首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shi  X. S.  Zeng  Yiwen  Shi  Congde  Ma  Zhanguo  Chen  Wenbo 《Acta Geotechnica》2022,17(9):3839-3854

Gap-graded granular soils are used as construction materials worldwide, and their hydraulic conductivity depends on their relative content of coarse and fine grains, initial conditions, and particle shape. In this study, a series of constant head hydraulic conductivity tests were performed on gap-graded granular soils with different initial relative densities, fine contents, and particle shapes. The test results show that the hydraulic conductivity decreases with an increase in fine fraction and then remains approximately constant beyond the “transitional fine content.” The role of the structural effect on the hydraulic conductivity is different from that on the mechanical properties (such as stiffness and shear strength). This can be attributed to the degree of filling within inter-aggregate voids, disturbance of soil structure, and densified fine bridges between coarse aggregates. The equivalent void ratio concept was introduced into the Kozeny–Carman formula to capture the effect of fines (aggregates) on the “coarse-dominated” (“fine-dominated”) structure, and a simple model is proposed to capture the change of hydraulic conductivity of gap-granular soils. The model incorporates a structural variable to capture the effect of fines on “coarse-dominated” structure and coarse aggregates on “fine-dominated” structure. The performance of the model was verified with experimental data from this study and previously reported data compiled from the literature. The results reveal that the proposed model is simple yet effective at capturing the hydraulic conductivity of gap-graded granular soils with a wide range of fine contents, initial conditions, and particle shapes.

  相似文献   

2.
无论是原状土还是重塑土均存在初始结构性,土体初始结构所抵抗的剪应力为土体结构强度。为了研究无胶结粗粒土初始结构强度,定义了粗粒土剪切过程中初始结构变化点特征,并根据大于20 mm粗颗粒含量将粗粒土划分为4种结构类型,采用可视化直剪仪对不同结构特征的粗粒土进行直剪试验,通过剪切过程中粗粒土平面孔隙比、配位数、概率熵等3种初始结构指标的数值大小及变化趋势,来确定不同初始结构的粗粒土结构临界强度。结果表明:不同初始结构类型粗粒土在相同正应力、相同颗粒种类的情况下,其抗剪强度大小与结构强度占比大小的排序一致,表明了颗粒结构强度在抵抗剪应力的整个过程中起到了重要作用。4种初始结构类型粗粒土平均结构强度占比为36.27%,即结构强度占峰值抗剪强度的36.27%,其中排列接触结构的结构强度占比最高,为36.62%,其次为镶嵌结构36.61%,悬浮密实结构35.99%,叠置结构的结构强度占比最低,为35.87%。  相似文献   

3.
以汶川震区漩口一带地震诱发的松散堆积体为研究对象,开展碎石土原状样和重塑样的现场直剪对比试验,探讨不同法向应力、不同粒度组成和不同含水率等条件下碎石土的剪切强度特性。研究结果表明,地质成因和岩土体结构相似、粒度组成不同且级配不良的碎石土的剪切强度特性具有相似性;原状样剪切强度明显高于相同干密度和含水率的重塑样;级配良好的碎石土应变硬化程度略高于级配不良的碎石土,当粒径大于5 mm的粗颗粒含量大于42.9%时,随粗颗粒含量增加,碎石土的内摩擦角增加,而粘聚力则先减小后增大;抗剪强度指标与含水率呈线性负相关关系,随着含水率增高,碎石土抗剪强度降低,其中粘聚力较内摩擦角下降更明显。综合前人研究和本次试验结果,建议汶川震区类似结构组分碎石土天然状态下的剪切强度指标c值取15±3 k Pa,φ值取30°±2°。  相似文献   

4.
Residual strength of slip zone soils   总被引:2,自引:1,他引:1  
X. P. Chen  D. Liu 《Landslides》2014,11(2):305-314
Slip zones of ancient landslides are commonly composed of fine-grained soils with amount of coarse-grained particle. Residual strength of slip zone soil is an important parameter for evaluating reactivation potential and understanding progressive failure mechanism. In this study, the residual strength is examined by in situ direct shear tests, improved laboratory reversal shear box test, precut specimen triaxial shear test and ring shear test. Some residual shear behaviors are recognized. Field residual strength is the average operational resistance along the sliding surface not an ideal drained strength, which is less than peak and greater than residual strength measured in laboratory. Stress–displacement curves obtained from in situ shear and laboratory reversal direct shear demonstrate strain-hardening which have no significant peak, but the shear stress is decreased gradually with increasing displacement. Residual friction coefficient depends on the normal stress, and this dependence is relevant to the interaction of rolling and sliding of particles. Residual friction angle is closely related to coarse fraction and dry density, appearing a linear increase with increasing coarse fraction and a form of polynomial function with increasing dry density. The influence of shearing rate on residual strength can be negligible.  相似文献   

