首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Modelling the Asian summer monsoon using CCAM   总被引:2,自引:1,他引:1  
A ten-year mean (1989–1998) climatology of the Asian summer monsoon is studied using the CSIRO Conformal-Cubic Atmospheric Model (CCAM) to downscale NCEP reanalyses. The aim of the current study is to validate the model results against previous work on this topic, in order to identify model strengths and weaknesses in simulating the Asian summer monsoon. The model results are compared with available observations and are presented in two parts. In the first part, the mean summer rainfall, maximum and minimum temperatures and winds are compared with the observations. The second part focuses on validation of the monsoon onset. The model captures the mean characteristics such as the cross-equatorial flow of low-level winds over the Indian Ocean and near the Somali coast, rainfall patterns, onset indices, northward movements, active-break and revival periods.  相似文献   

2.
This study examines the ability of Community Atmosphere Model (CAM) and Community Climate System Model (CCSM) to simulate the Asian summer monsoon, focusing particularly on inter-model comparison and the role of air–sea interaction. Two different versions of CAM, namely CAM4 and CAM5, are used for uncoupled simulations whereas coupled simulations are performed with CCSM4 model. Ensemble uncoupled simulations are performed for a 30 year time period whereas the coupled model is integrated for 100 years. Emphasis is placed on the simulation of monsoon precipitation by analyzing the interannual variability of the atmosphere-only simulations and sea surface temperature bias in the coupled simulation. It is found that both CAM4 and CAM5 adequately simulated monsoon precipitation, and considerably reduced systematic errors that occurred in predecessors of CAM4, although both tend to overestimate monsoon precipitation when compared with observations. The onset and cessation of the precipitation annual cycle, along with the mean climatology, are reasonably well captured in their simulations. In terms of monsoon interannual variability and its teleconnection with SST over the Pacific and Indian Ocean, both CAM4 and CAM5 showed modest skill. CAM5, with revised model physics, has significantly improved the simulation of the monsoon mean climatology and showed better skill than CAM4. Using idealized experiments with CAM5, it is seen that the adoption of new boundary layer schemes in CAM5 contributes the most to reduce the monsoon overestimation bias in its simulation. In the CCSM4 coupled simulations, several aspects of the monsoon simulation are improved by the inclusion of air–sea interaction, including the cross-variability of simulated precipitation and SST. A significant improvement is seen in the spatial distribution of monsoon mean climatology where a too-heavy monsoon precipitation, which occurred in CAM4, is rectified. A detailed investigation of this significant precipitation reduction showed that the large systematic cold SST errors in the Northern Indian Ocean reduces monsoon precipitation and delays onset by weakening local evaporation. Sensitivity experiments with CAM4 further confirmed these results by simulating a weak monsoon in the presence of cold biases in the Northern Indian Ocean. It is found that although the air–sea coupling rectifies the major weaknesses of the monsoon simulation, the SST bias in coupled simulations induces significant differences in monsoon precipitation. The overall simulation characteristics demonstrate that although the new model versions CAM4, CAM5 and CCSM4, are significantly improved, they still have major weaknesses in simulating Asian monsoon precipitation.  相似文献   

3.
The causes of atmospheric methane (CH4) changes are still a major contention, in particular with regards to the relative contributions of glacial-interglacial cycles, monsoons in both hemispheres and the late Holocene human intervention. Here, we explore the CH4 signals in the Antarctic EPICA Dome C and Vostok ice records using the methods of timeseries analyses and correlate them with insolation and geological records to address these issues. The results parse out three distinct groups of CH4 signals attributable to different drivers. The first group (~80% variance), well tracking the marine δ18O record, is attributable to glacial-interglacial modulation on the global water cycle with the effects shared by wetlands at all latitudes, from monsoonal and non-monsoonal regions in both hemispheres. The second group (~15% variance), centered at the ~10-kyr semi-precession frequency, is linkable with insolation-driven tropical monsoon changes in both hemispheres. The third group (~5% variance), marked by millennial frequencies, is seemingly related with the combined effect of ice-volume and bi-hemispheric insolation changes at the precession bands. These results indicate that bi-hemispheric monsoon changes have been a constant driver of atmospheric CH4. This mechanism also partially explains the Holocene CH4 reversal since ~5?kyr BP besides the human intervention. In the light of these results, we propose that global monsoon can be regarded as a system consisting of two main integrated components, one primarily driven by the oscillations of Inter-Tropical Convergence Zone (ITCZ) in response to the low-latitude summer insolation changes, anti-phase between the two hemispheres (i.e. the ITCZ monsoon component); and another modulated by the glacial-interglacial cycles, mostly synchronous at the global scale (i.e. the glacial-interglacial monsoon component). Although atmospheric CH4 record integrates all wetland processes, including significant non-monsoonal contributions, it is the only and probably the best proxy available to reflect the past changes of global monsoon. However, the utility of CH4 as a proxy of monsoon changes at any specific location is compromised by its bi-hemispheric nature.  相似文献   

