palynological records from the same wells, as well as with the prior core- and outcrop-based lines of evidence. However, the differences in lake history between the North and South Basin have not been previously recognized.  相似文献   

16.
Charcoal preserved in lake sediments is commonly used to reconstruct past trends in fire occurrence. However, interpretation of the charcoal record is often complicated, as changes in charcoal influx could represent natural shifts in fire regimes associated with changes in climate, changes in vegetation, or changes in patterns of anthropogenic burning. Here we examine sedimentary charcoal records from three lakes on the Caribbean islands of Hispaniola and Puerto Rico: Laguna Saladilla in the Dominican Republic, Lake Miragoane in Haiti, and Laguna Tortuguero in Puerto Rico. All records are based on microscopic charcoal fragments quantified from pollen slides and cover the last 7,000 or more years of the Holocene. We compare charcoal influx values to archeological and palynological evidence of human activity and explore the role of increasing winter insolation over the Holocene in driving increased charcoal deposition beginning ca. 6,000–5,000 cal yr BP. An increase in charcoal influx at Laguna Tortuguero at ca. 5,200 cal yr BP, previously interpreted as a signal of human settlement predating archeological evidence, may instead reflect insolation-driven shifts in winter drying that led to more frequent and possibly more intense natural fires. Decreased charcoal influx around 3,200 cal yr BP may signal human modification of the environment that altered fire frequency and/or intensity. Comparing the records from these three lowland Caribbean sites highlights possible intervals of synchronous, climate-driven burning as distinct from more localized anthropogenic burning.  相似文献   

17.
Stable oxygen and carbon isotope geochemistry of ostracode valves, abundance and assemblages of ostracode species, and sedimentological parameters from cores taken in Williams and Shingobee Lakes in north-central Minnesota show changes in climatic and hydrologic history during the Holocene. Isotopic records are consistent with the following scenario:Before 9800 yr B.P. the two lakes were connected. Increasing evaporation through the jack/red pine period (9800-7700 yr B.P.) led to lower lake levels, leaving small separated basins. The prairie period (7700-4000 yr B.P.) reflects high aridity, and lake levels reached low stands shortly before 6500 yr B.P. Low lake levels are associated with groundwater discharge between 6500 and 6000 yr B.P. The hardwood period (4000-3200 yr B.P.) corresponds to long cold winters and warm to cool summers with lower evaporation rates and slower sedimentation. During the white pine period (<3200 yr B.P.) evaporation increased and/or precipitation shifted to the summer months.These changes can be related to shifting atmospheric circulation patterns. Zonal flow was probably dominant during the early Holocene until the end of the prairie period (c. 4000 yr B.P.). During the hardwood period a combination of zonal and meridional flow patterns caused long and cold winters and wetter summers. During the white pine period wintners were shorter and the meridional flow pattern more significant. Today meridional flow dominates the circulation pattern.This is the 6th in a series of papers published in this special AMQUA issue. These papers were presented at the 1994 meeting of the American Quaternary Association held 19–22 June, 1994, at the University of Minnesota, Minneapolis, Minnesota, USA. Dr Linda C. K. Shane served as guest editor for these papers.  相似文献   

