首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: The ratio of P- to S-wave velocities (Vp/Vs) is regarded as one of the most diagnostic properties of natural rocks. It has been used as a discriminant of composition for the continental crust and provides valuable constraints on its formation and evolution processes. Furthermore, the spatial and temporal changes in Vp/Vs before and after earthquakes are probably the most promising avenue to understanding the source mechanics and possibly predicting earthquakes. Here we calibrate the variations in Vp/Vs in dry, anisotropic crustal rocks and provide a set of basic information for the interpretation of future seismic data from the Wenchuan earthquake Fault zone Scientific Drilling (WFSD) project and other surveys. Vp/Vs is a constant (Ф0) for an isotropic rock. However, most of crustal rocks are anisotropic due to lattice-preferred orientations of anisotropic minerals (e.g., mica, amphibole, plagioclase and pyroxene) and cracks as well as thin compositional layering. The Vp/Vs ratio of an anisotropic rock measured along a selected pair of propagation-vibration directions is an apparent value (Фij) that is significantly different from the value for its isotropic counterpart (Ф0). The usefulness of apparent Vp/Vs ratios as a diagnostic of crustal composition depends largely on rock seismic anisotropy. A 5% of P- and S-wave velocity anisotropy is sufficient to make it impossible to determine the crustal composition using the conventional criteria (Vp/Vs≤1.756 for felsic rocks, 1.7561.944 fluid-filled porous/fractured or partially molten rocks) if the information about the wave propagation-polarization directions with respect to the tectonic framework is unknown. However, the variations in Vp/Vs measured from borehole seismic experiments can be readily interpreted according to the orientations of the ray path and the polarization of the shear waves with respect to the present-day principal stress directions (i.e., the orientation of cracks) and the frozen fabric (i.e., foliation and lineation).  相似文献   

2.
构建了等直径不同裂隙密度和等裂隙密度不同裂隙直径两组物理模型,进行不同围压条件下多方向的超声波速度测试,并运用Hudson理论进行了理论模型计算。结果显示,计算与实测结果吻合较好。随围压的增大,纵、横波速度均近线性增加,纵、横波各向异性基本保持不变;裂隙密度从2%增大到6%,纵波速度不同程度降低,其中慢纵波降低幅度相对较大,快横波变化不明显,而慢横波则大幅降低。随着裂隙密度的增大,纵、横波各向异性均增大,且横波各向异性增加速率大于纵波;裂隙直径从2 mm增大到3 mm,快纵波速度增加很小,慢纵波增加明显,横波速度均不发生改变。随着裂隙直径的增大,纵波各向异性逐渐降低,横波各向异性保持不变。最后结合试验结果分析了Hudson理论在不同深度进行参数预测的必要条件。研究结果有助于油气生产、地下水的开采与控制、污染处理等。   相似文献   

3.
Thirty‐three samples, including 22 eclogites, collected from the Dabie ultrahigh‐pressure (UHP) metamorphic belt in eastern China, have been studied for seismic properties. Compressional (Vp) and shear wave (Vs) velocities in three mutually perpendicular directions under hydrostatic pressures up to 1.0 GPa were measured for each sample. At 1.0 GPa, Vp (7.5–8.4 km s?1), Vs (4.2–4.8 km s?1), and densities (3.2–3.6 g cm?3) in the UHP eclogites are higher than those of UHP orthopyroxenite (7.3–7.5 km s?1, 4.1–4.3 km s?1, 3.2–3.3 g cm?3, respectively) and HP eclogites (7.1–7.9 km s?1, 4.0–4.5 km s?1, 3.1–3.5 g cm?3, respectively). Kyanitites (with 99.5% kyanite) show extremely high velocities and density (9.37 km s?1, 5.437 km s?1, 3.581 g cm?3, respectively). The eclogites show variation of Vp‐ and Vs‐anisotropy up to 9.70% and 9.17%, respectively. Poisson’s ratio (σ) ranges from 0.218 to 0.278 (with a mean of 0.255) for eclogites, 0.281–0.298 for granulites and 0.248 to 0.255 for amphibolites. The σ values for serpentinite (0.341) and marble (0.321) are higher than for other lithologies. The elastic moduli K, G, E of kyanitite were obtained as 163, 102 and 253 GPa, respectively. The Vp and density of representative UHP metamorphic rocks (eclogite & kyanitite) were extrapolated to mantle depth (15 GPa) following a reasonable geotherm, and compared to the one dimension mantle velocity and density model. The comparison shows that Vp and density in eclogite and kyanitite are greater than those of the ambient mantle, with differences of up to ΔVp > 0.3 km s?1 and Δρ > 0.3–0.4 g cm?3, respectively. This result favours the density‐induced delamination model and also provides evidence in support of distinguishing subducted high velocity materials in the upper mantle by means of seismic tomography. Such ultra‐deep subduction and delamination processes have been recognized by seismic tomography and geochemical tracing in the postcollisional magmatism in the Dabie region.  相似文献   

