首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The main goal of this study is to produce landslide susceptibility maps of a landslide-prone area (Haraz) in Iran by using both fuzzy logic and analytical hierarchy process (AHP) models. At first, landslide locations were identified by aerial photographs and field surveys, and a total of 78 landslides were mapped from various sources. Then, the landslide inventory was randomly split into a training dataset 70?% (55 landslides) for training the models and the remaining 30?% (23 landslides) was used for validation purpose. Twelve data layers, as the landslide conditioning factors, are exploited to detect the most susceptible areas. These factors are slope degree, aspect, plan curvature, altitude, lithology, land use, distance from rivers, distance from roads, distance from faults, stream power index, slope length, and topographic wetness index. Subsequently, landslide susceptibility maps were produced using fuzzy logic and AHP models. For verification, receiver operating characteristics curve and area under the curve approaches were used. The verification results showed that the fuzzy logic model (89.7?%) performed better than AHP (81.1?%) model for the study area. The produced susceptibility maps can be used for general land use planning and hazard mitigation purpose.  相似文献   

2.
The Mugling–Narayanghat road section falls within the Lesser Himalaya and Siwalik zones of Central Nepal Himalaya and is highly deformed by the presence of numerous faults and folds. Over the years, this road section and its surrounding area have experienced repeated landslide activities. For that reason, landslide susceptibility zonation is essential for roadside slope disaster management and for planning further development activities. The main goal of this study was to investigate the application of the frequency ratio (FR), statistical index (SI), and weights-of-evidence (WoE) approaches for landslide susceptibility mapping of this road section and its surrounding area. For this purpose, the input layers of the landslide conditioning factors were prepared in the first stage. A landslide inventory map was prepared using earlier reports, aerial photographs interpretation, and multiple field surveys. A total of 438 landslide locations were detected. Out these, 295 (67 %) landslides were randomly selected as training data for the modeling using FR, SI, and WoE models and the remaining 143 (33 %) were used for the validation purposes. The landslide conditioning factors considered for the study area are slope gradient, slope aspect, plan curvature, altitude, stream power index, topographic wetness index, lithology, land use, distance from faults, distance from rivers, and distance from highway. The results were validated using area under the curve (AUC) analysis. From the analysis, it is seen that the FR model with a success rate of 76.8 % and predictive accuracy of 75.4 % performs better than WoE (success rate, 75.6 %; predictive accuracy, 74.9 %) and SI (success rate, 75.5 %; predictive accuracy, 74.6 %) models. Overall, all the models showed almost similar results. The resultant susceptibility maps can be useful for general land use planning.  相似文献   

3.
The goal of this paper is to evaluate and compare the consistency of GIS-based heuristic and bivariate landslide susceptibility mapping techniques in the Himalayan region, taking the Kulekhani watershed of central Nepal as an example. For this purpose, a heuristic and two statistical bivariate landslide susceptibility mapping methods are applied, and three separate landslide susceptibility zonation maps are produced. The maps are compared using three approaches: landslide density analysis, success rate analysis, and agreed area analysis. A comparison of the values obtained from landslide density analysis and the curves of success rate analysis indicate that the two bivariate methods produce almost identical results, whereas the map produced with the heuristic method differs significantly from the others. On the other hand, the agreed area analysis highlights significant spatial differences in the maps obtained from the three methods. Although the three approaches evaluate the consistency of susceptibility maps, only the agreed area analysis is capable of spatially comparing them. Hence, this approach proves to be more suitable for spatially and quantitatively evaluating the consistency of various landslide susceptibility zonation maps.  相似文献   

4.
Landslide susceptibility mapping is a vital tool for disaster management and planning development activities in mountainous terrains of tropical and subtropical environments. In this paper, the weights-of-evidence modelling was applied, within a geographical information system (GIS), to derive landslide susceptibility map of two small catchments of Shikoku, Japan. The objective of this paper is to evaluate the importance of weights-of-evidence modelling in the generation of landslide susceptibility maps in relatively small catchments having an area less than 4 sq km. For the study area in Moriyuki and Monnyu catchments, northeast Shikoku Island in west Japan, a data set was generated at scale 1:5,000. Relevant thematic maps representing various factors (e.g. slope, aspect, relief, flow accumulation, soil depth, soil type, land use and distance to road) that are related to landslide activity were generated using field data and GIS techniques. Both catchments have homogeneous geology and only consist of Cretaceous granitic rock. Thus, bedrock geology was not considered in data layering during GIS analysis. Success rates were also estimated to evaluate the accuracy of landslide susceptibility maps and the weights-of-evidence modelling was found useful in landslide susceptibility mapping of small catchments.  相似文献   