4.
Reasonably realistic climatology of atmospheric and oceanic parameters over the Asian monsoon region is a pre-requisite for models used for monsoon studies. The biases in representing these features lead to problems in representing the strength and variability of Indian summer monsoon (ISM). This study attempts to unravel the ability of a state-of-the-art coupled model, SINTEX-F2, in simulating these characteristics of ISM. The coupled model reproduces the precipitation and circulation climatology reasonably well. However, the mean ISM is weaker than observed, as evident from various monsoon indices. A wavenumber–frequency spectrum analysis reveals that the model intraseasonal oscillations are also weaker-than-observed. One possible reason for the weaker-than-observed ISM arises from the warm bias, over the tropical oceans, especially over the equatorial western Indian Ocean, inherent in the model. This warm bias is not only confined to the surface layers, but also extends through most of the troposphere. As a result of this warm bias, the coupled model has too weak meridional tropospheric temperature gradient to drive a realistic monsoon circulation. This in turn leads to a weakening of the moisture gradient as well as the vertical shear of easterlies required for sustained northward propagation of rain band, resulting in weak monsoon circulation. It is also noted that the recently documented interaction between the interannual and intraseasonal variabilities of ISM through very long breaks (VLBs) is poor in the model. This seems to be related to the inability of the model in simulating the eastward propagating Madden–Julian oscillation during VLBs.  相似文献   

5.
Since most previous attempts to establish monsoon indices have been limited to specific regions, they have lacked the applicability to universally describe the global monsoon domain. In this paper, we first review the history of global monsoon study and then identify the climatology of global precipitation associated with major systems of the atmospheric general circulation. A new index, based on the annual and semiannual harmonic precipitation rate difference between two local calendar maximal and minimal precipitation pentads, is used to identify the global monsoon domain focusing on where experienced and what caused the climatic dry-wet alteration. The global monsoon domain is defined by the regions where two pentad-mean precipitation difference exceeds 4 mm ?day?1, which is also influenced by the low-level prevailing wind reversal associated with the cross-equatorial flow. This definition not only confirmed previous results of the classical global monsoon domain from the tropical Africa to Asia-Australia and non-classical monsoon region in the tropical America but also solved an issue of missing local summer monsoon spots.  相似文献   

6.
Results are first presented from an analysis of a global coupled climate model regarding changes in future mean and variability of south Asian monsoon precipitation due to increased atmospheric CO2 for doubled (2 × CO2) and quadrupled (4 × CO2) present-day amounts. Results from the coupled model show that, in agreement with previous studies, mean area-averaged south Asian monsoon precipitation increases with greater CO2 concentrations, as does the interannual variability. Mechanisms producing these changes are then examined in a series of AMIP2-style sensitivity experiments using the atmospheric model (taken from the coupled model) run with specified SSTs. Three sets of ensemble experiments are run with SST anomalies superimposed on the AMIP2 SSTs from 1979–97: (1) anomalously warm Indian Ocean SSTs, (2) anomalously warm Pacific Ocean SSTs, and (3) anomalously warm Indian and Pacific Ocean SSTs. Results from these experiments show that the greater mean monsoon precipitation is due to increased moisture source from the warmer Indian Ocean. Increased south Asian monsoon interannual variability is primarily due to warmer Pacific Ocean SSTs with enhanced evaporation variability, with the warmer Indian Ocean SSTs a contributing but secondary factor. That is, for a given interannual tropical Pacific SST fluctuation with warmer mean SSTs in the future climate, there is enhanced evaporation and precipitation variability that is communicated via the Walker Circulation in the atmosphere to the south Asian monsoon to increase interannual precipitation variability there. This enhanced monsoon variability occurs even with no change in interannual SST variability in the tropical Pacific.  相似文献   

