首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chondrules in E3 chondrites differ from those in other chondrite groups. Many contain near-pure endmember enstatite (Fs<1). Some contain Si-bearing FeNi metal, Cr-bearing troilite, and, in some cases Mg, Mn- and Ca-sulfides. Olivine and more FeO-rich pyroxene grains are present but much less common than in ordinary or carbonaceous chondrite chondrules. In some cases, the FeO-rich grains contain dusty inclusions of metal. The oxygen three-isotope ratios (δ18O, δ17O) of olivine and pyroxene in chondrules from E3 chondrites, which are measured using a multi-collection SIMS, show a wide range of values. Most enstatite data plots on the terrestrial fractionation (TF) line near whole rock values and some plot near the ordinary chondrite region on the 3-isotope diagram. Pyroxene with higher FeO contents (∼2-10 wt.% FeO) generally plots on the TF line similar to enstatite, suggesting it formed locally in the EC (enstatite chondrite) region and that oxidation/reduction conditions varied within the E3 chondrite chondrule-forming region. Olivine shows a wide range of correlated δ18O and δ17O values and data from two olivine-bearing chondrules form a slope ∼1 mixing line, which is approximately parallel to but distinct from the CCAM (carbonaceous chondrite anhydrous mixing) line. We refer to this as the ECM (enstatite chondrite mixing) line but it also may coincide with a line defined by chondrules from Acfer 094 referred to as the PCM (Primitive Chondrite Mineral) line (Ushikubo et al., 2011). The range of O isotope compositions and mixing behavior in E3 chondrules is similar to that in O and C chondrite groups, indicating similar chondrule-forming processes, solid-gas mixing and possibly similar 16O-rich precursors solids. However, E3 chondrules formed in a distinct oxygen reservoir.Internal oxygen isotope heterogeneity was found among minerals from some of the chondrules in E3 chondrites suggesting incomplete melting of the chondrules, survival of minerals from previous generations of chondrules, and chondrule recycling. Olivine, possibly a relict grain, in one chondrule has an R chondrite-like oxygen isotope composition and may indicate limited mixing of materials from other reservoirs. Calcium-aluminum-rich inclusions (CAIs) in E3 chondrites have petrologic characteristics and oxygen isotope ratios similar to those in other chondrite groups. However, chondrules from E3 chondrites differ markedly from those in other chondrite groups. From this we conclude that chondrule formation was a local event but CAIs may have all formed in one distinct place and time and were later redistributed to the various chondrule-forming and parent body accretion regions. This also implies that transport mechanisms were less active at the time of and following chondrule formation.  相似文献   

2.
R chondrites are a distinct group of chondritic meteorites with unique mineralogical and chemical compositions. They contain various types of Al-rich objects [Ca,Al-rich inclusions (CAIs), Al-rich chondrules and fragments], whose mineralogical compositions and classifications were previously determined by Rout and Bischoff (2008). Here, we report on the bulk compositions of 126 such Al-rich objects determined by broad-beam electron probe microanalysis.Most of the CAIs, except a few, are significantly altered by complex nebular and/or parent body processes and the determination of their pristine composition is difficult. We found that the simple concentric spinel-rich inclusions have high Al2O3 (21–72 wt%) correlated with their high modal spinel. The subgroup of simple concentric spinel-rich CAIs have a high Al2O3 (21–57 wt%) and also sometimes high FeO (up to 36 wt%), due to a high hercynitic component in the spinel. One simple concentric spinel- and hibonite-rich CAI H030/L, identified as a HAL-type CAI by isotopic studies reported elsewhere, has a highly refractory composition (Al2O3~72 wt%). Most of the simple concentric spinel- and fassaite-rich CAIs have consistently high CaO (~2.5–17 wt%) compared to other simple concentric spinel-rich inclusions group, where only some inclusions have high CaO (up to 15 wt%). Simple concentric spinel- and Na,Al-alteration product-rich CAIs are heavily altered and have high Na2O (up to ~12.5 wt%).The three analyzed fassaite-rich spherules have high CaO and Al2O3, and complex spinel- and fassaite-rich CAIs have high CaO (up to 23 wt%) and SiO2 (up to 41 wt%). Most of the complex spinel- and plagioclase-rich CAIs are altered and contain high amounts of secondary oligoclase. However, a few are less affected by secondary alteration and these are characterized by relatively high CaO (up to 24 wt%) and Al2O3 (18–33 wt%); complex spinel and Na,Al-alteration product-rich CAIs are similar to the concentric spinel- and Na,Al-alteration product-rich CAIs. Due to Fe- and alkali-metasomatism, the vast majority of the inclusions in this subgroup were heavily altered, either in a nebular or parent body environment. As a result of this alteration, they contain high FeO and Na2O+K2O+Cl.Almost all inclusions have a Ca/Al-ratio below the solar ratio. This suggests that significant Ca/Al fractionation occurred during the formation of most CAIs, most probably due to disequilibrium condensation of spinel prior to melilite. However, a distillation process cannot be ruled out for some CAIs in producing the spinel enrichment. Some porous and fine grained CAIs may have been produced by agglomeration of refractory dust rich in spinel and fassaite. The HAL-type CAI, H030/L, most likely formed by distillation, similar to most of the HAL-type inclusions. Phase equilibrium analysis, in the CMAS system, shows that the fassaite-bearing spherules most likely formed by metastable crystallization and disequilibrium processes. Al-rich chondrules are characterized by >10 wt% Al2O3, and most of these also have high FeO and Na2O. Considering their bulk compositions, their precursors seem to have been a mixture of a ferromagnesian chondrule component rich in olivine and an anorthite–spinel–pyroxene–nepheline-rich CAI component. The mineral assemblages of some of the less altered Al-rich chondrules conform to those predicted by phase equilibrium studies.  相似文献   