5.
Landslides and slope instabilities are major risks for human activities which often lead to economic losses and human fatalities all over the world. The main purpose of this study is to evaluate and compare the results of Landslide Nominal Risk Factor (LNRF), Frequency Ratio (FR), and Analytical Hierarchy Process (AHP) models in mapping Landslide Susceptibility Index (LSI). The study case, Nojian watershed with an area of 344.91 km2, is located in Lorestan province of Iran. The procedure was as follows: first, the effective factors of the landslide basin were prepared for each layer in the GIS software. Then, the layers and the landslides of the basin were also prepared using aerial photographs, satellite images, and fieldwork. Next, the effective factors of the layers were overlapped with the map of landslide distribution to specify the role of units in such distribution. Finally, nine factors including lithology, slope, aspect, altitude, distance from the fault, distance from river, fault land use, rainfall, and altitude were found to be effective elements in landslide occurrence of the basin. The final maps of LSI were prepared based on seven factors using LNRF, FR, and AHP models in GIS. The index of the quality sum (Qs) was also used to assess the accuracy of the LSI maps. The results of the three models with LNRF (40%), FR (39%), and AHP (44%) indicated that the whole study area was located in the classes of high to very high hazard. The Qs values for the three models above were also found to be 0.51, 0.70 and 0.70, respectively. In comparison, according to the amount of Qs, the results of AHP and FR models have slightly better performed than the LNRF model in determining the LSI maps in the study area. Finally, the study watershed was classified into five classes based on LSI as very low, low, moderate, high, and very high. The landslide susceptibility maps can be helpful to select sites and mitigate landslide hazards in the study area and the regions with similar conditions.  相似文献   

6.
7.
Quantitative landslide susceptibility mapping at Pemalang area,Indonesia   总被引:3,自引:0,他引:3  
For quantitative landslide susceptibility mapping, this study applied and verified a frequency ratio, logistic regression, and artificial neural network models to Pemalang area, Indonesia, using a Geographic Information System (GIS). Landslide locations were identified in the study area from interpretation of aerial photographs, satellite imagery, and field surveys; a spatial database was constructed from topographic and geological maps. The factors that influence landslide occurrence, such as slope gradient, slope aspect, curvature of topography, and distance from stream, were calculated from the topographic database. Lithology was extracted and calculated from geologic database. Using these factors, landslide susceptibility indexes were calculated by frequency ratio, logistic regression, and artificial neural network models. Then the landslide susceptibility maps were verified and compared with known landslide locations. The logistic regression model (accuracy 87.36%) had higher prediction accuracy than the frequency ratio (85.60%) and artificial neural network (81.70%) models. The models can be used to reduce hazards associated with landslides and to land-use planning.  相似文献   

8.
9.
The aim of this study is to produce landslide susceptibility mapping by probabilistic likelihood ratio (PLR) and spatial multi-criteria evaluation (SMCE) models based on geographic information system (GIS) in the north of Tehran metropolitan, Iran. The landslide locations in the study area were identified by interpretation of aerial photographs, satellite images, and field surveys. In order to generate the necessary factors for the SMCE approach, remote sensing and GIS integrated techniques were applied in the study area. Conditioning factors such as slope degree, slope aspect, altitude, plan curvature, profile curvature, surface area ratio, topographic position index, topographic wetness index, stream power index, slope length, lithology, land use, normalized difference vegetation index, distance from faults, distance from rivers, distance from roads, and drainage density are used for landslide susceptibility mapping. Of 528 landslide locations, 70 % were used in landslide susceptibility mapping, and the remaining 30 % were used for validation of the maps. Using the above conditioning factors, landslide susceptibility was calculated using SMCE and PLR models, and the results were plotted in ILWIS-GIS. Finally, the two landslide susceptibility maps were validated using receiver operating characteristic curves and seed cell area index methods. The validation results showed that area under the curve for SMCE and PLR models is 76.16 and 80.98 %, respectively. The results obtained in this study also showed that the probabilistic likelihood ratio model performed slightly better than the spatial multi-criteria evaluation. These landslide susceptibility maps can be used for preliminary land use planning and hazard mitigation purpose.  相似文献   