4.
Vp and Vs values have been measured experimentally and calculated for granulite-facies lower crustal xenoliths from central Ireland close to the Caledonian Iapetus suture zone. The xenoliths are predominantly foliated and lineated metapelitic (garnet–sillimanite–K-feldspar) granulites. Their metapelitic composition is unusual compared with the mostly mafic composition of lower crustal xenoliths world-wide. Based on thermobarometry, the metapelitic xenoliths were entrained from depths of c. 20–25 ± 3.5 km and rare mafic granulites from depths of 31–33 ± 3.4 km. The xenoliths were emplaced during Lower Carboniferous volcanism and are considered to represent samples of the present day lower crust.Vp values for the metapelitic granulites range between 6.26 and 7.99 km s− 1 with a mean value of 7.09 ± 0.4 km s− 1. Psammite and granitic orthogneiss samples have calculated Vp values of 6.51 and 6.23 km s− 1, respectively. Vs values for the metapelites are between 3.86 and 4.34 km s− 1, with a mean value of 4.1 ± 0.15 km s− 1. The psammite and orthogneiss have calculated Vs values of 3.95 and 3.97 km s− 1, respectively.The measured seismic velocities correlate with density and with modal mineralogy, especially the high content of sillimanite and garnet. Vp anisotropy is between 0.15% and 13.97%, and a clear compositional control is evident, mainly in relation to sillimanite abundance. Overall Vs anisotropy ranges from 1% to 11%. Poisson's ratio (σ) lies between 0.25 and 0.35 for the metapelitic granulites, mainly reflecting a high Vp value due to abundant sillimanite in the sample with the highest σ. Anisotropy is probably a function of deformation associated with the closure of the Iapetus ocean in the Silurian as well as later extension in the Devonian. The orientation of the bulk strain ellipsoid in the lower crust is difficult to constrain, but lineation is likely to be NE–SW, given the strike-slip nature of the late Caledonian and subsequent Acadian deformation.When corrected for present-day lower crustal temperature, the experimentally determined Vp values correspond well with velocities from the ICSSP, COOLE I and VARNET seismic refraction lines. Near the xenolith localities, the COOLE I line displays two lower crustal layers with in situ Vp values of 6.85–6.9 and 6.9–8.0 km s− 1, respectively. The upper (lower velocity) layer corresponds well with the metapelitic granulite xenoliths while the lower (higher velocity) layer matches that of the basic granulite xenoliths, though their metamorphic pressures suggest derivation from depths corresponding to the present-day upper mantle.  相似文献   

5.
A total of 13 regional Ocean Bottom Seismograph (OBS) profiles with an accumulated length of 2207 km acquired on the Vøring Margin, NE Atlantic have been travel time modelled with regards to S-waves. The Vp/Vs ratios are found to decrease with depth through the Tertiary layers, which is attributed to increased compaction and consolidation of the rocks. The Vp/Vs ratio in the intra-Campanian to mid-Campanian layer (1.75–1.8) in the central Vøring Basin is significantly lower than for the layers above and beneath, suggesting higher sand/shale ratio. This layer was confirmed by drilling to represent a layer of sandstone. This mid-Cretaceous ‘anomaly’ is also present in the northern Vøring Basin, as well as on the southern Lofoten Margin further north. The Vp/Vs ratio in the extrusive rocks on the Vøring Plateau is estimated to be 1.85, conformable with mafic (basaltic) rocks. Landward of the continent/ocean transition (COT), the Vp/Vs ratio in the layer beneath the volcanics is estimated to be 1.67–1.75. These low values suggest that this layer represents sedimentary rocks, and that the sand/shale ratio might be relatively high here. The Vp/Vs ratio in the crystalline basement is estimated to be 1.67–1.75 in the basin and on the landward part of the Vøring Plateau, indicating the presence of granitic/granodioritic continental crust. In the lower crust, the Vp/Vs ratio in the basin decreases uniformly from southwest to northeast, from 1.85–1.9 to 1.68–1.73, suggesting a gradual change from mafic (gabbroic) to felsic (granodioritic) lower crust. Significant (3–5%) azimuthal S-wave anisotropy is observed for several sedimentary layers, as well as in the lower crust. All these observations can be explained by invoking the presence of liquid-filled microcracks aligned vertically along the direction of the present day maximum compressive stress (NW–SE).  相似文献   