7.
The India Meteorological Department (IMD) has been issuing long-range forecasts (LRF) based on statistical methods for the southwest monsoon rainfall over India (ISMR) for more than 100 years. Many statistical and dynamical models including the operational models of IMD failed to predict the recent deficient monsoon years of 2002 and 2004. In this paper, we report the improved results of new experimental statistical models developed for LRF of southwest monsoon seasonal (June–September) rainfall. These models were developed to facilitate the IMD’s present two-stage operational forecast strategy. Models based on the ensemble multiple linear regression (EMR) and projection pursuit regression (PPR) techniques were developed to forecast the ISMR. These models used new methods of predictor selection and model development. After carrying out a detailed analysis of various global climate data sets; two predictor sets, each consisting of six predictors were selected. Our model performance was evaluated for the period from 1981 to 2004 by sliding the model training period with a window length of 23 years. The new models showed better performance in their hindcast, compared to the model based on climatology. The Heidke scores for the three category forecasts during the verification period by the first stage models based on EMR and PPR methods were 0.5 and 0.44, respectively, and those of June models were 0.63 and 0.38, respectively. Root mean square error of these models during the verification period (1981–2004) varied between 4.56 and 6.75% from long period average (LPA) as against 10.0% from the LPA of the model based on climatology alone. These models were able to provide correct forecasts of the recent two deficient monsoon rainfall events (2002 and 2004). The experimental forecasts for the 2005 southwest monsoon season based on these models were also found to be accurate.  相似文献   

8.
Synoptic climatological patterns that produce anomalous wet conditions in central Australia during the period from September to April have been studied. The analysis was done by using observed daily rainfall data at a number of stations, wind and mean sea level pressure from the European Centre for Medium Range Weather Forecasts (ECMWF), Tropical Ocean and Global Atmosphere (TOGA) data from 1985 to 1991, and the CSIRO 9-level (CSIR09) global climate model (GCM) simulated data for 1 × CO2 and 2 × CO2 experiments. On the basis of rainfall values above 99.5 percentile in observed and simulated data, wet days have been selected to study the synoptic-scale weather systems that produce anomalous wet events in central Australia. As the vast majority of days in central Australia are dry, the same number of days with no rainfall for both observed and simulated conditions have been selected randomly. The observed synoptic climatological patterns have been compared with the results of the control simulation of CSIRO9. A comparison between CSIRO9 simulated synoptic patterns and observed synoptic patterns reveals that the model fairly well captures the synoptic climatological characteristics which produce anomalous wet and contrasting dry weather conditions during the period from September to April. Under enhanced greenhouse experiments, the main features of the synoptic patterns are intensified both for wet and dry conditions, which result in an increase in extreme weather conditions, an increase in rainfall intensity, a spatial expansion of the heavy rainfall region during wet days, and an expansion of the dry area during dry days. During anomalous wet conditions, the low pressure area is intensified, monsoonal winds and southeasterlies are strengthened and strong wind shear over tropical Australia is simulated. During this condition, the monsoon shear line moves poleward particularly over the Northern Territory. In contrast, during dry conditions, the anticyclonic circulation over the continent is strengthened.  相似文献   

9.
Annual variations of mixed-layer characteristics at New Delhi, India have been studied for a weak monsoon (1987) and a strong monsoon (1988) year. In the weak monsoon year (1987), the maximum mixing depthh max was found to have a value of around 3000 m during the pre-monsoon, less than 2000 m during the summer monsoon, around 2000 m during the post-monsoon, and less than 1000 m in the winter season. For the strong monsoon year (1988),h max values were less than 1987 values for comparable periods throughout the year. The seasonal and yearly differences ofh max were explained by the surface energy balance and potential temperature gradient at a time close to sunrise. According to the spatial patterns of obtained by an objective analysis of the 850 to 700 hPa layers. mixed-layer characteristics obtained at New Delhi are representative of the north and central regions of India.  相似文献   

