首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have carried out three-dimensional hydrodynamical modeling of the formation of an accretion disk around a compact object due to radiative wind of a massive donor in a close binary system. The massive X-ray binary Cen X-3, which has a precessing accretion disk and may possess relativistic jets, is considered as an example. The computations show that, when the action of the central compact object on the formation of the wind is taken into account, the radiative wind forms an accretion disk with a radius of 0.16 (in units of the orbital separation), which accretes at a rate close to 1 × 10?8 M /yr. In this model, the disk is spherically symmetrical and geometrically thick, with a tunnel going from the accretor to the upper layers of the disk along the accretor’s rotational axis at the disk center. The number density of the gas in the tunnel is five orders of magnitude lower than in the disk. The wind-disk interaction at the outer boundary of the disk produces a strong shock (wind-disk shock) directed toward the donor. The black-body emission of the disk and tunnel is nonstationary, and resembles the outbursts observed in Cen X-3. An analysis of the location of the region of nonstationary emission suggests that the outbursts occur in the wind-disk shock.  相似文献   

2.
Numerical simulations of gas-dynamical processes taking place in the accretion disk of a stellar binary system are presented. The initial state of the disk is an equilibrium gaseous configuration. Mechanisms for the development of spiral waves and associated variations in the angular momentum of the gas are considered. The influence of the ratio of the binary-component masses and the initial disk configuration are investigated. It is concluded that the existence of a steady-state disk is impossible without a flow of gas from the donor star.  相似文献   

3.
Effects due to the interaction of the steam from the inner Lagrangian point with the accretion disk in a cataclysmic variable star are considered. The results of three-dimensional gas-dynamical numerical simulations confirm that the disk thickness in the vicinity of the interaction with the stream is minimum when the component-mass ratio is 0.6. As a consequence, some of the matter from the stream does not collide with the outer edge of the accretion disk, and continues its motion unperturbed toward the accretor. This part of the stream subsequent interacts (collides) with a thickening of the accretion disk due to the presence of a precessional wave in the disk, leading to the appearance of an additional zone of heating at the disk surface. This additional zone of enhanced luminosity (hot spot) is a direct observational manifestation of the precessional wave in the accretion disk.  相似文献   

4.
Our analysis of BV RI light curves for the cataclysmic variable UX UMa obtained in intermediate activity states, in the transition between the active and quiescent states of the system on March 12, 1997 and May 3, 2000, shows that the shapes of these light curves cannot be adequately described using the standard hot-spot model. A model with a “hot line” near the edge of the disk and a two-armed spiral structure on the disk surface reproduces much better out-of-eclipse variations in the light curves. The presence of an extended hot line can explain the anomalous shape of the I light curve on March 12, 1997. The decrease in the observed luminosity of the system between March 12, 1997 and May 3, 2000 could be due to a decrease in the disk luminosity by a factor of 2–2.5; the higher disk luminosity on the earlier date is associated with appreciable deviations of the radial temperature distribution of the disk material from that for the standard model. The phases and depths of dips in the out-of-eclipse sections of the UX UMa light curves are due primarily to the parameters of the complex shape of the accretion disk, which has a spiral structure located mainly near its outer edge. The contribution of the spiral arms in the V filter reaches 20–50% of the total disk radiation. The crest of the first spiral wave in our model maintains its approximate position in azimuth; this structure could represent a bulge in a halo at the outer edge of the disk near orbital phases φ ~ 0.7, in the direction of the continuation of the extended shock in the disk itself. The position of the crest of the second spiral arm changes with time. This structure may represent a one-armed spiral wave near the apastron of the weakly elliptical disk. Finally, the observations testify to the presence of another spiral arm that is les clearly manifest in terms of both its luminosity and its height above the unperturbed disk surface. Thus, in an intermediate activity state of UX UMa, the surface of the accretion disk is distorted by the action of a two-armed spiral structure in the outer regions of the disk, which is asymmetric in both its luminosity and dimensions, and a bulge at the disk edge in the region of its interaction with the inflow to the disk.  相似文献   

5.
Our previous studies of large-scale vortical flows arising in shear flows of stellar accretion disks with Keplerian azimuthal velocity distributions as a result of the development of small perturbations are continued. The development of large-scale instability in an accretion disk is investigated via mathematical modeling. One result obtained is the change of the disk flow structure due to the formation of large vortices. In the limiting case, sufficiently long evolution leads to the formation of several asymmetric spiral structures of the flow of disk matter. The presence of large-scale structures leads to angular-momentum redistribution in the disk.  相似文献   