6.
Bate  Bate  Cao  Junnan  Zhang  Chi  Hao  Na 《Acta Geotechnica》2021,16(3):841-857

Heterogeneity in either chemically or microbiologically induced carbonate-based ground improvement methods is a major obstacle in engineering application. Spectral induced polarization (SIP), an innovative and nondestructive method, which has demonstrated promise in monitoring microbial activity, was used in this study to monitor enzyme induced carbonate precipitation (EICP). The complex conductivities, together with the shear wave velocities (Vs), of an EICP modified sand were monitored using a self-developed spectral induced polarization–bender element column. The mean precipitate size was calculated by relaxation time (τ) and the Schwarz equation. The precipitate contents were calculated by cumulative gamma distribution function on the global polarization magnitude (mn) with R2?=?0.989. The stiffness of the enhanced geomaterial, in terms of Vs, correlates to mn with a cumulative lognormal distribution function with R2?=?0.967. Contact cementation was postulated as the dominant association pattern. The possible mechanism for this may be the formation of eddies and the nucleation of CaCO3 crystals during precipitation. The results suggest that SIP can be used as an effective nondestructive monitoring tool to assess the stiffness of geomaterials.

  相似文献   

7.
Three-phase NaCl-H2O fluid inclusions featuring halite dissolution temperature(Tm)higher than vapor bubble disappearance temperature(Th) are commonly observed in porphyry copper/molybdenum deposits,skarn-type deposits and other magmatic- hydrothermal ore deposits.Based on |ΔV1|(the absolute value of volume variation of NaCl-H2O solution in a heating or cooling process of inclusions)= |ΔVs|(the absolute value of volume variation of the halite crystal in a heating or cooling process of inclusions) and on the principle of conservation of the mass of NaCl and H2O,we systematically calculated the densities of NaCl-H2O solutions in the solid-liquid two-phase field for temperatures(Th) from 0.1℃ to 800℃ and salinities from 26.3 wt%to 99.2wt%.Consequently for the first time we obtained the upper limit of the density of NaCI-H2O solutions in the solid-liquid twophase field for Tbm inclusions with variant salinities.The results indicate that for inclusions of the Thm type with the same Th,the higher the Tm or salinity is,the higher the density of the NaClsaturated solution will be.If a group of fluid inclusions were homogeneously trapped,they must have the same Th value and the same Tm or salinity value.This may be used to distinguish homogeneous,inhomogeneous,and multiple entrapments of fluid inclusions.  相似文献   

8.