3.
Chondrules from the Semarkona (LL3.0) chondrite show refractory and common lithophile fractionation trends similar to those observed among the chondrite groups. It appears that chondrules are mixtures of a small number of pre-existing solid components, and we infer that chondrule precursor materials were related to the nebular components involved in the lithophile element fractionations recognized in ordinary chondrites. Compositional trends among the chondrules can be used to deduce the compositions of these components.We use instrumental neutron activation analysis to measure many (~20) of the lithophile elements in 30 chondrules. The amounts of oxidized iron were calculated from other compositional parameters; concentrations of Si were estimated using mass-balance considerations. The data were corrected for the diluting effects of non-lithophile constituents. Plots of lithophile elements versus a reference refractory element such as Al show that there were two major chondrule silicate precursor components: a refractory, olivine-rich, FeO-free one, and a non-refractory, SiO2-, FeO-rich one.The refractory component probably forms from olivine-enriched condensates formed above the condensation temperature of enstatite. The non-refractory component must have formed from fine-grained materials that were able to equilibrate down to lower nebular temperatures. Chondrite matrix may have had an origin similar to that of the non-refractory material, and constitutes a third lithophile-bearing component that took part in chondrite fractionation processes. The low abundance of refractories and Mg in ordinary and enstatite chondrites was produced by the loss of materials having a higher refractory-element/Mg ratio than that in the refractory component of chondrules.  相似文献   

4.
We report instrumental neutron activation analysis determinations of 19 major, minor and trace elements in three enstatite chondrites. Based on these, and literature data on the bulk and mineral composition of enstatite chondrites, we discuss the history of the type 3 or unequilibrated enstatite chondrites, and their relationship with the other enstatite chondrites. The type 3 enstatite chondrites have E chondrite lithophile element abundances and their siderophile element abundances place them with the EH chondrites, well resolved from the EL chondrites. Moderately volatile chalcophile elements are at the low end of the EH range and Cr appears to be intermediate between EH and EL. We suggest that the type 3 enstatite chondrites are EH chondrites which have suffered small depletions of certain chalcophile elements through the loss of shock-produced sulfurous liquids. The oxygen isotope differences between type 3 and other enstatite chondrites is consistent with equilibration with the nebula gas ~30° higher than the others, or with the loss of a plagioclase-rich liquid. The mineral chemistry of the type 3 chondrites is consistent with either low temperature equilibration, or, in some instances, with shock effects.  相似文献   

5.
Mineralogic study of black inclusions in the Cumberland Falls enstatite achondrite revealed that they constitute a highly unequilibrated chondritic suite distinct from other chondrite groups. This highly shocked suite, the forsterite (F) chondrites, exhibits mineralogic trends apparently produced during primary nebular condensation and accretion over a broad redox range. We analyzed these samples and possibly related meteorites for Ag, As, Au, Bi, Cd, Co, Cs, Ga, In, Rb, Sb, Se, Te, Tl, U and Zn, trace elements known to yield important genetic information. The results demonstrate the compositional coherence and distinctiveness of the F chondrite suite relative to other chondrites. The Antarctic aubrite, ALH A78113, may include more F chondrite material. Trace element contents do not vary with mineral compositions hence do not reflect redox variations during formation of F chondrite parental matter. Trace element mobilization—during secondary heating episodes in the F chondrite parent or during its disruptive collision with the enstatite meteorite parent body—is not detectable. Chemical trends in F chondrites apparently reflect primary nebular processes. Cosmochemical fractionation of lithophiles from siderophiles and chalcophiles occurred at moderately high temperatures, certainly higher than those existing during formation of primitive carbonaceous, enstatite and ordinary chondrites of petrologic type ≤3.  相似文献   