10.
We analyze a mini ensemble of regional climate projections over the CORDEX Africa domain carried out with RegCM4 model as part of the Phase I CREMA experiment (Giorgi 2013). RegCM4 is driven by the HadGEM2-ES and MPI-ESM global models for the RCP8.5 and RCP4.5 greenhouse gas and aerosol concentration scenarios. The focus of the analysis is on seasonal and intraseasonal monsoon characteristics. We find two prominent change signals. Over West Africa and the Sahel MPI produces a forward shift in the monsoon season in line with previous findings, and this shift is also simulated by the RegCM4. Furthermore, the regional model produces a widespread decrease of monsoon precipitation (when driven by both MPI and HadGEM) associated with decreased easterly wave activity in the 6–9 days regime and with soil moisture-precipitation interactions. South of the equator we find an extension of the dry season with delayed onset and anticipated recession of the monsoon and a narrowing and strengthening of the ITCZ precipitation band. This signal is consistent in all global and regional model projections, although with different spatial detail. We plan to enlarge this mini-ensemble as a further contribution to the CORDEX project to better assess the robustness of the signals found in this paper.  相似文献   

11.
The aim of this paper is to examine whether an axisymmetric tropical model with thermal driving and orographic forcing can produce multiple equilibria in relation to the monsoon circulation over South Asia. The model is an equivalent barotropic balanced equatorial β-plane model. It shows that there may exist mul-tiple flow equilibria for a given driving, of which two may be stable: one corresponds to the summer monsoon, and the other to the winter monsoon circulation. The transition between them is also discussed.  相似文献   

12.
Characteristic features of the convectively driven monsoon-trough boundary layer have been explored using the conserved-variable method of analysis. Aerological observations during the Monsoon Trough Boundary Layer Experiment 1990 (MONTBLEX-90) during 18–20 August have been used to investigate the thermodynamic features of the Convective Boundary Layer (CBL). Thermodynamic parameters such as e , es have been used to study the dynamical aspects of the CBL. Also, mixed-layer heights at an inland station, in the monsoon trough region, obtained from SODAR, are used to document the saturation of the mixed layer after the onset of the monsoon.  相似文献   

13.
Global monsoon: Dominant mode of annual variation in the tropics   总被引:13,自引:0,他引:13  
This paper discusses the concept of global monsoon. We demonstrate that the primary climatological features of the tropical precipitation and low-level circulation can be represented by a three-parameter metrics: the annual mean and two major modes of annual variation, namely, a solstitial mode and an equinoctial asymmetric mode. Together, the two major modes of annual cycle account for 84% of the annual variance and they represent the global monsoon. The global monsoon precipitation domain can be delineated by a simple monsoon precipitation index (MPI), which is the local annual range of precipitation (MJJAS minus NDJFM in the Northern Hemisphere and NDJFM minus MJJAS in the Southern Hemisphere) normalized by the annual mean precipitation. The monsoon domain can be defined by annual range exceeding 300 mm and the MPI exceeding 50%.The three-parameter precipitation climatology metrics and global monsoon domain proposed in the present paper provides a valuable objective tool for gauging the climate models’ performance on simulation and prediction of the mean climate and annual cycle. The metrics are used to evaluate the precipitation climatology in three global reanalysis products (ERA40, NCEP2, and JRA25) in terms of their pattern correlation coefficients and root mean square errors with reference to observations. The ensemble mean of the three analysis datasets is considerably superior to any of the individual reanalysis data in representing annual mean, annual cycle, and the global monsoon domain. A major common deficiency is found over the Southeast Asia-Philippine Sea and southeast North America-Caribbean Sea where the east–west land–ocean thermal contrast and meridional hemispheric thermal contrast coexist. It is speculated that the weakness is caused by models’ unrealistic representation of Subtropical High and under-represented tropical storm activity, as well as by neglecting atmosphere–ocean interaction in the reanalysis. It is recommended that ensemble mean of reanalysis datasets be used for improving global precipitation climatology and water cycle budget. This paper also explains why the latitudinal asymmetry in the tropical circulation decreases with altitude.  相似文献   