The detrimental effects of an earthquake are strongly influenced by the response of soils subjected to dynamic loading. The behavior of soils under dynamic loading is governed by the dynamic soil properties such as shear wave velocity, damping characteristics and shear modulus. Worldwide, it is a common practice to obtain shear wave velocity (V s in m/s) using the correlation with field standard penetration test (SPT) N values in the absence of sophisticated dynamic field test data. In this paper, a similar but modified advanced approach has been proposed for a major metro city of eastern India, i.e., Kolkata city (latitudes 22°20′N–23°00′N and longitudes 88°04′E–88°33′E), to obtain shear wave velocity profile and soil site classification using regression and sensitivity analyses. Extensive geotechnical borehole data from 434 boreholes located across 75 sites in the city area of 185 km2 and laboratory test data providing information on the thickness of subsoil strata, SPT N values, consistency indices and percentage of fines are collected and analyzed thoroughly. A correlation between shear wave velocity (V s) and SPT N value for various soil profiles of Kolkata city has been established by using power model of nonlinear regression analysis and compared with existing correlations for other Indian cities. The present correlations, having regression coefficients (R 2) in excess of 0.96, indicated good prediction capability. Sensitivity analysis predicts that significant influence of soil type exists in determining V s values, for example, typical silty sand shows 30.4 % increase in magnitude of V s as compared to silt of Kolkata city. Moreover, the soil site classification shows Class D and Class E category of soil that exists typically in Kolkata city as per NEHRP (Recommended provisions for seismic regulations for new buildings and other structures—Part 1: Provisions. Prepared by the Building Seismic Safety Council for the Federal Emergency Management Agency (Report FEMA 450), Washington, DC, 2003) guidelines and thereby highlighting the seismic vulnerability of the city. The results presented in this study can be utilized for seismic microzonation, ground response analysis and hazard assessment for Kolkata city.

  相似文献   

9.
Hematite is one of the most important carriers of remanent magnetization in natural samples. Its strong magnetocrystalline anisotropy makes it difficult to determine one single value for the magnetic anisotropy constant and other magnetic properties. In particular, the anisotropy of hematite within its basal plane is controversial because an assumed triaxial anisotropy compatible with the crystallographic structure has not always been detected. This study presents a comparative analysis of rock magnetic properties, compositional analysis and determination of the magnetic anisotropy constant. Different models with anisotropy constant within the basal plane ranging from 0 to 13 (J m−3) are considered in the evaluation of the factors that control the presence or absence of a triaxial anisotropy. A linear relationship between saturation magnetization (M s ) and coercitivity (B c ) in measurements at increasing temperatures is observed in samples where anisotropy is either uniaxial or biaxial while those with significant triaxial anisotropies have a power–law relationship between M s and B c .  相似文献   

10.
The apparent molal volume, φV of boric acid, B(OH)3 and sodium borate, NaB(OH)4, have been determined in 35%. salinity seawater and 0·725 molal NaCl solutions at 0 and 25°C from precise density measurements. Similar to the behavior of nonelectrolytes and electrolytes in pure water, the φV of B(OH)3 is a linear function of added molality and the φV of NaB(OH)4 is a linear function of the square root of added molarity in seawater and NaCl solutions. The partial molal volumes, V?1, of B(OH)3 and NaB(OH)4 in seawater and NaCl were determined from the φV's by extrapolating to infinite dilution in the medium. The V?1 of B(OH)3 is larger in NaCl and seawater than pure water apparently due to the ability of electrolytes to dehydrate the nonelectrolyte B(OH)3. The V?1 of NaB(OH)4 in itself, NaCl and seawater is larger than the expected value at 0·725 molal ionic strength due to ion pair formation [Na+ + B(OH)4?NaB(OH)40]. The volume change for the formation of NaB(OH)40 in itself and NaCl was found to be equal to 29·4 ml mol?1 at 25°C and 0·725 molal ionic strength. These large ΔV?1's indicate that at least one water molecule is released when the ion pair is formed [Na+ + B(OH)4?H2O + NaOB(OH)20]. The observed V?1 in seawater and the ΔV?1 (NaB0) in water and NaCl were used to estimate ΔV?1 (MgB+) = ΔV?1 (CaB+) = 38·4 ml mol?1 for the formation of MgB+ and CaB+. The volume change for the ionization of B(OH)3 in NaCl and seawater was determined from the molal volume data. Values of ΔV?1 = ?29·2 and ?25·9 ml mol?1 were found in seawater and ΔV?1 = ?21·6 and ?26·4 in NaCl, respectively, at 0 and 25°C. The effect of pressure on the ionization of B(OH)3 in NaCl and seawater at 0 and 25°C determined from the volume change is in excellent agreement with direct measurements in artificial seawater (culberson and Pytkowicz, 1968; Disteche and Disteche, 1967) and natural seawater (Culberson and Pytkowicz, 1968).  相似文献   