6.
Using 3D gas dynamics, we numerically simulate accretion-disk formation in typical cataclysmic variable intermediate polars with dipolar magnetic fields (B a = 105?5 × 105 G) and misaligned white-dwarf magnetic and rotation axes. Our simulations confirm that a significant misalignment of the axes results in a significant misalignment of the disk to the orbital plane. However, over time, this disk tilt disappears: early in the simulation, the initial particle positions in the rarefied tilted disk are governed solely by the magnetic field of the white dwarf. Due to the increasing disk mass and hence increasing disk gas pressure, the tilted disk eventually becomes decoupled from the magnetic field. The tidal action of the donor leads to a retrograde (i.e., nodal) precession of the tilted disk’s streamlines, and the disk becomes twisted. When the disk tilt is greater than 4°, the incoming gas stream no longer strikes the disk rim (i.e., bright shocked region). Matter is now transported over and under the disk rim to the inner regions of the disk. Over time, the increased mass of inner parts of the disk due to the action of the colinear gas stream returns the inner-disk regions to a colinear configuration. Meanwhile, the outer regions of the tilted, twisted disk become warped. Our simulations suggest that the lifetime of an intermediate polar’s tilted disk could be several tens to thousands of orbital periods.  相似文献   

7.
We present an algorithm for synthesizing the light curve of a close binary consisting of a normal star (a red dwarf that fills its Roche lobe) and a spherical star (a white dwarf). The spherical component is surrounded by an elliptical accretion disk with a complex shape: it is geometrically thin near the spherical star and geometrically thick at the edge of the disk. An additional complication is presented by the presence of a one-or two-armed spiral pattern at the inner surface of the disk. The maximum height of the spiral arm above the disk surface is located at ~9 R d , and the height decreases exponentially as the arm approaches the inner regions of the disk. Shielding of the inner hot parts of the disk by the crests of the spirals results in the formation of “steps” in out-of-eclipse parts of the orbital light curves. The algorithm takes into account the presence of a “hot line” by the lateral surface of the disk, making it possible to model binary systems in both quiescence and outburst. In the latter case, the hot line degenerates into a small bulge at the outer lateral surface of the disk, which can be considered an analog of a hot spot. The algorithm was applied to the orbital light curve of the cataclysmic binary IP Peg during its October 30, 2000, outburst. To explain the variations of the out-of-eclipse brightness of the system during the outburst, it is necessary to include the presence of a one-armed spiral wave at the inner surface of the disk, close to the periastron of the elliptical disk. We have obtained the parameters of IP Peg during the outburst for various models of the system.  相似文献   

8.
The formation of gaseous diffusional accretion-decretion disks is an important stage in the evolution of numerous astronomical objects. Matter is accreted onto the object in the accretion part of these disks, while the angular momentum of the accreted matter is transported from the central region to the periphery in the decretion part. Here, we consider general questions connected with the formation and evolution of diffusive accretion-decretion disks in various astrophysical objects. Such disks can be described using nonstationary diffusion models. The phenomenological parameters of these models are the coefficients in the relations for the characteristic turbulent velocity and mean free path of diffusion elements in the disk. We have developed a numerical technique to compute the disk evolution for a number of models (a massive disk, a disk with continuous accretion, a purely decretion disk). Analytical expressions estimating the basic parameters of accretion-decretion disks are presented. We discuss the relationship between the models considered and the classical α model of an accretion disk.  相似文献   

9.
The influence of close passages of galaxies on the shapes of disk galaxies and the distribution of stars in them is studied for several types of interactions in the framework of the restricted N-body problem. Depending on the conditions adopted, either two spiral density waves or ring structures are formed in the stellar disk of the galaxy. These structures can generate star formation fronts with the corresponding shape, as are observed in disk galaxies. Our calculations can also be applied to study the influence of the passage of a nearby star on a protoplanetary disk. The formation of ring structures there could specify the type of planet formation in the outer regions of the planetary system and the distribution of semimajor axes for the planetary orbits. We use the same model to study the generation and evolution of spiral density waves in the stellar disks of galaxies as a result of the recently found asymmetry of the gravitational potential in the massive dark haloes in disk galaxies. The dipole component of the gravitational field of the halo can continuously permanently generate the spiral structure in disk galaxies.  相似文献   

10.
An algorithm is presented for the synthesis of the light curve of a close binary system consisting of a red dwarf that fills its Roche lobe and a spherical white dwarf. The spherical component is surrounded by an elliptical, geometrically thick accretion disk. The code models an extended shock located along the edge of the stream near the outer boundary of the disk. The observational manifestations of the shock show that it can be considered as an analog of a hot spot at the edge of the disk. Synthetic light curves for the SU UMa system OY Car at various phases of its activity indicate that the model can describe both typical and peculiar light curves for this cataclysmic variable reasonably well.  相似文献   

11.
The paper continues our studies of large-scale instability arising during shearmotions in stellar accretion disks due to the development of small perturbations. The evolution of a local perturbation introduced into the outer part of a stationary accretion disk is modeled mathematically. The possible formation of large-scale structures that propagate throughout the disk, leading to an appreciable redistribution of angular momentum, is demonstrated.  相似文献   

