首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
2.
Pyrolysis of two kerogens isolated from the E2-3s33 and E2-3s41 source rocks in the Niuzhuang sag, Dongying Depression, Bohai Bay Basin, China, was performed in a confined system. The products were extracted with solvent and separated using micro-column chromatography into group-type fractions (saturates, aromatics, resins and asphaltenes) with the kerogen residue in each case undergoing swelling with a variety of solvents. The kinetics for generation and retention of crude oil and its group-type fractions from the kerogens were studied and the kinetic parameters applied to modeling generation and retention of crude oil and its fractions from the E2-3s33 and E2-3s41 source rocks on the basis of burial and thermal history of the Niuzhuang sag. The results show that the “normal oil” was generated at about 4.26 Ma and 24.85 Ma ago, but expelled at about 3.96 Ma and 17.46 Ma ago, respectively, from E2-3s33 and E2-3s41 source rocks. The current proportions of the expelled saturates, aromatics and NSOs are about 60%, 15% and 25%, respectively.  相似文献   

3.
4.
5.
6.
7.
In order to better understand the reactivity of plant phytoliths in soil solutions, we determined the solubility, surface properties (electrophoretic mobilities and surface charge) and dissolution kinetics of phytoliths extracted from fresh biomass of representative plant species (larch tree and elm, horsetail, fern, and four grasses) containing significant amount of biogenic silica. The solubility product of larch, horsetail, elm and fern phytoliths is close to that of amorphous silica and soil bamboo phytoliths. Electrophoretic measurements yield isoelectric point pHIEP = 0.9, 1.1, 2.0 and 2.2 for four grasses, elm, larch and horsetail phytoliths respectively, which is very close to that of quartz or amorphous silica. Surface acid–base titrations allowed generation of a 2-pK surface complexation model (SCM) for larch, elm and horsetail phytoliths. Phytoliths dissolution rates, measured in mixed-flow reactors at far from equilibrium conditions at 1  pH  8, were found to be very similar among the species, and close to those of soil bamboo phytoliths. Mechanistic treatment of all plant phytoliths dissolution rates provided three-parameters equation sufficient to describe phytoliths reactivity in aqueous solutions:R(mol/cm2/s)=6?10?16?aH++5.0?10?18+3.5?10?13?aOH?0.33Alternatively, the dissolution rate dependence on pH can be modeled within the concept of surface coordination theory assuming the rate proportional to concentration of > SiOH2+, > SiOH0 and > SiO? species. In the range of Al concentration from 20 to 5000 ppm in the phytoliths, we have not observed any correlation between their Al content and solubility, surface acid–base properties and dissolution kinetics.It follows from the results of this study that phytoliths dissolution rates exhibit a minimum at pH ~ 3. Mass-normalized dissolution rates are similar among all four types of plant species studied and these rates are an order of magnitude higher than those of typical soil clay minerals. The minimal half life time of larch and horsetail phytoliths in the interstitial soil solution ranges from 10–12 years at pH = 2–3 to < 1 year at pH above 6, comparable with mean residence time of phytoliths in soil from natural observations.  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
This study reports changes in coal-mine drainage constituent concentrations through an anaerobic SO4-reducing bioreactor monitored over a 3-a period. The purpose of the study was to identify and monitor over time the biogeochemical mechanisms that control the attenuation of toxic compounds in the mine drainage. This information is needed to investigate bioreactor performance and longevity. The water treated at the case example site, the Tab-Simco Mine, was highly acidic with an average pH of 2.9, a net acidity of 1674 mg/L CaCO3 equivalent-CCE, and high levels of dissolved SO42-, Al, Fe and Mn. The results of this study indicated that the treatment system increased the pH of the acid mine drainage (AMD) to 6.2 and decreased the median acidity to 22.7 mg/L CCE, SO42- from 2981 to 1750 mg/L, Fe from 450.6 to 1.76 mg/L, Al from 113 to 0.42 mg/L, and Mn from 36.4 to 23.3 mg/L. Geochemical modeling indicates that the bioreactor discharge is saturated with respect to the minerals alunite, gibbsite, siderite, rhodochrosite, jarosite, and Fe hydroxide precipitates. The observed trends also include seasonal variations in SO42- reduction and a general decline in the amount of alkalinity produced. The average δ34S value of the SO42- in the untreated AMD was +7.3‰. In the bioreactor, δ34S value of SO42- increased from an average of +6.9‰ to +9.2‰, suggesting the presence of bacterial SO4 reduction processes. Preliminary results of a bacterial community analysis show that DNA sequences corresponding to bacteria capable of SO4 reduction were present in the bioreactor outflow sample. However, these sequences were outnumbered by sequences similar to bacteria capable of reoxdizing reduced sulfur species. This study illustrates the dynamic nature of metal removal in SO4-reducing bioreactor-based treatment systems.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号