11.
We determine detailed 3-D Vp and Vs structures of the crust and uppermost mantle beneath the Kyushu Island, southwest Japan, using a large number of arrival times from local earthquakes. From the obtained Vp and Vs models, we further calculate Poisson’s ratio images beneath the study area. By using this large data set, we successfully image the 3-D seismic velocity and Poisson’s ratio structures beneath Kyushu down to a depth of 150 km with a more reliable spatial resolution than previous studies. Our results show very clear low Vp and low Vs anomalies in the crust and uppermost mantle beneath the northern volcanoes, such as Abu, Kujyu and Unzen. Low-velocity anomalies are seen in the mantle beneath most other volcanoes. In contrast, there are no significant low-velocity anomalies in the crust or in the upper mantle between Aso and Kirishima. The subducting Philippine Sea slab is imaged generally as a high-velocity anomaly down to a depth of 150 km with some patches of normal to low seismic wave velocities. The Poisson’s ratio is almost normal beneath most volcanoes. The crustal seismicity is distributed in both the high- and low-velocity zones, but most distinctly in the low Poisson’s ratio zone. A high Poisson’s ratio region is found in the forearc crustal wedge above the slab in the junction area with Shikoku and Honshu; this high Poisson’s ratio could be caused by fluid-filled cracks induced by dehydration from the Philippine Sea slab. The Poisson’s ratio is normal to low in the forearc mantle in middle-south Kyushu. This is consistent with the absence of low-frequency tremors, and may indicate that dehydration from the subducting crust is not vigorous in this region.  相似文献   

12.
Shear wave velocity (V s) is one of the most important input parameter to represent the stiffness of the soil layers. It is preferable to measure V s by in situ wave propagation tests, however it is often not economically feasible to perform the tests at all locations. Hence, a reliable correlation between V s and standard penetration test blow counts (SPT-N) would be a considerable advantage. This paper presents the development of empirical correlations between V s and SPT-N value for different categories of soil in Chennai city characterized by complex variation of soil conditions. The extensive shear wave velocity measurement was carried out using Multichannel Analysis of Surface Waves (MASW) technique at the sites where the SPT-N values are available. The bender element test is performed to compare the field MASW test results for clayey soils. The correlations between shear wave velocity and SPT-N with and without energy corrections were developed for three categories of soil: all soils, sand and clay. The proposed correlations between uncorrected and energy corrected SPT-N were compared with regression equations proposed by various other investigators and found that the developed correlations exhibit good prediction performance. The proposed uncorrected and energy corrected SPT-N relationships show a slight variation in the statistical analysis indicating that both the uncorrected and energy corrected correlations can predict shear wave velocity with equal accuracy. It is also found that the soil type has a little effect on these correlations below SPT-N value of about 10.  相似文献   

13.
The Latur earthquake (Mw 6.1) of 29 September 1993 is a rare stable continental region (SCR) earthquake that occurred on a previously unknown blind fault. In this study, we determined detailed three-dimensional (3-D) P- and S-wave velocity (Vp, Vs) and Poisson's ratio (σ) structures by inverting the first P- and S-wave high-quality arrival time data from 142 aftershocks that were recorded by a network of temporary seismic stations. The source zone of the Latur earthquake shows strong lateral heterogeneities in Vp, Vs and σ structures, extending in a volume of about 90 × 90 × 15 km3. The mainshock occurred within, but near the boundary, of a low-Vp, high-Vs and low-σ zone. This suggests that the structural asperities at the mainshock hypocenter are associated with a partially fluid-saturated fractured rock in a previously unknown source zone with intersecting fault surfaces. This might have triggered the 1993 Latur mainshock and its aftershock sequence. Our results are in good agreement with other geophysical studies that suggest high conductivity and high concentration of radiogenic helium gas beneath the source zone of the Latur earthquake. Our study provides an additional evidence for the presence of fluid related anomaly at the hidden source zone of the Latur earthquake in the SCR and helps us understand the genesis of damaging earthquakes in the SCR of the world.  相似文献   