10.
The purpose of this study is to produce a landslide susceptibility map for the lower Mae Chaem watershed, northern Thailand using a Geographic Information System (GIS) and remotely sensed images. For this purpose, past landslide locations were identified from satellite images and aerial photographs accompanied by the field surveys to create a landslide inventory map. Ten landslide-inducing factors were used in the susceptibility analysis: elevation, slope angle, slope aspect, lithology, distance from lineament, distance from drainage, precipitation, soil texture, land use/land cover (LULC), and NDVI. The first eight factors were prepared from their associated database while LULC and NDVI maps were generated from Landsat-5 TM images. Landslide susceptibility was analyzed and mapped using the frequency ratio (FR) model that determines the level of correlation between locations of past landslides and the chosen factors and describes it in terms of frequency ratio index. Finally, the output map was validated using the area under the curve (AUC) method where the success rate of 80.06% and the prediction rate of 84.82% were achieved. The obtained map can be used to reduce landslide hazard and assist with proper planning of LULC in the future.  相似文献   

11.
Paryani  Sina  Neshat  Aminreza  Javadi  Saman  Pradhan  Biswajeet 《Natural Hazards》2020,103(2):1961-1988
Natural Hazards - Many landslides occur in the Karun watershed in the Zagros Mountains. In the present study, we employed a novel comparative approach for spatial modeling of landslides given the...  相似文献   

12.
Landslide hazard zonation is essential for planning future developmental activities. At the present study, after the preparation of a landslide inventory of the study area, nine factors as well as sub-data layers of factor class weights were tested for an integrated analysis of landslide hazard in the region. The produced factor maps were weighted with the analytic hierarchy process method and then classified into four classes—negligible, low, moderate, and high. The final produced map for landslide hazard zonation in Golestan watershed revealed that: (1) about 53.85 % of the basin is prone to moderate and high threats of landslides. (2) Landslide events at the Golestan watershed were strongly correlated to the slope angle of the basin. It was observed that the active landslide zones, including moderate to high landslide hazard classes, have a high correlation to slope classes over 30° (R 2?=?0.769). (3) The regions most susceptible to landslide hazard are those located south and southwest of the watershed, which included rock topples, falls, and debris landslides.  相似文献   

13.
There are different approaches and techniques for landslide susceptibility mapping. However, no agreement has been reached in both the procedure and the use of specific controlling factors employed in the landslide susceptibility mapping. Each model has its own assumption, and the result may differ from place to place. Different landslide controlling factors and the completeness of landslide inventory may also affect the different result. Incomplete landslide inventory may produce significance error in the interpretation of the relationship between landslide and controlling factor. Comparing landslide susceptibility models using complete inventory is essential in order to identify the most realistic landslide susceptibility approach applied typically in the tropical region Indonesia. Purwosari area, Java, which has total 182 landslides occurred from 1979 to 2011, was selected as study area to evaluate three data-driven landslide susceptibility models, i.e., weight of evidence, logistic regression, and artificial neural network. Landslide in the study area is usually affected by rainfall and anthropogenic activities. The landslide typology consists of shallow translational and rotational slide. The elevation, slope, aspect, plan curvature, profile curvature, stream power index, topographic wetness index, distance to river, land use, and distance to road were selected as landslide controlling factors for the analysis. Considering the accuracy and the precision evaluations, the weight of evidence represents considerably the most realistic prediction capacities (79%) when comparing with the logistic regression (72%) and artificial neural network (71%). The linear model shows more powerful result than the nonlinear models because it fits to the area where complete landslide inventory is available, the landscape is not varied, and the occurence of landslide is evenly distributed to the class of controlling factor.  相似文献   

14.
15.
Without a doubt, landslide is one of the most disastrous natural hazards and landslide susceptibility maps (LSMs) in regional scale are the useful guide to future development planning. Therefore, the importance of generating LSMs through different methods is popular in the international literature. The goal of this study was to evaluate the susceptibility of the occurrence of landslides in Zonouz Plain, located in North-West of Iran. For this purpose, a landslide inventory map was constructed using field survey, air photo/satellite image interpretation, and literature search for historical landslide records. Then, seven landslide-conditioning factors such as lithology, slope, aspect, elevation, land cover, distance to stream, and distance to road were utilized for generation LSMs by various models: frequency ratio (FR), logistic regression (LR), artificial neural network (ANN), and genetic programming (GP) methods in geographic information system (GIS). Finally, total four LSMs were obtained by using these four methods. For verification, the results of LSM analyses were confirmed using the landslide inventory map containing 190 active landslide zones. The validation process showed that the prediction accuracy of LSMs, produced by the FR, LR, ANN, and GP, was 87.57, 89.42, 92.37, and 93.27 %, respectively. The obtained results indicated that the use of GP for generating LSMs provides more accurate prediction in comparison with FR, LR, and ANN. Furthermore; GP model is superior to the ANN model because it can present an explicit formulation instead of weights and biases matrices.  相似文献   