6.
We review the oxygen isotopic compositions of minerals in chondrules and compound objects composed of a chondrule and a refractory inclusion, and bulk oxygen isotopic compositions of chondrules in unequilibrated ordinary, carbonaceous, enstatite, and Kakangari-like chondrites, focusing on data acquired using secondary ion mass-spectrometry and laser fluorination coupled with mass-spectrometry over the last decade. Most ferromagnesian chondrules from primitive (unmetamorphosed) chondrites are isotopically uniform (within 3–4‰ in Δ17O) and depleted in 16O (Δ17O>−7‰) relative to amoeboid olivine aggregates (AOAs) and most calcium–aluminum-rich inclusions (CAIs) (Δ17O<−20‰), suggesting that these classes of objects formed in isotopically distinct gaseous reservoirs, 16O-poor and 16O-rich, respectively. Chondrules uniformly enriched in 16O (Δ17O<−15‰) are exceptionally rare and have been reported only in CH chondrites. Oxygen isotopic heterogeneity in chondrules is mainly due to the presence of relict grains. These appear to consist of chondrules of earlier generations and rare refractory inclusions; with rare exceptions, the relict grains are 16O-enriched relative to chondrule phenocrysts and mesostasis. Within a chondrite group, the magnesium-rich (Type I) chondrules tend to be 16O-enriched relative to the ferrous (Type II) chondrules. Aluminum-rich chondrules in ordinary, enstatite, CR, and CV chondrites are generally 16O-enriched relative to ferromagnesian chondrules. No systematic differences in oxygen isotopic compositions have been found among these chondrule types in CB chondrites. Aluminum-rich chondrules in carbonaceous chondrites often contain relict refractory inclusions. Aluminum-rich chondrules with relict CAIs have heterogeneous oxygen isotopic compositions (Δ17O ranges from −20‰ to 0‰). Aluminum-rich chondrules without relict CAIs are isotopically uniform and have oxygen isotopic compositions similar to, or approaching, those of ferromagnesian chondrules. Phenocrysts and mesostases of the CAI-bearing chondrules show no clear evidence for 16O-enrichment compared to the CAI-free chondrules. Spinel, hibonite, and forsterite of the relict refractory inclusions largely retained their original oxygen isotopic compositions. In contrast, plagioclase and melilite of the relict CAIs experienced melting and 16O-depletion to various degrees, probably due to isotopic exchange with an 16O-poor nebular gas. Several igneous CAIs experienced isotopic exchange with an 16O-poor nebular gas during late-stage remelting in the chondrule-forming region. On a three-isotope diagram, bulk oxygen isotopic compositions of most chondrules in ordinary, enstatite, and carbonaceous chondrites plot above, along, and below the terrestrial fractionation line, respectively. Bulk oxygen isotopic compositions of chondrules in altered and/or metamorphosed chondrites show evidence for mass-dependent fractionation, reflecting either interaction with a gaseous/fluid reservoir on parent asteroids or open-system thermal metamorphism. Bulk oxygen isotopic compositions of chondrules and oxygen isotopic compositions of individual minerals in chondrules and refractory inclusions from primitive chondrites plot along a common line of slope of 1, suggesting that only two major reservoirs (gas and solids) are needed to explain the observed variations. However, there is no requirement that each had a permanently fixed isotopic composition. The absolute (207Pb–206Pb) and relative (27Al–26Mg) chronologies of CAIs and chondrules and the differences in oxygen isotopic compositions of most chondrules (16O-poor) and most refractory inclusions (16O-rich) can be interpreted in terms of isotopic self-shielding during UV photolysis of CO in the initially 16O-rich (Δ17O−25‰) parent molecular cloud or protoplanetary disk. According to these models, the UV photolysis preferentially dissociates C17O and C18O in the parent molecular cloud and in the peripheral zones of the protoplanetary disk. If this process occurs in the stability field of water ice, the released atomic 17O and 18O are incorporated into water ice, while the residual CO gas becomes enriched in 16O. During the earliest stages of evolution of the protoplanetary disk, the inner solar nebula had a solar H2O/CO ratio and was 16O-rich. During this time, AOAs and the 16O-rich CAIs and chondrules formed. Subsequently, the inner solar nebula became H2O- and 16O-depleted, because ice-rich dust particles, which were depleted in 16O, agglomerated outside the snowline (5 AU), drifted rapidly towards the Sun and evaporated. During this time, which may have lasted for 3 Myr, most chondrules and the 16O-depleted igneous CAIs formed. We infer that most chondrules formed from isotopically heterogeneous, but 16O-depleted precursors, and experienced isotopic exchange with an 16O-poor nebular gas during melting. Although the relative roles of the chondrule precursor materials and gas–melt isotopic exchange in establishing oxygen isotopic compositions of chondrules have not been quantified yet, mineralogical, chemical, and isotopic evidence indicate that Type I chondrules may have formed in chemical and isotopic equilibrium with nebular gas of variable isotopic composition. Whether these variations were spatial or temporal are not known yet.  相似文献   