14.
Shear wave velocity (V s) and the fundamental site period of the subsurface condition are the primary parameters that affect seismic soil amplification in particular sites. Within the topmost layer of the soil, which measures 30 m, the average shear wave velocity V s30 is commonly used to build codes for site classification for the design of earthquake-resistant structures and to conduct microzonation studies. In this study, the development of a microzonation map for V s30 distribution, National Earthquake Hazard Reduction Program V s30 site classification, and a fundamental site period for Penang are presented. The multichannel analysis of surface wave (MASW) test was conducted for more than 50 sites with available borehole data to develop the microzonation maps. The ten selected V s profiles measured by MASW show a good correlation with the data obtained using empirical correlations in a previous study. The highest V s values were identified at the northeastern and southeastern parts of Penang Island, corresponding to the shallow bedrock and the outcrop zone. Conversely, the lowest V s values were found in the northwestern and southwestern parts of the Penang mainland owing to the thick layer of soft clay and silt deposits. The site period map shows the variation in site periods, with the highest value of 1.03 s at the western part of the Penang mainland and the lowest value of 0.02 s at the eastern part of the Penang Island. The microzonation maps developed in this study are vital to studies on seismic hazard and earthquake mitigation programs in Malaysia.  相似文献   

15.
The spatial distribution of soil shear-wave velocity and the fundamental period of vibration were selected as input parameters for the determination of potential seismic site effects in the Saguenay region, Canada. The methodology used in this study involved three clear steps. First, a 3D geological model of the surficial deposits was built taking into consideration the type, spatial distribution and thickness of the deposits. Second, representative average Vs values were determined for each of the major soil units. Finally, the average shear-wave velocity from the ground surface to bedrock (Vsav), the shear-wave velocity of the upper 30 m (Vs30) and the fundamental site resonance period (T0) were calculated over a regular grid for the study area. The results include the spatial distribution of the fundamental site resonance period, the average shear-wave velocity in the first 30 m of the ground and the spatial distribution of National Building Code of Canada seismic soil classes for the Saguenay region.  相似文献   

16.
The detailed magnetic susceptibility anisotropy study on the sediments of two sections, which are located in the lake-center and the lakeshore of the Huangqihai Lake,Inner Mongolia, revealed their hydrodynamics and sedimentary environment changes in the recent 2000 years.The results show that the sediments of two sections both display normal depositional magnetic fabrics,of which the minimum susceptibility axes(K3) are oriented perpendicular to the bedding plane and the maximum magnetic susceptibility axes(K1) lie parallel with the bedding plane.In addition,the lakeshore presents higher magnetic anisotropy degree(P),magnetic foliation(F) and current factor (Fs) than the lake-center,showing that the lakeshore has higher flow velocity.For the west Huangqihai Lake(HQW) section in the lake-center,the magnetic matrix grain degree(Q) and the inclination of the minimum susceptibility axes sharply increased and decreased,respectively,at a depth of about 10 cm,24 cm,45 cm and 74 cm,which indicate abnormal depositional events with strong kinetic energy.Through comparative analysis,the HQW section can be divided into three stages from top to bottom.The upper stage was a stable depositional environment with strong hydrodynamic energy and low water level,which shows relatively higher Fs value and the Q value varies similarly with P and F.The middle stage was a stable depositional environment with high water level and low hydrodynamic energy,intermitted with high-energy abnormal events,which shows relatively lower Fs and the Q value was negatively correlated with P and F.The lower stage was an unstable depositional environment with low hydrodynamic energy and high water level,which shows relatively lower P,F,and Fs value.  相似文献   

17.
Three-dimensional P and S wave velocity models of the crust under the Granada Basin in Southern Spain are obtained with a spatial resolution of 5 km in the horizontal direction and 2 to 4 km in depth. We used a total of 15407 P and 13704 S wave high-quality arrival times from 2889 local earthquakes recorded by both permanent seismic networks and portable stations deployed in the area. The computed P and S wave velocities were used to obtain three-dimensional distributions of Poisson's ratio (σ) and the porosity parameter (Vp×Vs). The 3-D velocity images show strong lateral heterogeneities in the region. Significant velocity variations up to ±7% in P and S velocities are revealed in the crust below the Granada Basin. At shallow depth, high-velocity anomalies are generally associated with Mesozoic basement, while the low-velocity anomalies are related to the neogene sedimentary rocks. The south–southeastern part of the Granada Basin exhibits high σ values in the shallowest layers, which may be associated with saturated and unconsolidated sediments. In the same area, Vp×Vs is high outside the basin, indicating low porosity of the mesozoic basement. A low-velocity zone at 18-km depth is found and interpreted as a weak–ductile crust transition that is related to the cut-off depth of the seismic activity. In the lower crust, at 34-km depth, a clear slow Vp and Vs anomalous zone may indicate variations in lithology and/or with the rigidity of the lower crust rocks.  相似文献   