5.
Xu  Zengguang  Ye  Yan 《Natural Hazards》2022,113(1):63-102

Internal instability is a phenomenon of fine particle redistribution in granular materials under the seepage action and consequent change in the soil’s internal structure and hydraulic and mechanical properties. It is one of the primary causes of failures of sand-gravel foundations and embankment dams. The criteria establishment is considered the key to solving the erosion problems, so the existing internal stability criteria need a review and classification to study the recent development trends in soil seepage and erosion. Therefore, this paper aims at reviewing the internal stability factors of gap-graded soil with a focus on the internal erosion mechanism and internal stability evaluation based on geometric and hydraulic criteria. Firstly, the paper compared the effect of several commonly used geometric criteria for gap-graded soil evaluation, such as particle size, fine content, void ratio, and fractal dimension. Furthermore, it provided a hydraulic criteria overview and analyzed the effects of the hydraulic gradient, hydraulic shear stress, confining pressure, and pore velocity on internal erosion. The geometric–hydraulic coupling methods were introduced, with a detailed elaboration of the erosion resistance index method based on accumulated dissipated energy. The capabilities and limitations of these criteria were discussed throughout the paper. It was found that combined Kezdi’s criterion and Kenney and Lau’s criterion is more reliable to evaluate internal stability of soil. The gap-graded soil with fine particle content higher than 35% is not necessarily internally stable. Finally, the energy-based method (erosion resistance index method) can effectively reproduce the total amount of erosion mass and the final spatial distribution of fine particles and identifies erosion. The review's outcome can be used as a basis to evaluate the internal erosion risk for gap-graded soils. The evaluation methods discussed here can help identify the zones of relatively high erosion potential.

  相似文献   

6.
Zhang  Fengshou  Li  Mengli  Peng  Ming  Chen  Chen  Zhang  Limin 《Acta Geotechnica》2019,14(2):487-503

In this work, 3D discrete element method modeling of drained shearing tests with gap-graded soils after internal erosion is carried out based on published experimental results. The erosion in the model is achieved by randomly deleting fine particles, mimicking the salt dissolving process in the experiments. The present model successfully simulates the stress–strain behavior of the physical test by employing the roll resistance and lateral membrane. The case without erosion shows a strain-softening and dilative response, while strain-hardening and contractive response starts to occur as the degree of erosion increases. The dilative to contractive transition is mainly caused by the increase in void ratio due to the loss of fine particles. The change from dilative behavior to contractive behavior is more abrupt for the specimen with larger fine particle percentage because the soil skeleton is mainly controlled by the fine particles instead of by the coarse soil particles. The transition from “fines in sand” to “sand in fines” might be associated with the rapid increasing in the contacts associated with fine particles in the specimen as the percentage of fine content increases. The erosion scenario based on the hydraulic gradient is also modeled by deleting the fine particles based on the ranking of the contact force. Compared with the scenario based on random deletion, the remaining fine particles for the erosion scenario based on the ranking of contact force are more dispersedly distributed, which might benefit the small strain stiffness but result in a smaller strength. This work provides some insights for better understanding the mechanism behind the internal erosion and the associated stress–strain behavior of soil. The gradient of the critical state line increases with more loss of fine particles denoting that the fine particles are helpful for holding the structure of the soils from larger deformation.

  相似文献   

7.
Experimental evidence shows that a gap-graded soil or a widely-graded granular material may have a bimodal soil–water characteristic curve (SWCC) and a bimodal permeability function. A bimodal SWCC or a bimodal permeability function originates from a dual-porosity structure. To date, the prediction of bimodal SWCCs for gap-graded soils is still a difficult task. In this paper, a bimodal SWCC model is proposed to describe the drying process of granular soils considering a dual-porosity structure. The new SWCC model shows powerful capability in fitting the SWCCs for soils varying from gravel to silt. Regression analysis is conducted to establish empirical relations between the model parameters and the indexes of soil grain-size distribution (GSD). Based on these relations, the new model predicts well both the bimodal SWCCs for gap-graded soils and the unimodal SWCCs for well-graded soils and uniform soils. A bimodal permeability function is also proposed and linked to the new SWCC model. In the absence of experimental SWCCs and permeability functions, the new model can be used to obtain preliminary SWCCs and permeability functions for granular soils. It should be mentioned that the prediction of the SWCC from the GSD is still empirical and does not address the cyclic wetting/drying process. Measurement of the SWCC should be performed wherever an accurate SWCC is required.  相似文献   