7.
Chondrite groups (CV, CK, CR) with large average chondrule sizes have low proportions of RP plus C chondrules, high proportions of enveloping compound chondrules, high proportions of chondrules with (thick) igneous rims, and relatively low proportions of type-I chondrules containing sulfide. In contrast, chondrite groups (CM, CO, OC, R, EH, EL) with smaller average chondrule sizes have the opposite properties. Equilibrated CK chondrites have plagioclase with relatively low Na; equilibrated OC, R, EH and EL chondrites have more sodic plagioclase. Enveloping compound chondrules and chondrules with igneous rims formed during a remelting event after the primary chondrule was incorporated into a dustball. Repeated episodes of remelting after chondrules were surrounded by dust would tend to produce large chondrules. RP and C chondrules formed by complete melting of their precursor assemblages; remelting of RP and C chondrules surrounded by dust would tend to produce porphyritic chondrules as small dust particles mixed with the melt, providing nuclei for crystallizing phenocrysts. This process would tend to diminish the numbers of RP and C chondrules. Correlations among these chondrule physical properties suggest that chondrite groups with large chondrules were typically surrounded by thick dust-rich mantles that formed in locally dusty nebular environments. Chondrules that were surrounded by thick dust mantles tended to cool more slowly because heat could not quickly radiate away. Slow cooling led to enhanced migration of sulfide to chondrule surfaces and more extensive sulfide evaporation. These chondrules also lost Na; the plagioclase that formed from equilibrated CK chondrites was thus depleted in Na.  相似文献   

8.
We report in situ ion microprobe analyses of oxygen isotopic compositions of olivine, low-Ca pyroxene, high-Ca pyroxene, anorthitic plagioclase, glassy mesostasis, and spinel in five aluminum-rich chondrules and nine ferromagnesian chondrules from the CR carbonaceous chondrites EET92042, GRA95229, and MAC87320. Ferromagnesian chondrules are isotopically homogeneous within ±2‰ in Δ17O; the interchondrule variations in Δ17O range from 0 to −5‰. Small oxygen isotopic heterogeneities found in two ferromagnesian chondrules are due to the presence of relict olivine grains. In contrast, two out of five aluminum-rich chondrules are isotopically heterogeneous with Δ17O values ranging from −6 to −15‰ and from −2 to −11‰, respectively. This isotopic heterogeneity is due to the presence of 16O-enriched spinel and anorthite (Δ17O = −10 to −15‰), which are relict phases of Ca,Al-rich inclusions (CAIs) incorporated into chondrule precursors and incompletely melted during chondrule formation. These observations and the high abundance of relict CAIs in the aluminum-rich chondrules suggest a close genetic relationship between these objects: aluminum-rich chondrules formed by melting of spinel-anorthite-pyroxene CAIs mixed with ferromagnesian precursors compositionally similar to magnesium-rich (Type I) chondrules. The aluminum-rich chondrules without relict CAIs have oxygen isotopic compositions (Δ17O = −2 to −8‰) similar to those of ferromagnesian chondrules. In contrast to the aluminum-rich chondrules from ordinary chondrites, those from CRs plot on a three-oxygen isotope diagram along the carbonaceous chondrite anhydrous mineral line and form a continuum with amoeboid olivine aggregates and CAIs from CRs. We conclude that oxygen isotope compositions of chondrules resulted from two processes: homogenization of isotopically heterogeneous materials during chondrule melting and oxygen isotopic exchange between chondrule melt and 16O-poor nebular gas.  相似文献   

9.
We have analyzed the Y/Ho-ratios in bulk chondrites, chondrules and four Ca- and Al-rich inclusions (CAIs) from carbonaceous and unequilibrated ordinary and enstatite chondrites (EC) by laser ablation inductively coupled mass spectrometry (LA-ICPMS). We demonstrate that bulk rock sample preparation by containerless melting is a suitable method for preparation of bulk rock samples for high-precision LA-ICPMS. Bulk chondrites have variable Y/Ho-ratios. Carbonaceous chondrites (CI1, CM2, CV3, and CK4) have a common Y/Ho-ratio (25.94 ± 0.08, 2σ) that is regarded as the solar system Y/Ho-ratio. The Y/Ho-ratio increases from carbonaceous, through ordinary (LL, L, H) to enstatite chondrites (EL6), which show the highest Y/Ho-ratio of 27.25. We discuss the result with respect to the origin of fractionation of Re and Os between chondrite groups. Within analytical error, Y and Ho show a good correlation in OC and CV3 chondrules and define an Y/Ho-ratio of 26.22 ± 0.40 (2σ). Y/Ho-fractionation in Ca- and Al-rich inclusions is related to differences in volatility. The bulk silicate Earth is suggested to have a solar Y/Ho-ratio and links the Earth with carbonaceous chondrites. Y/Ho variations in primitive and differentiated terrestrial igneous rocks are discussed in framework of incompatibility of Y and Ho during partial melting. Applicability of Y/Ho as tracer for or against a sedimentary origin of the putative host rock of the Earth’s oldest traces of life from the island of Akilia is briefly discussed.  相似文献   