12.
We consider the structure and formation of the circumbinary envelopes in semi-detached binary systems. Three-dimensional numerical simulations of the gas dynamics are used to study the flow pattern in a binary system after it has reached the steady-state accretion regime. The outer parts of the circumbinary envelope are replenished by periodic ejections from the accretion disk and circum-disk halo through the vicinity of the Lagrange point L3. In this mechanism, the shape and position of a substantial part of the disk is specified by a precessional density wave. On timescales comparable to the orbital period, the precessional wave (and hence an appreciable fraction of the disk) will be virtually stationary in the observer’s frame, whereas the positions of other elements of the flow will vary due to the orbital rotation. The periodic variations of the positions of the disk and the bow shock formed when the inner parts of the circumbinary envelope flow around the disk result in variations in both the rate of angular-momentum transfer to the disk and the flow structure near L3. All these factors lead to a periodic increase of the matter flow into the outer layers of the circumbinary envelope through the vicinity of L3. The total duration of the ejection is approximately half the orbital period.  相似文献   

13.
A technique is proposed for the successive reconstruction of the branches of the strip brightness distribution for a quasar accretion disk via the analysis of observations of high magnification flux events in the multiple quasar images produced by a gravitational lens. The distribution branches are searched for on compact sets of nonnegative, monotonically nonincreasing, convex downward functions. The results of numerical simulations and application of the technique to real observations show that the solution obtained is stable against random noise. Analysis of the light curve of a high magnification event in image C of the gravitational lens QSO 2237+0305 observed by the OGLE group in summer 1999 has yielded the form of the strip brightness distribution in the accretion disk of the lensed quasar. The results are consistent with the hypothesis that the quasar disk was scanned by a fold caustic. The form of the strip distribution is consistent with the expected appearance of an accretion disk rotating around a supermassive black hole.  相似文献   

14.
W75N is a star-forming region containing ultracompact H II regions as well as OH, H2O, and methanol masers. The VLBA maps obtained show that the masers are located in a thin disk rotating around an O star, which is the exciting star for the ultracompact H II region VLA1. A separate group of maser spots is associated with the ultracompact H II region VLA2. The radial velocity of the maser spots varies across the disk from 3.7 to 10.9 km/s. The disk diameter is 4000 AU. The maser spots revolve in Keplerian orbits around the O9 star.  相似文献   

15.
Three-dimensional numerical hydrodynamical modeling of a radiative wind and accretion disk in a close binary system with a compact object is carried out, using the massive X-ray binary LMC X-3 as an example. This system contains a precessing disk, and may have relativistic jets. These computations show that an accretion disk with a radius of about 0.20 (in units of the component separation) forms from the radiative wind from the donor when the action of the wind on the central source is taken into account, when the accretion rate is equal to the observed value (about 3.0 × 10?8 M /year, which corresponds to the case when the donor overflows its Roche lobe by nearly 1%). It is assumed that the speed of the donor wind at infinity is about 2200 km/s. The disk that forms is geometrically thick and nearly cylindrical in shape, with a low-density tunnel at its center extending from the accretor through the disk along the rotational axis. We have also modeled a flare in the disk due to short-term variations in the supply of material through the Lagrange point L1, whose brightnesses and durations are able to explain flares in cataclysmic variables and X-ray binaries. The accretion disk is not formed when the donor underfills its Roche lobe by 0.5%, which corresponds to an accretion rate onto the compact object of 2.0 × 10?9 M /year. In place of a disk, an accretion envelope with a radius of about 0.03 forms, within which gas moves along very steep spiral trajectories before falling onto the compact object. As in the accretion-disk case, a tunnel forms along the rotational axis of the accretion envelope; a shock forms behind the accretor, where flares occur in a compact region a small distance from the accretor at a rate of about six flares per orbital period, with amplitudes of about 10 m or more. The flare durations are two to four minutes, and the energies of individual particles at the flare maximum are about 100–150 keV. These flares appear to be analogous to the flares observed in gamma-ray and X-ray burst sources. We accordingly propose a model in which these phenomena are associated with massive, close X-ray binary systems with component-mass ratios exceeding unity, in which the donor does not fill its Roche lobe. Although no accretion disk forms around the compact object, an accretion region develops near the accretor, where the gamma-ray and X-ray flares occur.  相似文献   