8.
If the free vertical movement of the upper rigid part of the shear box is hindered during shearing, a frictional force is mobilized between the specimen and the vertical walls of the shear box. This causes either unloading (for contractant soils) or additional loading (for dilatant soils) of the specimen during shearing. If no correction of the applied vertical load with respect to the wall friction is taken into account, the resulting shear strength can be either underestimated (for contractant soils) or overestimated (for dilatant soils). For example, in a particular investigation of a normally consolidated soil, the measured friction angle from a direct shear test was almost 8° smaller than the angle from a triaxial test. This paper, therefore, presents a method for direct measurement of the frictional force at the contact between the vertical walls of the box and a fine-grained soil. If the wall friction is taken into account, the friction angle from the shear box coincides well with the angle from triaxial tests. If the wall friction cannot be measured during the test, a sufficiently large vertical gap should be adjusted in case of soft soils, in order to enable non-restrained settlement of the upper part of the box during specimen contraction.  相似文献   

9.
土体渗透稳定性判定准则   总被引:1,自引:0,他引:1  
常东升  张利民 《岩土力学》2011,32(Z1):253-259
土体的渗透稳定性是指在渗流条件下宽级配土体内粗颗粒阻止细颗粒流失的能力,土体的渗透稳定性受几何条件、水力条件和物理条件的影响。从几何条件出发,通过对收集的167种土的室内渗透侵蚀试验结果的分析,基于对土体渗透稳定性控制变量地研究,将土分成良好级配土和间断级配土两大类;基于细粒(小于0.063 mm)含量的不同,将每类土又细分为3类,针对不同细类土提出了不同的渗透稳定性几何判定准则。从水力条件出发,研究了应力状态对土体渗透侵蚀起动及破坏水力梯度的影响。试验结果表明,起动水力梯度和破坏水力梯度都随着围压的增大而增大,是由于增大围压使得颗粒间的摩擦力增大的结果。  相似文献   

10.
In this study, a synthetic soil mixture has been developed and proposed for experimental soil-structure interaction shaking table tests on building frames with shallow foundations resting on soft soil deposits. The proposed mix provides adequate undrained shear strength to mobilise the required shallow foundation bearing capacity underneath the structural model while meeting both criteria of dynamic similarity between the model and the prototype to model soft soils in shaking table tests. To find the most appropriate mixture, different mixes with different proportions of mix components were examined in the soils laboratory. Performing bender element tests, the shear wave velocity of the soil specimens was acquired at different cure ages and the results were examined and compared. Based on the test results, a synthetic clay mixture consisting of kaolinite clay, bentonite, fly ash, lime and water has been proposed for experimental shaking table tests.  相似文献   

11.
The Effects of Fines on the Behaviour of a Sand Mixture   总被引:1,自引:0,他引:1  
Intergranular void ratio, e s, can be used as an alternative indicator to assess the mechanical properties of composite matrix of coarse and fine grains. In this paper, an intensive laboratory study of saturated coarse rotund sand and fine angular sand mixtures with various mix ratios is investigated by a series of oedometer and direct shear tests. Oedometer tests performed on the mixtures show that fines percentages and stress conditions affect the compression behaviours. Tests indicated that, up to a fraction of fines, which is named as transition fines content (FCt), compression behaviour of the mixture is mainly governed by the sand grains. As the percentage of fines exceeds FCt finer grains govern the compression. Performed direct shear tests revealed that there is a relationship between the FCt and shear strength, which is harmonic with the oedometer test results.  相似文献   

12.
Zhang  Genbao  Chen  Changfu  Zornberg  Jorge G.  Morsy  Amr M.  Mao  Fengshan 《Acta Geotechnica》2020,15(8):2159-2177

This study aims at investigating the influence of moisture conditions on interface shear behavior of element-grouted anchor specimens embedded in clayey soils. The tests involved comparatively short embedment lengths and a device that was specially designed to facilitate moisture conditioning. Rapidly loaded pullout tests as well as pullout tests under sustained (creep) loading were conducted to characterize both the short-term and long-term ultimate shear strength of anchor–soil interfaces. Both values of the interface shear strength were found to decrease exponentially with increasing moisture content values, although their ratio was found to show a linearly decreasing trend with increasing moisture content. The interface shear creep response under pullout conditions was characterized by a rheological hybrid model that could be calibrated using experimental measurements obtained under increasing stress levels. The accuracy of the hybrid model was examined by evaluating the stress-dependent prediction model as well as its governing parameters. This investigation uncovers the coupled impact of soil moisture condition and external stress state on the time-dependent performance of grouted anchors embedded in clayey soils by correlating the interface shear strength with soil moisture content and associating the creep model with stress levels applied to the grout–soil interface.