14.
Summary The interannual variability of the monthly mean upper layer thickness for the central Arabian Sea (5°N-15° N and 60° E-70° E) from a numerical model of the Indian Ocean during the period 1954–1976 is investigated in relation to Indian monsoon rainfall variability. The variability in the surface structure of the Somali Current in the western Arabian Sea is also briefly discussed. It is found that these fields show a great deal of interannual variability that is correlated with variability in Indian monsoon rainfall. Model upper layer thickness (H) is taken as a surrogate variable for thermocline depth, which is assumed to be correlated with sea surface temperature. In general, during the period 1967 to 1974, which is a period of lower than normal monsoon rainfall, the upper ocean warm water sphere is thicker (deeper thermocline which implies warmer surface water); in contrast, during the period 1954–1966, which is a period of higher than normal monsoon rainfall, the upper warm water sphere is thinner (shallower thermocline which implies cooler surface water). The filtered time series of uppper layer thickness indieates the presence of a quasi-biennial oscillation (QBO) during the wet monsoon period, but this QBO signal is conspicuously absent during the dry monsoon period.Since model H primarily responds to wind stress curl, the interannual variability of the stress curl is investigated by means of an empirical orthogonal function (EOF) analysis. The first three EOF modes represent more than 72% of the curl variance. The spatial patterns for these modes exhibit many elements of central Arabian Sea climatology. Features observed include the annual variation in the intensity of the summer monsoon ridge in the Arabian Sea and the annual zonal oscillation of the ridge during pre- and post-monsoon seasons. The time coefficients for the first EOF amplitude indicate the presence of a QBO during the wet monsoon period only, as seen in the ocean upper layer thickness.The variability in the model upper layer thickness is a passive response to variability in the wind field, or more specifically to variability in the Findlater Jet. When the winds are stronger, they drive stronger currents in the ocean and have stronger curl fields associated with them, driving stronger Ekman pumping. They transport more moisture from the southern hemisphere toward the Indian subcontinent, and they also drive a greater evaporative heat flux beneath the Findlater Jet in the Arabian Sea. It has been suggested that variability in the heat content of the Arabian Sea drives variability in Indian monsoon rainfall. The results of this study suggest that the opposite is true, that the northern Arabian Sea responds passively to variability in the monsoon system.With 10 Figures  相似文献   

15.
Summary South Asian summer monsoon precipitation and its variability are examined from the outputs of the coupled climate models assessed as part of the Intergovernmental Panel on Climate Change Fourth Assessment. Out of the 22 models examined, 19 are able to capture the maximum rainfall during the summer monsoon period (June through September) with varying amplitude. While two models are unable to reproduce the annual cycle well, one model is unable to simulate the summer monsoon season. The simulated inter-annual variability from the 19 models is examined with respect to the mean precipitation, coefficient of variation, long-term trends and the biennial tendency. The model simulated mean precipitation varies from 500 mm to 900 mm and coefficient of variation from 3 to 13%. While seven models exhibit long-term trends, eight are able to simulate the biennial nature of the monsoon rainfall. Six models, which generate the most realistic 20th century monsoon climate over south Asia, are selected to examine future projections under the doubling CO2 scenario. Projections reveal a significant increase in mean monsoon precipitation of 8% and a possible extension of the monsoon period based on the multi-model ensemble technique. Extreme excess and deficient monsoons are projected to intensify. The projected increase in precipitation could be attributed to the projected intensification of the heat low over northwest India, the trough of low pressure over the Indo-Gangetic plains, and the land–ocean pressure gradient during the establishment phase of the monsoon. The intensification of these pressure systems could be attributed to the decline in winter/spring snowfall. Furthermore, a decrease of winter snowfall over western Eurasia is also projected along with an increase of winter snowfall over Siberia/eastern Eurasia. This projected dipole snow configuration during winter could imply changes in mid-latitude circulation conducive to subsequent summer monsoon precipitation activity. An increase in precipitable water of 12–16% is projected over major parts of India. A maximum increase of about 20–24% is found over the Arabian Peninsula, adjoining regions of Pakistan, northwest India and Nepal. Although the projected summer monsoon circulation appears to weaken, the projected anomalous flow over the Bay of Bengal (Arabian Sea) will support oceanic moisture convergence towards the southern parts of India and Sri Lanka (northwest India and adjoining regions). The ENSO-Monsoon relationship is also projected to weaken.  相似文献   

