首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
2.
3.
We present ISOPHOT observations of eight interstellar regions in the 60–200 μm wavelength range. The regions belong to mostly quiescent high-latitude clouds and have optical extinction peaks from   AV ∼1–6 mag  . From the 150- and 200-μm emission, we derived colour temperatures for the classical big grain component which show a clear trend of decreasing temperature with increasing 200-μm emission. The 200-μm emission per unit   AV   , however, does not drop at lower temperatures. This fact can be interpreted in terms of an increased far-infrared (FIR) emissivity of the big grains. We developed a two-component model including warm dust with the temperature of the diffuse interstellar medium (ISM) of   T = 17.5 K  , and cold dust with   T = 13.5 K  and FIR emissivity increased by a factor of >4. A mixture of the two components can reproduce the observed colour variations and the ratios   I 200/ AV   and  τ200/ AV   . The relative abundance of small grains with respect to the big grains shows significant variations from region to region at low column densities. However, in lines of sight of higher column density, our data indicate the disappearance of small grains, perhaps a signature of adsorption/coagulation of dust. The larger size and porous structure could also explain the increased FIR emissivity. Our results from eight independent regions suggest that these grains might be ubiquitous in the galactic ISM.  相似文献   

4.
5.
We present isophot spectrophotometry of three positions within the isolated high-latitude cirrus cloud G 300.2−16.8, spanning from the near- to far-infrared (NIR to FIR). The positions exhibit contrasting emission spectrum contributions from the unidentified infrared bands (UIBs), very small grains (VSGs) and large classical grains, and both semi-empirical and numerical models are presented. At all three positions, the UIB spectrum shapes are found to be similar and the large grain emission may be fitted by an equilibrium temperature of  ∼17.5 K  . The energy requirements of both the observed emission spectrum and optical scattered light are shown to be satisfied by the incident local interstellar radiation field (ISRF). The FIR emissivity of dust in G 300.2−16.8 is found to be lower than in globules or dense clouds and is even lower than model predictions for dust in the diffuse interstellar medium (ISM). The results suggest physical differences in the ISM mixtures between positions within the cloud, possibly arising from grain coagulation processes.  相似文献   

6.
7.
The near-infrared (NIR) extinction power-law index (β) and its uncertainty is derived from three different techniques based on star counts, colour excess and a combination of them. We have applied these methods to Two Micron All Sky Survey (2MASS) data to determine maps of β and NIR extinction of the small cloud IC 1396 W. The combination of star counts and colour excess results in the most reliable method to determine β. It is found that the use of the correct β map to transform colour excess values into extinction is fundamental for column density profile analysis of clouds. We describe how artificial photometric data, based on the model of stellar population synthesis of the Galaxy, can be used to estimate uncertainties and derive systematic effects of the extinction methods presented here. We find that all colour excess based extinction determination methods are subject to small but systematic offsets, which do not affect the star counting technique. These offsets occur since stars seen through a cloud do not represent the same population as stars in an extinction-free control field.  相似文献   

8.
We study the rotation rates and electric dipole emission of hydrogenated icosahedral fullerenes under the physical conditions of the dark cloud (DC) LDN 1622. The abundance of fullerenes is estimated by fitting theoretical photoabsorption spectra to the characteristics of the ultraviolet (UV) bump extinction in DCs. The UV bump appears to be well reproduced by a mixture of fullerenes following a size-distribution power law, which gives progressively lower abundances as the radius of the fullerene increases. We infer abundances of the order of  0.2 × 10−6  n (H 2)  for C60. A significant fraction of these molecules are expected to be hydrogenated. We compute the electric dipole rotational emission from these fullerene hydrides, taking into account rotational excitation and damping processes. The recent detection of anomalous microwave emission (5–60 GHz) in LDN 1622 by Casassus et al. can be explained as the result of electric dipole radiation from hydrogenated fullerenes. The bulk of the emission (10–30 GHz) appears to be associated with 60–80 carbon atom fulleranes with a degree of hydrogenation of C:H ≈ 3:1. A small contribution (∼10 per cent) of these molecules residing in the surrounding cold neutral medium and/or photodissociation region of the cloud is required to fit the high-frequency tail (40–60 GHz) of the emission.  相似文献   