  相似文献   

13.
Admixtures and reinforcement materials are frequently used in practice to stabilize coarse and fine grained soils and to improve their engineering properties. However, a limited number of studies have been carried out on fiber-reinforced fine grained soils. In this study, a series of unconfined compression tests, direct shear tests, and California Bearing Ratio tests were carried out to investigate the effect of randomly distributed polypropylene fiber on the strength behavior of a fine grained soil. The content of polypropylene fiber was varied between 0.25 and 1% by total dry weight of the reinforced samples. It was observed that unconfined compression strength, cohesion intercept and California Bearing Ratio increased with the addition of fibers. On the other hand, the results of the tests indicated that shear strength angle was not affected significantly by the fiber reinforcement.  相似文献   

14.
转动阻抗被定义为作用颗粒接触上的一对对称力偶,用来抵抗颗粒之间的相互转动。将转动阻抗引入到离散元模拟中是对传统离散单元法的重要改进。开发出考虑颗粒转动阻抗的接触模型,并将其嵌入到PFC2D中,利用该模型进行粗粒土的双轴剪切数值模型试验,研究剪切过程中转动阻抗对粗粒土的宏细观力学性质的影响。结果显示,在宏观方面,颗粒转动阻抗对粗粒土的宏观力学行为(应力-应变及体应变-轴应变行为)有重要的影响,随着转动阻抗的增加,粗粒土的剪切强度和最大摩擦角随之增加,这与已有的研究结果一致,证明所建模型是可靠的;在微观方面,考察转动阻抗对粗粒土内部微观结构的影响发现,随着转动阻抗的增加,粗粒土的内部的接触数目减少,而粗粒土的剪切强度增加,表明转动阻抗能够提高粗粒土力链网络的稳定性,同时发现随着转动阻抗的增加,粗粒土的各向异性增加主要是强力链各向异性的增加,说明转动阻抗增强了强力链的传递力的能力以及抵抗力链屈曲破坏能力。数值模拟结果表明,增加颗粒转动阻抗,粗粒土出现组构与轴应变非共轴的现象。  相似文献   

15.
粗粒含量对砾类土的工程力学特性具有重要的影响。本文对4组不同粗粒含量的强风化玄武岩砾类土进行了大型直剪试验,并获取相关的强度与变形参数,基于离散单元法颗粒流理论,采用粒间作用为平行黏结模型的圆球模拟土颗粒,建立了4种不同粗粒含量砾类土直剪的离散单元模拟的计算模型,并进一步校正了颗粒单元细观参数,模拟了不同粗粒含量砾类土100kPa垂直压力时的应力应变关系、垂直变形以及剪切带上的土颗粒运动与颗粒间作用力传递的影响特性,分析了粗粒含量对砾类土宏观及细观力学性质的影响机理。结果表明:砾类土表现出的粗粒含量越大强度越高的本质是由于随粗粒含量增加时,土颗粒间平均刚度增加及颗粒间的咬合作用使得摩擦系数增加,采用平行黏结模型能较好的拟合峰值前剪应力-剪位移曲线,但是峰后曲线段尤其对软化现象的适应性不是十分理想; 垂直位移-剪位移模拟值与试验值存在一定的偏差; 随着粗粒含量的增加,最大剪应力时粗颗粒对力链的控制表现得愈明显,相应的剪切带厚度约为剪切盒高度的1/3~1/5,并随粗粒含量增加而增大。  相似文献   

16.
泸定大渡河桥康定岸分布巨厚层冰碛土,为研究土的抗剪强度特性,在不同位置和深度进行了6组现场剪切试验,基于地质勘察和试验结果分析土的结构特征、剪切强度和变形特性及其与土的结构的关系。研究表明:冰碛土的颗粒以粗粒、巨粒粒组为主,骨架颗粒呈悬浮状,混杂、无序堆积,骨架间充填杂基,形成骨架悬浮密实结构。根据颗粒组成和骨架风化程度,划分为骨架悬浮密实结构、软化骨架悬浮密实结构、砂砾土富集结构、大块石包绕结构等4种细观结构类型。冰碛土剪切破坏主要有剪切破碎带、包绕块石边界、锯齿状剪切和切穿软化骨架等4种模式,剪切荷载作用下线弹性变形阶段明显,剪切刚度大,初始屈服历时短。颗粒骨架和杂基形成的悬浮密实结构,是冰碛土强度与变形特性的内在控制因素,剪切荷载作用下骨架颗粒与具有一定胶结的基质间相互作用,剪切破坏时表现为基质的压碎与骨架的变位。骨架颗粒强度、大骨架颗粒分布、基质胶结程度的不同,对冰碛土强度和变形特性都构成一定的影响。土的抗剪强度、剪切刚度和剪胀性随骨架强度和基质胶结程度的提高而增大,而延性随之变差。  相似文献   