16.
Impacts of greenhouse effects(2×CO2) on climate change over China as simulated by a regional climate model have been investigated.The model was based on RegCM2 and is nested in one-way mode within a global coupled atmosphere-ocean model(CSIRO R21L9 AOGCM).Two multi-year simulations,the control run with normal CO2 concentration and the sensitivity run with doubled CO2 concentration are conducted. As Part I of the publications,results of control run of the CSIRO,i.e.its simulation of present climate in China,are analyzed briefly.It shows that the model can basically reproduce the surface air temperature and precipitation pattern over China.Therefore,its outputs can be used to drive the regional model. Analysis of control run of RegCM shows that with a high resolution,the model improves the simulations of surface air temperature and precipitation in China as compared to the CSIRO model, especially for the precipitation.The spatial correlation coefficient between simulated and observed annual temperature increased from 0.83 in the CSIRO to 0.92 in the RegCM and for annual precipitation from 0.48 in the CSIRO to 0.65 in the RegCM.A similar improvement in the RegCM compared to the CSIRO was found in all simulated months.The main improvement for surface temperature is that RegCM can simulate the fine scale structure of temperature caused by topography.RegCM greatly improved the spatial distribution of precipitation by eliminating the virtual precipitation center in central China,which was simulated by many other GCMs.The precipitation simulated by RegCM in North and Northwest China is smaller than that by CSIRO, which makes it closer to the observation.  相似文献   

17.
A set of experiments forced with observed SST has been performed with the Echam4 atmospheric GCM at three different horizontal resolutions (T30, T42 and T106). These experiments have been used to study the sensitivity of the simulated Asian summer monsoon (ASM) to the horizontal resolution. The ASM is reasonably well simulated by the Echam4 model at all resolutions. In particular, the low-level westerly flow, that is the dominant manifestation of the Asian summer monsoon, is well captured by the model, and the precipitation is reasonably simulated in intensity and space appearance. The main improvements due to an higher resolution model are associated to regional aspects of the precipitation, for example the Western Ghats precipitation is better reproduced. The interannual variability of precipitation and wind fields in the Asian monsoon region appears to be less affected by an increase in the horizontal resolution than the mean climatology is. A possible reason is that the former is mainly SST-forced. Besides, the availability of experiments at different horizontal resolution realized with the Echam4 model coupled to a global oceanic model allows the possibility to compare these simulations with the experiments previously described. This analysis showed that the coupled model is able to reproduce a realistic monsoon, as the basic dynamics of the phenomenon is captured. The increase of the horizontal resolution of the atmospheric component influences the simulated monsoon with the same characteristics of the forced experiments. Some basic features of the Asian summer monsoon, as the interannual variability and the connection with ENSO, are further investigated.  相似文献   

18.
孟加拉湾西南季风与南海热带季风季节内振荡特征的比较   总被引:4,自引:2,他引:2  
李汀  琚建华 《气象学报》2013,71(3):492-504
采用美国国家环境预报中心的向外长波辐射和风场资料及日本气象厅的降水资料,用30-60d滤波后的夏季风指数在孟加拉湾和南海的区域平均值分别代表孟加拉湾西南季风和南海热带季风季节内振荡,对两支季风的季节内振荡特征进行比较分析,发现孟加拉湾西南季风的季节内振荡和南海热带季风的季节内振荡在夏季风期间(5-10月)都有约3次半的波动.夏季风期间,在阿拉伯海-西太平洋纬带上,夏季风的季节内振荡有4次从阿拉伯海的东传和3次从西太平洋的西传,其中7月后东传可直达西太平洋.孟加拉湾和南海在夏季风期间都有4次季节内振荡的经向传播,但孟加拉湾在约15°N以南为季节内振荡从热带东印度洋的北传,在约15°N以北则为副热带季风季节内振荡的南传;而在南海则是4次季节内振荡从热带的北传.在以孟加拉湾西南季风季节内振荡和南海热带季风季节内振荡分别划分的6个位相中,都存在1-3位相和4-6位相中低频对流、环流形势相反的特征,这是由热带东印度洋季节内振荡的东传和北传所致.热带印度洋季节内振荡沿西南-东北向经过约14d传到孟加拉湾,激发了孟加拉湾西南季风季节内振荡的东传,经过约6d到达南海,激发了南海热带季风季节内振荡的北传,经过约25d到达华南,形成热带印度洋季节内振荡向华南的经纬向接力传播(45d).孟加拉湾西南季风季节内振荡所影响的降水主要是在20°N以南的热带雨带随低频对流的东移而东移;而南海热带季风季节内振荡所影响的降水除了这种热带雨带随低频对流的东移外,还有在20°N以北的东亚副热带地区存在雨带随南海低频对流的北移而北移.  相似文献   

