共查询到20条相似文献,搜索用时 751 毫秒
1.
不同类型铀矿床的沥青铀矿/晶质铀矿具有不同的稀土元素组成,其组成可作为判别铀矿床类型的重要指标。采用基于Python语言的主成分分析(principal component analysis,PCA)与支持向量机(support vector machines,SVM)结合的分类模型,对收集到的全球已知6种类型铀矿床的216组沥青铀矿/晶质铀矿稀土元素数据进行研究。以216组数据为训练集,通过数据清洗、特征缩放、PCA特征提取、网格搜索和交叉验证参数寻优构建SVM分类模型,对24组同变质型胡家峪晶质铀矿进行智能识别。研究结果显示:仅使用稀土元素的14维训练集最优模型判定胡家峪晶质铀矿类型的测试准确率为0.4%;由稀土元素、稀土总量、轻重稀土比、铕异常组成的17维训练集最优模型的测试准确率为75.0%,较14维训练集提高74.6%,模型泛化能力强;而通过传统稀土元素配分曲线、w(ΣREE)-(LREE/HREE)N图解不能有效判定胡家峪晶质铀矿类型。本次研究表明,PCA-SVM算法对增有传统稀土判别指标数据集进行挖掘可有效厘定铀氧化物成因类型,效果明显优于单纯的稀土元素数据集以及传统的稀土配分曲线、w(ΣREE)-(LREE/HREE)N图解。 相似文献
3.
4.
储层识别是油气勘探开发中所面临的关键问题和难点之一。针对传统储层识别方法预测精度较低这一问题,提出了基于主成份分析和支持向量机的PCA-SVM储层识别模型,较好地解决了传统学习方法在非线性预测中的小样本、过学习、局部极小点等问题,同时消除了出入变量之间的多重相关性,减少了输入变量的个数,提高了预测精度和收敛速度。通过对长庆中部气田马五1段储层的实例应用,PCA-SVM模型的预测精度达到100%,优于SVM模型(93.6%)和Fisher判别模型(96.3%)。这表明PCA-SVM模型具有更高的预测精度,为致密储层的准确识别探索了又一新方法。 相似文献
5.
基于PCA-SVR的煤层底板突水量预测 总被引:1,自引:0,他引:1
提出了一种基于主成分分析支持向量机回归(PCA-SVR)的煤层底板突水预测方法,用主成分分析来解决输入变量的选择问题。主成分以较少的维数包含了高维变量所携带的大部分信息,这不仅避免了过多的输入导致训练速度慢,同时也保证了预测准确度。实例表明,所提方法可有效消除众多影响因素间的相关性,减少输入变量个数,提高预测效率和精度。 相似文献
6.
四方金矿在矿山开采的生产实践中,随着生产规模的增大以及国际金价、国内原材料的增涨变化,在矿床工业指标管理过程中,根据外部需求、生产经营成本、生产规模等因素综合分析及时地调整工业指标,采矿方式和方法。做到资源/储量估算合理最大化利用,开采方式和方法简单经济。做到矿山开采年限最大幅度地延长。 相似文献
7.
8.
9.
10.
11.
12.
The multispectral commercial satellite-WorldView-3 (WV-3) has the highest spatial, spectral and radiation resolutions among the satellites currently and can generate good data in the shortwave infrared (SWIR). The study area is located in the Pobei area of Xinjiang Uygur Autonomous Region, which is rich in mineral resources. The spectral analyses of some typical altered hydroxy-bearing, iron-bearing, and carbonate-bearing minerals could establish several Principal Component Analysis (PCA) models and mineral indices, using the visible and near infrared (VNIR) and the shortwave infrared (SWIR) subsystems of WV-3 data. In addition, the Spectral Angle Method and the spectrum index tool of ENVI software were used to extract the relevant alteration information. The WV-3 data is well suited for identifying hydroxy-bearing alteration with rich SWIR bands which distinguish Al-OH-bearing from Mg-OH-bearing alteration. Hence, this study provides a basis for the prediction of mineral resources in the Pobei area and sets the foundation for WV-3 data to be used as an important tool in extracting alteration information and prospecting practices. 相似文献
13.