10.
We measured major, minor, and trace-element compositions for eleven Al-rich chondrules from unequilibrated ordinary chondrites to investigate the relationships between Al-rich chondrules, ferromagnesian chondrules, Ca-, Al-rich inclusions (CAIs), and amoeboid olivine aggregates (AOAs). Phase equilibrium considerations show that, for the most part, mineral assemblages in Al-rich chondrules are those expected from melts of the observed compositions. The diversity of mineral assemblages and Al-rich chondrule types arises mainly from the fact that the array of compositions spans both the spinel-saturated anorthite-forsterite reaction curve and a thermal divide defined by where the anorthite-forsterite join crosses the reaction curve. The reaction curve accounts for the two principal varieties of Al-rich chondrule, plagioclase-phyric and olivine-phyric, with or without aluminous spinel. The thermal divide influences the subsequent evolution of each variety. A third variety of Al-rich chondrule contains abundant sodium-rich glass; trace-element fractionation patterns suggest that these glassy Al-rich chondrules could have been derived from the other two by extensive alteration of plagioclase to nepheline followed by remelting. The bulk compositions of Al-rich chondrules (except sodium-rich ones) are intermediate in a volatility sense between ferromagnesian chondrules and type C CAIs. The combined trend of bulk compositions for CAIs, Al-rich chondrules, and ferromagnesian chondrules mirrors, but does not exactly match, the trend predicted from equilibrium condensation at PT ∼ 10-3 atm; the observed trend does not match the trend found for evaporation from a liquid of chondritic composition. We thus infer that the bulk compositions of the precursors to CAIs, Al-rich chondrules, were ferromagnesian chondrules were controlled primarily by vapor-solid reactions (condensation or sublimation) in the solar nebula. Some Al-rich chondrules are consistent with an origin by melting of a compound CAI-ferromagnesian chondrule hybrid; others cannot be so explained. Any hybrid model is restricted by the constraint that the CAI precursor consisted dominantly of pyroxene + plagioclase + spinel; melilite cannot have been a significant component. Amoeboid olivine aggregates also have the inferred mineralogical characteristics of Al-rich chondrule precursors—they are mixtures of olivine with plagioclase-spinel-pyroxene-rich CAIs—but the few measured bulk compositions are more olivine-rich than those of Al-rich chondrules.  相似文献   

11.
EET 90102 is the first known diopside-bearing EL6 chondrite. Diopside occurs in most aubrites and is occasionally found as rare small grains in unequilibrated enstatite chondrites, but is unknown from equilibrated enstatite chondrites. We have carried out a study of the rare earth element (REE) distributions in EET 90102, with a specific emphasis on diopside, in order to better understand its origin in this meteorite. We also present data for Ca-rich pyroxenes from two unequilibrated (EH3) enstatite chondrites for comparison.Our data show that diopside and other silicates in EET 90102 exhibit volatility-related anomalies indicative of formation under highly reducing conditions. Such anomalies have not previously been observed in EL6 chondrites, although they are common in unequilibrated enstatite chondrites. Diopside in EET 90102 probably formed by metamorphic equilibration of enstatite and oldhamite. The REE compositions of some grains, in particular the presence of positive Yb anomalies, indicate that they inherited their REE characteristics largely from CaS. Other grains have REE patterns that are more consistent with a derivation of diopside primarily from enstatite.In contrast to other EL6 chondrites, which experienced slow cooling, EET 90102 was quenched from high metamorphic temperatures. Thus, there may have been insufficient time to completely homogenize diopside REE compositions.The presence of diopside in EET 90102 simplifies one outstanding problem of aubrite formation. Melting of a diopside-bearing enstatite chondrite protolith provides a source for the abundant diopside in aubrites without requiring the oxidation of oldhamite, as suggested by previous research.  相似文献   

12.
Sixty-eight refractory inclusions and fragments were found in two polished thin sections of the Sahara 97159 EH3 chondrite, indicative of the highest abundance of refractory inclusions (22/cm2, or 0.06 vol.%) in enstatite chondrites studied to date. All of the inclusions are intensely altered, mainly producing feldspathoids and albite, CaO depletion and minor Ti-rich compounds, such as Ti-sulfides. The alteration assemblages and FeO-poor spinel suggest that the reactions took place under reducing and SiO2-rich conditions. This is consistent with the redox state of the host enstatite chondrite. The presence of Ti sulfides and low FeO alteration phases distinguishes alteration of E chondrite refractory inclusions from that of carbonaceous and ordinary chondrites.Most of the inclusions are referred to as Type A-like (35) and spinel-rich (26), respectively. Assuming melilite has been altered, these inclusions could be analogues of individual concentrically zoned objects of fluffy melilite-spinel-rich (Type A) and spinel-pyroxene-rich inclusions from carbonaceous chondrites such as the Ningqiang (CV anomalous) and Y 81020 (CO3) chondrites. Two inclusions consist mainly of Ca-pyroxene, fine-grained alteration products (feldspathoids and albite) and spinel. They are probably altered fragments of Ca-pyroxene-plagioclase-rich (Type C) inclusions, assuming all plagioclase has been altered to produce the fine-grained groundmass. Five other inclusions are hibonite and/or corundum bearing, similar to those reported in carbonaceous chondrites. Abundance ratios of various types of the inclusions from Sahara 97159 are similar to those from Ningqiang and Y 81020.Most of the observations, including mineral assemblages, mineral chemistry, texture, bulk compositions, O isotopic compositions and REE patterns, of the Sahara inclusions suggest a common reservoir of refractory inclusions in enstatite, ordinary and carbonaceous chondrites. The apparent differences, such as absence of melilite and anorthite, rare Wark-Lovering rim and small size, can be explained by intense alteration due to large change of postformation environment of these inclusions, size sorting and collision during transfer. Hence, these differences are not inconsistent with the common reservoir model. Refractory inclusions in non-carbonaceous chondrites may put additional constraints on origins of refractory inclusions, and provide hints for a spatial relationship of their host meteorites.  相似文献   