9.
10.
We consider sulphur depletion in dense molecular clouds, and suggest hydrated sulphuric acid, H2SO4 ·  n H2O, as a component of interstellar dust in icy mantles. We discuss the formation of hydrated sulphuric acid in collapsing clouds and its instability in heated regions in terms of the existing hot core models and observations. We also show that some features of the infrared spectrum of hydrated sulphuric acid have correspondence in the observed spectra of young stellar objects.  相似文献   

11.
12.
13.
14.
High signal-to-noise ratio spectra are presented of the 10-μm silicate absorption feature in lines of sight towards Elias 16 and 18 in the Taurus dark cloud, and towards the heavily reddened supergiant Cyg OB2 no. 12. The observations are fitted with laboratory and astronomical spectra to produce intrinsic absorption profiles. These features, which represent molecular-cloud and diffuse ISM dust respectively, are better fitted with emissivity spectra of the Trapezium and μ Cephei than they are with those of laboratory, terrestrial, or other observations of circumstellar silicates. The difference in width between the silicate band in the two environments can be almost entirely ascribed to a broad excess absorption in the long-wavelength wing of the profiles, which is much stronger in the molecular-cloud lines of sight, and possibly reflects grain growth in the denser environment. Limits are placed on the strength of fine spectral structure; if there is a crystalline silicate component in these spectra, it is most likely to be serpentine. Column-density upper limits for methanol and the photolysis product hexamethylenetetramine (HMT) are less than a few per cent of those of water ice and silicates.  相似文献   

15.
A full radiative transfer model is presented for the ultraviolet (UV) radiation impinging on an interstellar cloud of spherical or finite plane-parallel slab geometry containing gas and dust. The penetration of the UV photons is coupled to detailed chemical processes. Photodestruction rates of atomic and molecular species are calculated from the corresponding cross-sections. We show that CO line intensities are quite sensitive to geometrical effects and to the extinction curve in the far-UV.  相似文献   

16.
Published interpretations of the relative intensity variations of the unidentified infrared bands (UIBs) and their underlying continuum are discussed. An alternative model is proposed, in which a single carrier for both emits (a) mostly a continuum when it is electronically excited by photons (visible or UV), or (b) exclusively the UIBs, when only chemical energy is deposited by H capture on its surface, inducing only nuclear vibrations. The bands will dominate in atomic H regions but will be overcome by thermal continuum radiation when the ambient field is strong but lacks dissociating photons (900–1100 Å). The model applies to photodissociation regions as well as to limbs of molecular clouds in the interstellar medium and agrees quantitatively with recent satellite observations. It gives indications on atomic H density and UIB intensity provided the ambient radiation field is known. It invokes no chemical, electronic, structural or size change to interpret the observed intensity variations.  相似文献   

17.
18.
19.
We suggest that the abrupt switch, from hierarchical clustering on scales ≳ 0.04 pc, to binary (and occasionally higher multiple) systems on smaller scales, which Larson has deduced from his analysis of the grouping of pre-main-sequence stars in Taurus, arises because pre-protostellar gas becomes thermally coupled to dust at sufficiently high densities. The resulting change — from gas cooling by molecular lines at low densities to gas cooling by dust at high densities — enables the matter to radiate much more efficiently, and hence to undergo dynamical fragmentation. We derive the domain in which gas cooling by dust facilitates dynamical fragmentation. Low-mass (∼ M⊙) clumps — those supported mainly by thermal pressure — can probably access this domain spontaneously, albeit rather quasi-statically, provided that they exist in a region in which external perturbations are few and far between. More massive clumps probably require an impulsive external perturbation, for instance a supersonic collision with another clump, in order for the gas to reach sufficiently high density to couple thermally to the dust. Impulsive external perturbations should promote fragmentation, by generating highly non-linear substructures which can then be amplified by gravity during the subsequent collapse.  相似文献   

20.
We have applied the method of investigating extinction curves using statistically meaningful samples that was proposed by us 25 years ago. The extensive data sets of the ANS (Astronomical Netherlands Satellite) and 2MASS (Two Micron All Sky Survey) were used, together with UBV photometry to create average extinction curves for samples of OB stars. Our results demonstrate that in the vast majority of cases the extinction curves are very close to the mean galactic extinction curve. Only a few objects were found to be obviously discrepant from the average. The latter phenomenon may be related to nitrogen chemistry in translucent interstellar clouds (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号