14.
Giuseppe Raspa Massimiliano Moscatelli Francesco Stigliano Antonio Patera Fabrizio Marconi Daiane Folle Roberto Vallone Marco Mancini Gian Paolo Cavinato Salvatore Milli Joo Felipe Coimbra Leite Costa 《Engineering Geology》2008,101(3-4):251-268
We are presenting an attempt to evaluate the spatial variability of geotechnical parameters in the upper Pleistocene–Holocene alluvial deposits of Roma (Italy) by means of multivariate geostatistics.The upper Pleistocene–Holocene alluvial deposits of Roma are sensitive to high levels of geohazard. They occupy a sizable and significant part of the city, being the foundation for many monuments, historical neighborhoods, and archaeological areas, and the main host of the present and future subway lines. We have stored information from more than 2000 geotechnical boreholes crossing the alluvial deposits into a relational database. For the present study, only the boreholes with lithologic/textural interpretation and geotechnical information were selected. The set includes 283 boreholes and 719 samples, which have a set of geotechnical information comprising physical properties and mechanical parameters.Techniques of multivariate statistics and geostatistics were combined and compared to evaluate the estimation methods of the mechanical parameters, with special reference to the drained friction angle from direct shear test (φ′). Principal Component Analysis was applied to the dataset to highlight the relationships between the geotechnical parameters. Through cross-validation analysis, multiple linear regression, kriging, and cokriging were tested as estimators of φ′. Cross-validation demonstrates that the cokriging with granulometries as auxiliary variables is the most suitable method to estimate φ′. In addition to proving that cokriging is a good estimator of φ′, cross-validation demonstrates that input data are coherent and this allows us to use them for estimation of geotechnical parameters, although they come from different laboratories and different vintages.Nevertheless, to get the same good results of cross-validation in estimation, it is necessary for granulometries to be available at grid points. Since this information being not available at all grid points, it is expected that, in the future, textural information can be derived in an indirect way, i.e., from lithologic/textural spatial reconstructions. 相似文献
15.
以鄂东南赤壁-嘉鱼地区为例,在缺少地表各岩石单元样品的情况下,对Landsat8可见光近红外和短波红外(VNIR-SWIR)波段反射率数据进行处理提取岩性信息。首先对VNIR-SWIR多波段反射率数据进行最佳指数因子(IOIF)运算,得出最佳波段组合band7-band5-band2,从其假彩色合成图像上只能识别少量岩性单元;为了减少高相关性波段之间的信息冗余度,并对波段信息进行集成,后对Landsat8VNIR-SWIR波段反射率数据采用主成分变换并进行彩色合成,能够有效增强志留系、侏罗系及第四系地质单元之间的影像差异,从而划分岩性界线。对比已有地质资料,认为提取结果可靠,能为野外地质工作提供基础信息。 相似文献
16.
为提高测井岩性识别的精度,本文结合乌夏地区岩芯资料和测井数据,总结该地区砂砾岩测井响应特征,优选出声波、自然伽马、密度、中子孔隙度和电阻率等5条测井曲线参数作为训练和测试样本,通过遗传算法挑选出最佳的支持向量机核函数参数σ和惩罚因子C,建立支持向量机岩性识别模型。结果表明该模型实际数据预测总体符合率为81.6%,在识别准确率上与传统测井识别砂砾岩岩性方法相比都有明显提升。 相似文献
17.