13.
Enstatite-rich meteorites include EH and EL chondrites, rare ungrouped enstatite chondrites, aubrites, a few metal-rich meteorites (possibly derived from the mantle of the aubrite parent body), various impact-melt breccias and impact-melt rocks, and a few samples that may be partial-melt residues ultimately derived from enstatite chondrites. Members of these sets of rocks exhibit a wide range of impact features including mineral-lattice deformation, whole-rock brecciation, petrofabrics, opaque veins, rare high-pressure phases, silicate darkening, silicate-rich melt veins and melt pockets, shock-produced diamonds, euhedral enstatite grains, nucleation of enstatite on relict grains and chondrules, low MnO in enstatite, high Mn in troilite and oldhamite, grains of keilite, abundant silica, euhedral graphite, euhedral sinoite, F-rich amphibole and mica, and impact-melt globules and spherules. No single meteorite possesses all of these features, although many possess several. Impacts can also cause bulk REE fractionations due to melting and loss of oldhamite (CaS) – the main REE carrier in enstatite meteorites. The Shallowater aubrite can be modeled as an impact-melt rock derived from a large cratering event on a porous enstatite chondritic asteroid; it may have been shock melted at depth, slowly cooled and then excavated and quenched. Mount Egerton may share a broadly similar shock and thermal history; it could be from the same parent body as Shallowater. Many aubrites contain large pyroxene grains that exhibit weak mosaic extinction, consistent with shock-stage S4; in contrast, small olivine grains in some of these same aubrites have sharp or undulose extinction, consistent with shock stage S1 to S2. Because elemental diffusion is much faster in olivine than pyroxene, it seems likely that these aubrites experienced mild post-shock annealing, perhaps due to relatively shallow burial after an energetic impact event. There are correlations among EH and EL chondrites between petrologic type and the degree of shock, consistent with the hypothesis that collisional heating is mainly responsible for enstatite-chondrite thermal metamorphism. Nevertheless, the apparent shock stages of EL6 and EH6 chondrites tend to be lower than EL3-5 and EH3-5 chondrites, suggesting that the type-6 enstatite chondrites (many of which possess impact-produced features) were shocked and annealed. The relatively young Ar–Ar ages of enstatite chondrites record heating events that occurred long after any 26Al that may have been present initially had decayed away. Impacts remain the only plausible heat source at these late dates. Some enstatite meteorites accreted to other celestial bodies: Hadley Rille (EH) was partly melted when it struck the Moon; Galim (b), also an EH chondrite, was shocked and partly oxidized when it accreted to the LL parent asteroid. EH, EL and aubrite-like clasts also occur in the polymict breccias Kaidun (a carbonaceous chondrite) and Almahata Sitta (an anomalous ureilite). The EH and EL clasts in Kaidun appear unshocked; some clasts in Almahata Sitta may have been extensively shocked on their parent bodies prior to being incorporated into the Almahata Sitta host.  相似文献   

14.
The aluminum-rich (>10 wt% Al2O3) objects in the CH carbonaceous chondrite North West Africa (NWA) 739 include Ca,Al-rich inclusions (CAIs), Al-rich chondrules, and isolated mineral grains (spinel, plagioclase, glass). Based on the major mineralogy, 54 refractory inclusions found in about 1 cm2 polished section of NWA 739 can be divided into hibonite-rich (16%), grossite-rich (26%), melilite-rich (28%), spinel-pyroxene-rich (16%) CAIs, and amoeboid olivine aggregates, (AOA's, 17%). Most CAIs are rounded, 25–185 μm (average=70 μm) in apparent diameter, contain abundant, tiny perovskite grains, and typically surrounded by a single- or double-layered rim composed of melilite and/or Al-diopside; occasionally, layers of spinel+hibonite and forsterite are observed. The AOAs are irregularly shaped, 100–250 μm (average=175 μm) in size, and consist of forsterite, Fe,Ni-metal, and CAIs composed of Al-diopside, anorthite, and minor spinel. One AOA contains compact, rounded melilite-spinel-perovskite CAIs and low-Ca pyroxene replacing forsterite. The Al-rich (>10 wt% bulk Al2O3) chondrules are divided into Al-diopside-rich and plagioclase-rich. The Al-diopside-rich chondrules, 50–310 μm (average=165 μm) in apparent diameter, consist of Al-diopside, skeletal forsterite, spinel, ±Al-rich low-Ca pyroxene, and ±mesostasis. The plagioclase-rich chondrules, 120–455 μm (average=285 μm) in apparent diameter, are composed of low-Ca and high-Ca pyroxenes, forsterite, anorthitic plagioclase, Fe,Ni-metal nodules, and mesostasis. The isolated spinel occurs as coarse, 50–125 μm in size, subhedral grains, which are probably the fragments of Al-diopside chondrules. The isolated plagioclase grains are too coarse (60–120 μm) to have been produced by disintegration of chondrules or CAIs; they range in composition from nearly pure anorthite to nearly pure albite; their origin is unclear. The Al-rich objects show no evidence for Fe-alkali metasomatic or aqueous alteration; the only exception is an Al-rich chondrule fragment with anorthite replaced by nepheline. They are texturally and mineralogically similar to those in other CH chondrites studied (Acfer 182, ALH85085, PAT91467, NWA 770), but are distinct from the Al-rich objects in other chondrite groups (CM, CO, CR, CV). The CH CAIs are dominated by very refractory minerals, such as hibonite, grossite, perovskite and gehlenitic melilite, and appear to have experienced very low degrees of high-temperature alteration reactions. These include replacement of grossite by melilite, of melilite by anorthite, diopside, and spinel, and of forsterite by low-Ca pyroxene. Only a few CAIs show evidence for melting and multilayered Wark-Lovering rims. These observations may suggest that CH CAIs experienced rather simple formation history and escaped extensive recycling. In order to preserve the high-temperature mineral assemblages, they must have been efficiently isolated from the hot nebular region, like some chondrules and the zoned Fe,Ni-metal grains in CH chondrites.  相似文献   