18.
A study on two closed salt lake basins, Tal Chapar and Parihara in the eastern margin of the Thar Desert, Rajasthan, was carried out to unravel late Quaternary geomorphic evolution of these saline lakes. Both lakes are elliptical in shape bordered by stabilised dunes, and are oriented in a NE-SW direction, i.e., in the direction of the prevailing summer monsoon wind. Both lakes have been formed in the wind-shadow zones of isolated hills of Precambrian quartzite. Our study indicates that the late Quaternary sediments in the lakes began with the cyclic deposition of laminated fine silt layers (0.5 m thick), rich in organic matter, alternating with ripple cross-bedded sand layers (each ∼1.5–2 m thick). Sand layers that are moderately sorted are separated by laminated silt-clay layers with gypsum/calcite and this unit occurs in the upper most 4 m sequence in deeper sections. The presence of gypsum crystals within the laminated sediments suggests a high concentration of Ca in the inflowing water. At Parihara Lake the organic carbon-rich sediments at 95 cm depth was dated to 7,375 + 155/−150 year BP. At Tal Chapar radiocarbon dates of 7,190 + 155/−150 and 9,903 + 360/−350 was obtained from the sediments rich in organic carbon occurring at a depth of 1.35 m and 1.80 m, respectively. The study reveals strong hydrologic oscillations during the past ∼14,000 year BP (13,090 + 310/−300 year BP). Quaternary geomorphic processes, especially the strong aeolian processes during dry climatic phases, played a major role in the formation of the lake basins, as well as the fringing linear dunes. Geochemical and mineralogical analyses of the lacustrine sediments, supported by radiocarbon dates indicate the existence of an ephemeral lake earlier than ∼13,000 year BP as sediments began to be deposited in a lacustrine environment implying sustained runoff in the catchments. A freshwater lake formed between 9,000 year and 7,000 year BP. The lake dried periodically and this strong fluctuating regime continued until about ∼7,000 year BP. Mid-Holocene was wet and this was possibly due to higher winter rains A saline lake existed between 6,000 year and 1,300 year BP and finally present day semi arid conditions set in since 1,200 year BP. Remnants of a habitation site (hearth and charred bones) on stabilised dune at Devani near Tal Chapar were dated to 240 ± 120 year, while that at Gopalpura was dated to 335 ± 90 year. These historical sites on stabilised dunes were, according to the local accounts, settlements of people who used the lake brine for manufacturing salt.  相似文献   

19.
The palaeolimnology of two shallow lakes, Vela and Braças, in coastal Portugal, were investigated. The lakes are situated in a transitional area between a Holocene dune field and agricultural fields. This study focused on the local palaeoecology and palaeolimnology inferred from the stratigraphic records of pollen of hygrophilous taxa and non-pollen palynomorphs, with particular emphasis on algal remains, e.g. Pediastrum. The record of local-scale vegetation changes was utilized to reconstruct the evolution of the local environment in and around the lakes and to identify and explain dissimilarities between the two water bodies. Initially, the sites were wetlands similar to the dune flats and seasonal pools found in the region today. Lake genesis in both basins occurred relatively synchronously, about 2–3 centuries ago, in response to regional geo-hydrological and climatic forcing. Biotic and abiotic dissimilarities between the two lakes have existed since the time of lake formation. Knowledge of the modern ecology of local vascular plants and algae was used to elucidate differences in the recent histories of the two basins. Lake Vela has been more alkaline and displays higher trophic status than Lake Braças. Dissimilarities between the two lakes are probably explained by differences in the flow paths and amounts of input waters, with Lake Vela receiving more nutrient-rich waters from fertilized agricultural fields. Lake Braças receives greater inflow of water that passes through relatively nutrient-poor, acid soils.  相似文献   

20.
The timing of clastic sedimentation in two glacial‐fed lakes with contrasting watersheds was monitored using sequencing sediment traps for two consecutive years at Allison Lake (Chugach Range, Alaska) and four months at Shainin Lake (Brooks Range, Alaska). Shainin Lake is a weakly stratified lake fed by distant glaciers, whereas Allison Lake is more strongly stratified and fed predominantly by proximal glaciers. At Shainin Lake, sediment accumulation started in late June and reached its maximum in mid‐August, just before lake mixing and during a period of low river discharge. The grain size of the sediment reaching the sediment trap in Shainin Lake was homogenous throughout the summer. At Allison Lake, pulsed sedimentation of coarse particles during late summer and early fall storms were superimposed on the fine‐grained sedimentation pattern similar to that observed at Shainin Lake. These storms triggered underflows that were observed in the thermal structure of the lake and deposited abundant sediment. The sequencing sediment traps reveal a lag between fluvial discharge and sediment deposition at both lakes, implying limitations to interpreting intra‐annual sedimentary features in terms of inflow discharge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号