17.
非饱和土的抗剪强度与含水率关系的试验研究   总被引:10,自引:0,他引:10  
黄琨  万军伟  陈刚  曾洋 《岩土力学》2012,33(9):2600-2604
研究非饱和土的抗剪强度及其随含水率的变化规律,对工程实践具有重要意义。在总结前人试验研究成果的基础上,以欠固结的第三系粉砂土为研究对象,对原状土和两种控制含水率方法的重塑土进行直剪试验,并与前人研究进行对比。研究结果表明,随着含水率的增加,土的抗剪强度降低,含水率对抗剪强度的影响主要是降低了土的黏聚力,对内摩擦角的影响较小。含水率与黏聚力之间的关系可以由两个直线段描述,第2直线段的斜率要大于第1直线段,当含水率增加到一定值时,土的黏聚力急剧下降。通过控制干密度,添加不同质量的水来改变土样含水率的重塑土方法,不仅改变了土样的含水率,还改变了土的压实度和颗粒结构,因此,土的抗剪强度的变化是含水率和压实度共同影响的结果,在分析试验结果时应该引起重视。  相似文献   

18.
Han  Bowen  Cai  Guoqing  Zhou  Annan  Li  Jian  Zhao  Chenggang 《Acta Geotechnica》2021,16(5):1331-1354

The interparticle bonding effect due to water menisci plays an important role in the hydromechanical coupling properties of unsaturated soils. This paper presents an unsaturated hydromechanical coupling model that considers the influence of matric suction, degree of saturation, and microscopic pore structure on the interparticle bonding effect. The enhanced effective stress and bonding variable are selected as constitutive variables. The bonding variable is correlated with the ratio between unsaturated void ratio and saturated void ratio. The deformation characteristics of unsaturated soils are described based on the bounding surface plasticity theory. A soil–water characteristic model that considers deformation and hydraulic hysteresis is integrated into the constitutive model to achieve hydromechanical coupling. The proposed model can effectively describe the hydromechanical coupling characteristics and the meniscus bonding force of unsaturated bimodal structure soils; the model parameters can be easily obtained through routine experiments. The experimental results of unsaturated isotropic compression, the wetting/drying cycle, and unsaturated triaxial shear tests are used to validate the capability of the proposed model.

  相似文献   

19.
Successful numerical simulation of geosynthetic-reinforced earth structures depends on selecting proper constitutive models for soils, geosynthetics and soil–geosynthetic interfaces. Many constitutive models are available for modelling soils and geosynthetics. However, constitutive models for soil–geosynthetic interfaces which can capture most of the important characteristics of interface response are not readily available. In this paper, an elasto-plastic constitutive model based on the disturbed state concept (DSC) for geosynthetic–soil interfaces has been presented. The proposed model is capable of capturing most of the important characteristics of interface response, such as dilation, hardening and softening. The behaviour of interfaces under the direct shear test has been predicted by the model. The present model has been implemented in the finite element procedure in association with the thin-layer element. Five pull-out tests with two different geogrids have been simulated numerically using FEM. For the calibration of the constitutive models used in FEM, the standard laboratory tests used are: (1) triaxial tests for the sand, (2) direct shear tests for the interfaces and (3) axial tension tests for the geogrids. The results of the finite element simulations of pull-out tests agree well with the test data. The proposed model can be used for the stress-deformation study of geosynthetic-reinforced embankments through numerical simulation. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

20.
以上海某植物园加筋土工程为背景,通过一系列室内拉拔和直剪试验,研究了单、双向塑料土工格栅与不同填料(黏性土、砂土)的界面作用特性,对比分析了单、双向格栅的加筋效果和界面剪应力的不同发挥机制,探讨了填料密实度、垂直应力、拉拔速率对界面参数的影响,并就拉拔试验和直剪试验结果进行了对比分析。结果表明,对于单向格栅加筋工况,拉拔曲线和直剪曲线通常表现为应变软化型。然而对于双向格栅加筋工况,其曲线一般表现为应变硬化型;对于双向格栅加筋工况,填料对格栅的嵌锁咬合力增强,宏观上表现为较高的界面黏聚力,加筋效果优于单向格栅;填料密实度、垂直应力、拉拔速率对筋土界面特性具有影响,但其影响程度和机制与填料性质有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号