15.
16.
Optical and cathodoluminescence petrography were coupled with electron microprobe analysis to relate the textures and chemical compositions of minerals in the chondrules and matrix of the Indarch, Kota-Kota, Adhi-Kot and Abee Type I enstatite chondrites. Clinoenstatites fall into two distinct chemical groups with characteristic red or blue luminescence; red crystals are higher in Ti, Al, Cr, Mn and Ca, and lower in Na, than blue ones. Rare forsterites in Indarch and Kota-Kota show distinct compositions associated with orange or blue luminescence. The chemical ranges are indistinguishable for each color type in chondrules of all textural types, and the presence of both color types in a single chondrule or a metal fragment requires mechanical aggregation of both crystals and liquids of both color types. Porphyritic chondrules are ascribed mainly to aggregation of existing crystals because both types of pyroxene and olivine occur in the same chondrule. Large crystals of one color type are surrounded by fine-grained crystals of another type in some barred and radiating chondrules. All types of chondrules are surrounded by fine-grained rims rich in sulfide. The matrix contains many broken chondrules and individual silicate grains but is rich in sulfide and metal. Analyses are given of albite (minor elements and luminescence color vary between chondrites), kamacite, schreibersite, oldhamite and niningerite.Although the mineral assemblages do not fit theoretical condensation sequences in detail, the red pyroxene and orange olivine might result ultimately from near-equilibrium crystallization in which early reduced condensates reacted with a gas, while the blue crystals might result from fractional condensation in which early condensates were removed mechanically from a gas. Subsequent episodes involving mixing, melting, crystallization, condensation, fracturing, and mechanical aggregation would be needed to produce the complex textures.  相似文献   

17.
陨石氧同位素组成及其地学意义   总被引:1,自引:0,他引:1  
介绍了各类陨石氧同位素组成的特点,对陨石氧同位素组成的主要成因观点进行了评述,结合地球的原始物质组成,讨论了陨石氧同位素组成的地球科学意义。  相似文献   

18.
本文研究了2个富钙长石-橄榄石型包体和2个富黄长石-尖晶石型和富尖晶石-辉石型包体(分别来自宁强和南极格罗夫山碳质球粒陨石)的矿物岩石学特征,并对它们进行了对比。富钙长石-橄榄石型包体的矿物模式组成具有富橄榄石和缺失黄长石的特征,其可能是球粒和典型难熔包体之间的中间产物,是认识它们之间相互关系的钥匙。矿物岩石学特征表明富黄长石-尖晶石型和富尖晶石-辉石型包体可能是星云直接凝聚的产物,而富钙长石-橄榄石型包体经历过熔融结晶过程。富钙长石-橄榄石型包体的初始物质可能是富Al的球粒或含难熔组分的蠕虫状橄榄石集合体。矿物化学组成对比研究发现,GRV 022459-RI6中的尖晶石具有最富FeO的特征,表明包体的蚀变可能发生在高氧逸度的星云环境。  相似文献   