18.
The crustal structure along a 312 km transect, stretching from the axial mountains of the North Atlantic Knipovich Ridge to the continental shelf of Svalbard, has been obtained using seismic reflection data and wide angle OBS data. The resulting seismic Vp and Vs models are further constrained by a 2-D-gravity model. The principal objective of this study is to describe and resolve the physical and compositional properties of the crust in order to understand the processes and creation of oceanic crust in this extremely slow-spreading counterpart of the North Atlantic Ridge Systems. Vp is estimated to be 3.50–6.05 km/s for the upper oceanic crust (oceanic layer 2), with a marked increase away from the ridge. The measured Vp of 6.55–6.95 km/s for oceanic layer 3A and 7.10–7.25 km/s for layer 3B, both with a Vp/Vs ratio of 1.81, except for slightly higher values at the ridge axis, does not allow a clear distinction between gabbro and mantle-derived peridotite (10–40% serpentized). The thickness of the oceanic crust varies a lot along the transect from the minimum of 5.6 km to a maximum of 8.1 km. The mean thickness of 6.7 km for the oceanic crust is well above the average thickness for slow-spreading ridges (<10 mm/year half-spreading rate). The areas of increased thickness could be explained by large magma production-rates found in the zones of axial highs at the ridge axis, which also have generated the off-axial highs adjacent the ridge. We suggest that these axial and off-axial highs along the ridge control the lithological composition of the oceanic crust. This approach suggests normal gabbroic oceanic crust to be found in the areas bound by the active magma segments (the axial and off-axial highs) and mantle-derived peridotite outside these zone.  相似文献   

19.
The use of shear wave velocity (V s) measurements as an in situ test for evaluation of liquefaction potential has increased substantially due to its advantages. Relatively large numbers of studies have been performed to establish the correlation between V s and liquefaction resistance (CRR) of clean sands. Usually, natural sands contain silt and/or clay, and previous studies have shown that both the amount of fines and their nature influence the values of CRR as well as V s. Therefore, the CRR–V s correlations may also be affected by fines content and type of sandy soils. However, effect of fines content and especially fines type of sandy soils on the correlation between V s and CRR is inadequately addressed in the literature. In this study, cyclic triaxial and bender element tests were conducted on samples of sand containing various amounts of different types of fines, and the effects of fines on the values of CRR and V s are investigated. The results show that G 0 and CRR reduce even when small amounts of fines are added to sand. Therefore, use of plasticity index (PI) of the fines fraction is better than the PI of the overall soil when trying to assess the effects of fines. Using obtained experimental data as well as the established semiempirical CRR–V s relationship, the CRR–V s correlation was developed for all the tested soils, and the effect of fines type on the correlation is also examined. Based on the results obtained in this study, CRR–V s correlation is affected by both the amount and the plasticity of the fines present in the sand, and this correlation is soil specific.  相似文献   

20.
Measurement of streambed hydraulic conductivity and its anisotropy   总被引:17,自引:0,他引:17  
 A method is described for the measurement of streambed hydraulic conductivity. Unlike permeameter methods, this method applies straight and l-shaped standpipes directly to streambeds for measurements of in-situ hydraulic conductivity in the vertical (K v ) and horizontal (K h ) directions, as well as in other oblique directions (K s ). This method has advantages in determination of K v values over grain-size analysis, permeameter tests, or slug test methods. Also unique to this method is that it provides K s values of a streambed. The measured results can be used to construct a hydraulic conductivity ellipse and to evaluate the anisotropy of streambed sediments. Field examples from the Republican River, Nebraska, demonstrated the usefulness of this method in the determination of streambed hydraulic conductivity and anisotropy along or across a river channel. Results indicate that the K h is about three to four times larger than K v , whereas K s values are larger than K v but smaller than K h . Received: 6 March 2000 · Accepted: 18 April 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号