16.
A (2+ 1)-dimensional numerical model for the formation and evolution of young stellar objects with sub-solar masses is presented. The numerical hydrodynamicall code describing the formation and evolution of a pølar disk in a two-dimensional approximation is supplemented by one-dimensional code for the evolution of the star and an algorithm for establishing the vertical structure of the disk. This code is used to investigate the influence of luminosity bursts with intensities similar to those observed in FU Orionis objects (FUors) on the properties and thermal balance of pølar disks. A model with gravitational instability and fragmentation of the disk, with subsequent migration of the fragments onto the protostar, is used as a basic model for FUors. Typical FUor bursts (L ~ 100 L ) can appreciably influence the thermal balance of their disks and parent envelopes, leading to an increase in the disk temperature by more than a factor of two. On the other hand, massive fragments in the disk are only weakly perturbed by such bursts, partially due to screening by the disk and partially due to their high temperature brought about by adiabatic heating. Apart from massive fragments, the characteristic thermal time scales are appreciably shorter than the dynamical time scales throughout the radial extent of the disk and envelope; this enables the use of a stationary radiative-transfer equation when determining the vertical structure of the disk.  相似文献   

17.
We discuss characteristic features of the magnetic gas-dynamical structure of the flows in a semi-detached binary system obtained from three-dimensional simulations, assuming that the intrinsic magnetic field of the accreting star is dipolar. The turbulent diffusion of the magnetic field is taken into account. The SS Cyg system is considered as an example. Including the magnetic field can alter the basic parameters of the accretion disk, such as the accretion rate and the characteristic density. The magnetic field in the disk is primarily toroidal.  相似文献   

18.
The results of three-dimensional MHD numerical simulations are used to investigate the characteristic properties of the magnetic-field structures in the accretion disks of semi-detached binary systems. It is assumed that the intrinsic magnetic field of the accretor star is dipolar. Turbulent diffusion of the magnetic field in the disk is taken into account. The SS Cyg system is considered as an example. The results of the numerical simulations show the intense generation of a predominantly toroidal magnetic field in the accretion disk. Magnetic zones with well defined structures for the toroidal magnetic field form in the disk, which are separated by current sheets in which there ismagnetic reconnection and current dissipation. Possible observational manifestations of such structures are discussed. It is shown that the interaction of a spiral precessional wave with the accretor’s magnetosphere could lead to quasi-periodic oscillations of the accretion rate.  相似文献   

19.
The formation of ring structures in galactic disks is investigated. It is shown that, in addition to the known mechanism of forming rings in “head-on” collisions between galaxies, ring structures can be formed during close passages of galaxies if the perturbing galaxy moves in a plane close to the equatorial plane of the perturbed disk galaxy, opposite to the direction of rotation of the disk. Numerical simulations of the formation of structures in the disk of a massive galaxy undergoing a passage with another galaxy are considered. The results of these cmputations show the formation of pronounced ring structures in the galactic disk when the initial inclination of the trajectory of the perturbing galaxy to the equatorial plane of the perturbed galaxy is no more than ~25°. However, the probability of close passages of galaxies with these parameters is small, as is the probability of head-on collisions. The characteristic time scale for the existence of pronounced rings is of order the dynamical time scale at the edge of the galaxy, 200–300 million years, close to the corresponding time for head-on collisions. The evolution of the rings has the same character in both cases: they gradually expand and move toward the periphery of the galaxy. The results of these simulations can also be applied to a close passage of one star by another star with a protoplanetary disk. According to the computation results, the characteristic time scale for the existence of pronounced rings in such a protoplanetary disk depends mainly on the size of the disk; this time scale can reach several tens of thousands of years for a disk radius of about 1000 AU. The formation of ring structures in such a disk could influence the formation and evolution of planetesimals, and possibly the character of the formation of planets and the distribution of their orbital semi-major axes.  相似文献   

20.
Observations of the circumstellar disk in the Bok globule CB 26 at 110, 230, and 270 GHz are presented together with the results of the simulations and estimates of the disk parameters. These observations were obtained using the SMA, IRAM Plateau de Bure, and OVRO interferometers. The maps have relatively high angular resolutions (0.4??-1??), making it possible to study the spatial structure of the gas-dust disk. The disk parameters are reconstructed via a quantitative comparison of observational and theoretical intensity maps. The disk model used to construct the theoretical maps is based on the assumption of hydrostatic and radiative equilibrium in the vertical direction, while the radial surface-density profile is described phenomenologically. The system of equations for the transfer of the infrared and ultraviolet radiation is solved in the vertical direction, in order to compute the thermal structure of the disk. The disk best-fit parameters are derived for the each map and all the maps simultaneously, using a conjugate gradient method. The degrees of degeneracy of the parameters describing the thermal structure and density distribution of the disk are analyzed in detail. All three maps indicate the presence of an inner dust-free region with a diameter of approximately 35 AU, in agreement with the conclusions of other studies. The inclination of the disk is 78°, which is smaller than the value adopted in our earlier study of rotating molecular outflows from CB 26. The model does not provide any evidence for the growth of dust particles above a max ?? 0.02 cm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号