19.
Summary The East Asian (China, Korea and Japan) summer monsoon precipitation and its variability are examined from the outputs of the coupled climate models performing coordinated experiments leading to the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4). Out of the 22 models examined, 14 reproduce the observed shape of the annual cycle well with peak during the boreal summer (June through August), but with varying magnitude. Three models simulate the maximum a month later and with lower magnitudes. Only one model considerably underestimates the magnitude of the annual cycle. The remaining 4 models show some deviations from the observed. Models are unable to simulate the minimum in July with peaks in June and August associated with northward shifts of the Meiyu-Changma-Baiu precipitation band. The realistic simulation of the annual cycle does not appear to depend on the model resolution. The inter-model variation is slightly larger during summer, implying larger diversity of the models in simulating summer monsoon precipitation. The spatial rainfall patterns are reasonably well simulated by most of the models, with several models able to simulate the precipitation associated with the Meiyu-Changma-Baiu frontal zone and that associated with the location of the subtropical high over the north Pacific. Simulated spatial distribution could be sensitive to model resolution as evidenced by two versions of MIROC3.2 model. The multi-model ensemble (MME) pattern reveals an underestimation of seasonal precipitation over the east coast of China, Korea-Japan peninsular and the adjoining oceanic regions. This may be related with the mass-flux based scheme employed for convective parameterization by majority of the models. Further the inter-model variation of precipitation is about 2 times stronger south of 30° N, than north of this latitude, indicating larger diversity of the coupled models in simulating low latitude precipitation. The simulated inter-annual variability is estimated by computing the mean summer monsoon seasonal rainfall and the coefficient of variability (CV). In general the mean observed seasonal precipitation of 542 mm and CV of 6.7% is very well simulated by most of the models. Except for one model mean seasonal precipitation varies from 400 to 650 mm. However the CV varies from 2 to 9%. Future projections under the radiative forcing of doubled CO2 scenario are examined for individual models and by the MME technique. Changes in mean precipitation and variability are tested by the t-test and F-ratio respectively to evaluate their statistical significance. The changes in mean precipitation vary from −0.6% (CNRM-CM3) to about 14% (ECHO-G; UKMO-HadCM3). The MME technique reveals an increase varying from 5 to 10%, with an average of 7.8% (greater than the observed CV of 6.7%) over the East Asian region. However the increases are significant over the Korea-Japan peninsula and the adjoining north China region only. The increases may be attributed to the projected intensification of the subtropical high, Meiyu-Changma-Baiu frontal zone and the associated influx of moist air from the Pacific inland. The projected changes in the amount of precipitation are directly proportional to the projected changes in the strength of the subtropical high. Further the MME suggests a possible increase in the length of the summer monsoon precipitation period from late spring through early autumn. The changes in precipitation could be stabilized by controlling the CO2 emissions.  相似文献   

20.
We investigate the future changes of Asian-Australian monsoon (AAM) system projected by 20 climate models that participated in the phase five of the Coupled Model Intercomparison Project (CMIP5). A metrics for evaluation of the model’s performance on AAM precipitation climatology and variability is used to select a subset of seven best models. The CMIP5 models are more skillful than the CMIP3 models in terms of the AAM metrics. The future projections made by the selected multi-model mean suggest the following changes by the end of the 21st century. (1) The total AAM precipitation (as well as the land and oceanic components) will increase significantly (by 4.5 %/°C) mainly due to the increases in Indian summer monsoon (5.0 %/°C) and East Asian summer monsoon (6.4 %/°C) rainfall; the Australian summer monsoon rainfall will increase moderately by 2.6 %/°C. The “warm land-cool ocean” favors the entire AAM precipitation increase by generation of an east-west asymmetry in the sea level pressure field. On the other hand, the warm Northern Hemisphere-cool Southern Hemisphere induced hemispheric SLP difference favors the ASM but reduces the Australian summer monsoon rainfall. The combined effects explain the differences between the Asian and Australian monsoon changes. (2) The low-level tropical AAM circulation will weaken significantly (by 2.3 %/°C) due to atmospheric stabilization that overrides the effect of increasing moisture convergence. Different from the CMIP3 analysis, the EA subtropical summer monsoon circulation will increase by 4.4 %/°C. (3) The Asian monsoon domain over the land area will expand by about 10 %. (4) The spatial structures of the leading mode of interannual variation of AAM precipitation will not change appreciably but the ENSO-AAM relationship will be significantly enhanced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号