16.
根据研究区的基本情况,选择坡度、坡向、地层岩性、距断层距离、降雨、土地利用等6个评价因子,采用滑坡灾害易发性评价的GIS与AHP耦合模型进行戛洒镇滑坡灾害易发性评价,并将滑坡灾害分为极高、高、中、低和极低易发区5个区域进行了滑坡灾害易发性评价结果分析,以期为后期的小流域滑坡风险评估研究服务。  相似文献   

17.
The identification of landslide-prone areas is an essential step in landslide hazard assessment and mitigation of landslide-related losses.In this study,we applied two novel deep learning algorithms,the recurrent neural network(RNN)and convolutional neural network(CNN),for national-scale landslide susceptibility mapping of Iran.We prepared a dataset comprising 4069 historical landslide locations and 11 conditioning factors(altitude,slope degree,profile curvature,distance to river,aspect,plan curvature,distance to road,distance to fault,rainfall,geology and land-sue)to construct a geospatial database and divided the data into the training and the testing dataset.We then developed RNN and CNN algorithms to generate landslide susceptibility maps of Iran using the training dataset.We calculated the receiver operating characteristic(ROC)curve and used the area under the curve(AUC)for the quantitative evaluation of the landslide susceptibility maps using the testing dataset.Better performance in both the training and testing phases was provided by the RNN algorithm(AUC=0.88)than by the CNN algorithm(AUC=0.85).Finally,we calculated areas of susceptibility for each province and found that 6%and 14%of the land area of Iran is very highly and highly susceptible to future landslide events,respectively,with the highest susceptibility in Chaharmahal and Bakhtiari Province(33.8%).About 31%of cities of Iran are located in areas with high and very high landslide susceptibility.The results of the present study will be useful for the development of landslide hazard mitigation strategies.  相似文献   

18.
Ye  Peng  Yu  Bin  Chen  Wenhong  Liu  Kan  Ye  Longzhen 《Natural Hazards》2022,113(2):965-995

The rainfall can contribute significantly to landslide events, especially in hilly areas. The landslide susceptibility map (LSM) usually helps to mitigate disasters. However, how to accurately predict the susceptibility of landslides is still a difficult point in the field of disaster research. In this study, five advanced machine learning technologies (MLTs), including the Light Gradient Boosting Machine, extreme gradient boost, categorical boosting (CatBoost), support vector machine, and random forest, are utilized to landslide susceptibility modeling and their capabilities are compared through evaluation indicators. The northern part of Yanping, Fujian Province, China, is selected as the research object, because this area experienced mass landslide events due to extremely heavy rainfall in June 2010, resulting in many casualties and a large number of public facilities destroyed. The influencing factors for landslides, namely topographic, hydrological, geologic and human activities, are prepared from various data sources based on the availability. Through the analysis of the actual situation in the study area, 13 suitable landslide condition factors are considered and the availability of relevant factors is checked according to the multicollinearity test. The landslide inventory including 631 samples in this study area is obtained from historical information, satellite data in Google earth and performed field surveys. The landslide inventory is randomly divided into two datasets for model training and testing with a 7:3 ratio. The area under the curve of ROC, accuracy rate, Kappa index and F1 score are applied to compare the MLTs capabilities. In this paper, the results of factor importance analysis show that the first three important condition factors are the distance to faults, the distance to drainages and the slope. According to the LSMs, in the study area, the central and western regions are at high and very high landslide susceptibility levels, while almost all the eastern and northeastern regions are at medium and low landslide susceptibility levels. The CatBoost model is a very promising technology in landslide research according to the evaluation results, which means that for landslide susceptibility research, gradient boosting algorithms may get more accurate results and show better prospects in the future. Finally, the results of this paper will contribute to environmental protection to a certain extent.

  相似文献   

19.
In northern parts of Iran such as the Alborz Mountain belt, frequent landslides occur due to a combination of climate and geologic conditions with high tectonic activities. This results in millions of dollars of financial damages annually excluding casualties and unrecoverable resources. This paper evaluates the landslide susceptible areas in Central Alborz using the probabilistic frequency ratio (PFR) model and Geo-information Technology (GiT). The landslide location map in this study has been generated based on image elements interpreted from IRS satellite data and field observations. The display, manipulation and analysis have been carried out to evaluate layers such as geology, geomorphology, soil, slope, aspect, land use, distance from faults, lineaments, roads and drainages. The validation group of actual landslides and relative operation curve method has been used to increase the accuracy of the final landslide susceptibility map. The area under the curve evaluates how well the method predicts landslides. The results showed a satisfactory agreement of 91% between prepared susceptibility map and existing data on landslide locations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号