Climate change affects the environment and natural resources immensely. Rainfall, temperature and evapotranspiration are major parameters of climate affecting changes in the environment. Evapotranspiration plays a key role in crop production and water balance of a region, one of the major parameters affected by climate change. The reference evapotranspiration or ET0 is a calculated parameter used in this research. In the present study, changes in the future rainfall, minimum and maximum temperature, and ET0 have been shown by downscaling the HadCM3 (Hadley Centre Coupled Model version 3) model data. The selected study area is located in a part of the Narmada river basin area in Madhya Pradesh in central India. The downscaled outputs of projected rainfall, ET0 and temperatures have been shown for the 21st century with the HADCM3 data of A2 scenario by the Least Square Support Vector Machine (LS-SVM) model. The efficiency of the LS-SVM model was measured by different statistical methods. The selected predictors show considerable correlation with the rainfall and temperature and the application of this model has been done in a basin area which is an agriculture based region and is sensitive to the change of rainfall and temperature. Results showed an increase in the future rainfall, temperatures and ET0. The temperature increase is projected in the high rise of minimum temperature in winter time and the highest increase in maximum temperature is projected in the pre-monsoon season or from March to May. Highest increase is projected in the 2080s in 2081–2091 and 2091–2099 in maximum temperature and 2091–2099 in minimum temperature in all the stations. Winter maximum temperature has been observed to have increased in the future. High rainfall is also observed with higher ET0 in some decades. Two peaks of the increase are observed in ET0 in the April–May and in the October. Variation in these parameters due to climate change might have an impact on the future water resource of the study area, which is mainly an agricultural based region, and will help in proper planning and management. 相似文献
18.
针对底抽巷瓦斯抽采穿层钻孔施工过程中,煤岩界面识别不及时、不准确,缺少相应技术手段的问题,设计开发了一套基于钻进参数(转速、回转扭矩、推进力、推进速度、破碎比功)的煤岩界面识别系统,整套系统由数据感知层、采集层和分析层组成。其中,数据感知层和数据采集层合称钻机数据采集系统,可以对钻进参数进行实时采集;数据分析层则采用支持向量机(Support Vector Machine, SVM)分类算法对带有煤岩分类标记的钻进参数进行数据学习和模型训练,继而对未知的钻进参数进行分类预测,最终实现煤岩界面自动识别。在河南鹤壁中泰矿业的现场应用表明:钻进参数中的回转扭矩、推进速度和破碎比功在煤岩界面处均产生明显的“涨落”,可以作为区分煤层和岩石的3个特征参数;使用线性核函数的支持向量机分类模型可以准确地将两种地层中的钻进参数区分出来,通过对训练集中89个样本数据学习即可在测试集中获得100%的正确率,说明了特征参数和地层信息之间是线性可分的。该系统推广应用不仅可以为煤岩分类识别提供基础数据的获取途径;还可以为穿层钻孔的煤岩界面识别提供一定的科学依据和指导,从而确保钻孔达标,避免抽采空白带的产生。
相似文献19.
随着煤层气勘探的不断深入,对煤层含气量预测精度提出了更高的要求。基于煤层含气量测井响应特征,分析测井参数与含气量的相关性,提出MIV(Mean Impact Value)技术与LSSVM(Least Squares Support Vector Machine)结合的测井参数优选策略,优选最优测井参数作为网络建模的输入自变量组合,通过粒子群算法优化LSSVM网络核心参数,最后构建一套适用于煤层含气量预测的MIV-PSO-LSSVM模型。在此基础上,分别对比分析LSSVM、PSO-LSSVM、MIV-LSSVM和MIV-PSO-LSSVM模型对煤层含气量的预测性能,并与传统多元回归方法进行了对比,利用拟合优度和均方根误差对此5类模型进行评价。结果表明:PSO优化下的LSSVM模型预测精度得到有效提升,结合MIV方法优选测井参数可大幅度改善神经网络建模性能,MIV-PSO-LSSVM模型可实现煤层含气量高精度预测,为煤层气勘探及其储层评价提供新的技术支撑,且本研究的建模策略及思想可广泛应用于其他机器学习建模研究领域。 相似文献
20.
桂西—滇东南区域植被覆盖茂盛,高覆盖的植被遥感信息相对于地质遥感信息而言是一个很强的干扰。本文以桂西—滇东南的锰矿化信息较为丰富、植被覆盖度高的下雷—大新区域TM遥感影像为例,利用基于主成分变换的铁染遥感异常信息、羟基异常信息和泥岩碳酸岩异常遥感信息提取,以及基于SAM和实地地物光谱测量的基础上提取的氧化锰露头的遥感信息,研究结果与已知锰矿化信息的空间分布区域有较高的吻合度。研究结果表明,本文的研究方法对于遥感找锰矿的宏观靶区框选有较高的参考价值。 相似文献