19.
Amoeboid olivine aggregates (AOAs) are the most common type of refractory inclusions in CM, CR, CH, CV, CO, and ungrouped carbonaceous chondrites Acfer 094 and Adelaide; only one AOA was found in the CBb chondrite Hammadah al Hamra 237 and none were observed in the CBa chondrites Bencubbin, Gujba, and Weatherford. In primitive (unaltered and unmetamorphosed) carbonaceous chondrites, AOAs consist of forsterite (Fa<2), Fe, Ni-metal (5-12 wt% Ni), and Ca, Al-rich inclusions (CAIs) composed of Al-diopside, spinel, anorthite, and very rare melilite. Melilite is typically replaced by a fine-grained mixture of spinel, Al-diopside, and ±anorthite; spinel is replaced by anorthite. About 10% of AOAs contain low-Ca pyroxene replacing forsterite. Forsterite and spinel are always 16O-rich (δ17,18O∼−40‰ to −50‰), whereas melilite, anorthite, and diopside could be either similarly 16O-rich or 16O-depleted to varying degrees; the latter is common in AOAs from altered and metamorphosed carbonaceous chondrites such as some CVs and COs. Low-Ca pyroxene is either 16O-rich (δ17,18O∼−40‰) or 16O-poor (δ17,18O∼0‰). Most AOAs in CV chondrites have unfractionated (∼2-10×CI) rare-earth element patterns. AOAs have similar textures, mineralogy and oxygen isotopic compositions to those of forsterite-rich accretionary rims surrounding different types of CAIs (compact and fluffy Type A, Type B, and fine-grained, spinel-rich) in CV and CR chondrites. AOAs in primitive carbonaceous chondrites show no evidence for alteration and thermal metamorphism. Secondary minerals in AOAs from CR, CM, and CO, and CV chondrites are similar to those in chondrules, CAIs, and matrices of their host meteorites and include phyllosilicates, magnetite, carbonates, nepheline, sodalite, grossular, wollastonite, hedenbergite, andradite, and ferrous olivine.Our observations and a thermodynamic analysis suggest that AOAs and forsterite-rich accretionary rims formed in 16O-rich gaseous reservoirs, probably in the CAI-forming region(s), as aggregates of solar nebular condensates originally composed of forsterite, Fe, Ni-metal, and CAIs. Some of the CAIs were melted prior to aggregation into AOAs and experienced formation of Wark-Lovering rims. Before and possibly after the aggregation, melilite and spinel in CAIs reacted with SiO and Mg of the solar nebula gas enriched in 16O to form Al-diopside and anorthite. Forsterite in some AOAs reacted with 16O-enriched SiO gas to form low-Ca pyroxene. Some other AOAs were either reheated in 16O-poor gaseous reservoirs or coated by 16O-depleted pyroxene-rich dust and melted to varying degrees, possibly during chondrule formation. The most extensively melted AOAs experienced oxygen isotope exchange with 16O-poor nebular gas and may have been transformed into magnesian (Type I) chondrules. Secondary mineralization and at least some of the oxygen isotope exchange in AOAs from altered and metamorphosed chondrites must have resulted from alteration in the presence of aqueous solutions after aggregation and lithification of the chondrite parent asteroids.  相似文献   

20.
The recently discovered metal-rich carbonaceous chondrite Isheyevo consists of Fe, Ni-metal grains, chondrules, heavily hydrated matrix lumps and rare refractory inclusions. It contains several lithologies with mineralogical characteristics intermediate between the CH and CB carbonaceous chondrites; the contacts between the lithologies are often gradual. Here we report the mineralogy and petrography of chondrules in the metal-rich (70 vol%) and metal-poor (20 vol%) lithologies. The chondrules show large variations in textures [cryptocrystalline, skeletal olivine, barred olivine, porphyritic olivine, porphyritic olivine-pyroxene, porphyritic pyroxene], mineralogy and bulk chemistry (magnesian, ferrous, aluminum-rich, silica-rich). The porphyritic magnesian (Type I) and ferrous (Type II) chondrules, as well as silica- and Al-rich plagioclase-bearing chondrules are texturally and mineralogically similar to those in other chondrite groups and probably formed by melting of mineralogically diverse precursor materials. We note, however, that in contrast to porphyritic chondrules in other chondrite groups, those in Isheyevo show little evidence for multiple melting events; e.g., relict grains are rare and igneous rims or independent compound chondrules have not been found. The magnesian cryptocrystalline and skeletal olivine chondrules are chemically and mineralogically similar to those in the CH and CB carbonaceous chondrites Hammadah al Hamra 237, Queen Alexandra Range 94411 (QUE94411) and MacAlpine Hills 02675 (MAC02675), possibly indicating a common origin from a vapor–melt plume produced by a giant impact between planetary embryos; the interchondrule metal grains, many of which are chemically zoned, probably formed during the same event. The magnesian cryptocrystalline chondrules have olivine–pyroxene normative compositions and are generally highly depleted in Ca, Al, Ti, Mn and Na; they occasionally occur inside chemically zoned Fe, Ni-metal grains. The skeletal olivine chondrules consist of skeletal forsteritic olivine grains overgrown by Al-rich (up to 20 wt% Al2O3) low-Ca and high-Ca pyroxene, and interstitial anorthite-rich mesostasis. Since chondrules with such characteristics are absent in ordinary, enstatite and other carbonaceous chondrite groups, the impact-related chondrule-forming mechanism could be unique for the CH and CB chondrites. We conclude that Isheyevo and probably other CH chondrites contain chondrules of several generations, which may have formed at different times, places and by different mechanisms, and subsequently accreted together with the heavily hydrated matrix lumps and refractory inclusions into a CH parent body. Short-lived isotope chronology, oxygen isotope and trace element studies of the Isheyevo chondrules can provide a possible test of this hypothesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号