首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Two methods for the quantification of clay minerals using X-ray diffraction techniques: the Constant Mineral Standards Method and the Constant Clay Method were applied to soil samples from Al-Khod (Northern Oman). The first method was based on the addition of different concentrations of clay to constant mineral standards while the latter was based on the additions of known internal standards to the clay sample. The clay investigated in this study contained montmorillonite, palygorskite, illite and kaolinite. The areas of the reflection peaks were found to relate linearly with additions of different proportions of clay or mineral standards. Using the two methods, the concentrations of the different components and their experimental errors were determined. From the errors and self consistency of the results obtained, and the practicality of sample preparation, it is proposed to use the Constant Mineral Standards Method.  相似文献   

2.
ABSTRACT

Granular pile-anchor (GPA) technique is an innovative tension-resistant foundation technique which can effectively ward off the dual swell–shrink problem posed by expansive clays. The other tension-resistant foundation techniques are drilled piers, belled piers and under-reamed piles. Laboratory scale model studies and field scale experiments on GPAs revealed that swelling of expansive clay beds could be effectively controlled by GPA technique. This paper presents results obtained from laboratory scale model studies on GPA-reinforced expansive clay beds subjected to alternate cycles of wetting and drying. Swelling and shrinkage of the clay beds were monitored for three wetting–drying cycles (N) spanning a time period of 300 days. The clay beds were reinforced with varying number of GPAs (n = 0, 1, 2 and 3). Swelling (mm) and shrinkage (mm) of the clay beds in a given wetting–drying cycle decreased with increasing number of GPAs. Further, swelling (mm) and shrinkage (mm) significantly decreased with increasing number of wetting–drying cycles (N) also. For a given number of GPAs (n), swelling and shrinkage decreased with increase in depth from the top of the clay bed too.  相似文献   

3.
Chen  Ren-Peng  Zhu  Shu  Hong  Peng-Yun  Cheng  Wei  Cui  Yu-Jun 《Acta Geotechnica》2019,14(2):279-293

This paper presents a two-surface plasticity model for describing some important features of saturated clay under cyclic loading conditions, such as closed hysteresis loops, cyclic shakedown and degradation, and different stress–strain relations for two-way loading. The model, namely ACC-2-C, is based on the elastoplastic model ACC-2 (an adapted Modified Cam Clay model with two yield surfaces) developed by Hong et al. (Acta Geotech 11(4):871–885, 2015). The small-strain nonlinearity concept is adopted to achieve the nonlinear characteristics of clay during unloading–loading stage. The new hardening law related to accumulated deviatoric plastic strain is proposed for the inner surface to describe the cyclic shakedown and degradation. Following the advantages of the ACC-2 model, the constitutive equations are simply formulated based on the consistency condition for the inner yield surface. The model is conveniently implemented in a finite element code using a stress integration scheme similar to the Modified Cam Clay model. The simulation results are highly consistent with experimental data from drained and undrained isotropic cyclic triaxial tests in normally consolidated saturated clay under both one-way and two-way loadings.

  相似文献   

4.
Gu  Xiaoqiang  Li  Youhong  Hu  Jing  Shi  Zhenhao  Liang  Fayun  Huang  Maosong 《Acta Geotechnica》2022,17(8):3229-3243

Natural clays usually show anisotropic stiffness due to their deposition process and anisotropic in situ stress state. The stiffness anisotropy depends on both of the stress anisotropy and fabric anisotropy, while the latter can be quantified by the stiffness anisotropy at isotropic stress states. This paper measures the K0 value (i.e., stress anisotropy) and elastic shear stiffness anisotropy of natural Shanghai clay in a triaxial apparatus with horizontal and vertical bender elements. The results show that the K0 value of Shanghai clay lies in the range of 0.40–0.66, and an empirical equation is proposed to estimate the K0 value based on the plasticity index and initial void ratio. The fabric anisotropy of natural Shanghai clay lies in the range of 1.2–1.4 with a stronger fabric in the horizontal plane. Moreover, the experimental data of the stiffness anisotropy and fabric anisotropy of different clays in the literature are reviewed and analyzed. It reveals that the stiffness anisotropy generally increases, while the fabric anisotropy remains nearly the same during K0 consolidation. For normally consolidated clay, the fabric anisotropy generally lies in the range of 1.1–1.7. For overconsolidated clays, the fabric anisotropy generally increases as the overconsolidation ratio increases. Empirical equations are proposed to approximately estimate the fabric anisotropy of clays based on its stress normalized elastic shear stiffness.

  相似文献   

5.
Cheng  Wei  Chen  Ren-peng  Hong  Peng-yun  Cui  Yu-jun  Pereira  Jean-Michel 《Acta Geotechnica》2020,15(10):2741-2755

In thermal-related engineering such as thermal energy structures and nuclear waste disposal, it is essential to well understand volume change and excess pore water pressure buildup of soils under thermal cycles. However, most existing thermo-mechanical models can merely simulate one heating–cooling cycle and fail in capturing accumulation phenomenon due to multiple thermal cycles. In this study, a two-surface elasto-plastic model considering thermal cyclic behavior is proposed. This model is based on the bounding surface plasticity and progressive plasticity by introducing two yield surfaces and two loading yield limits. A dependency law is proposed by linking two loading yield limits with a thermal accumulation parameter nc, allowing the thermal cyclic behavior to be taken into account. Parameter nc controls the evolution rate of the inner loading yield limit approaching the loading yield limit following a thermal loading path. By extending the thermo-hydro-mechanical equations into the elastic–plastic state, the excess pore water pressure buildup of soil due to thermal cycles is also accounted. Then, thermal cycle tests on four fine-grained soils (natural Boom clay, Geneva clay, Bonny silt, and reconstituted Pontida clay) under different OCRs and stresses are simulated and compared. The results show that the proposed model can well describe both strain accumulation phenomenon and excess pore water pressure buildup of fine-grained soils under the effect of thermal cycles.

  相似文献   

6.
This article reviews the applications of light stable isotope, including carbon, oxygen and hydrogen, in thestudies on origin and formation temperature of authigenic carbonate, quartz and clay minerals. Theoretical knowledge andanalytical methods for major light stable isotopes are introduced in detail. Negative and positive δ13C values indicatesignificant differences on the origin of carbonate cements. The δ18O value is an effective palaeotemperature scale forauthigenic minerals formation. Various fractionation equations between δ18O and temperature are proposed for carbonatecements, quartz cements and clay minerals, whose merit and demerit, applicable conditions are clarified clearly. Clumpedisotope analysis can reconstruct the temperature of carbonate precipitation with no requirement on the δ18O of initial waters,which makes temperature calculation of carbonate cements formation more convenient and accurate. Hydrogen and oxygenisotopes mainly reflect the origin of diagenetic fluid for clay mineral formation, providing reliable evidence for diageneticenvironment analysis. This work aims at helping researchers for better understanding the applications of light stable isotopein sandstone diagenesis.  相似文献   

7.
Wang  Yuke  Gao  Yufeng  Li  Bing  Guo  Lin  Cai  Yuanqiang  Mahfouz  Ali H. 《Acta Geotechnica》2019,14(5):1379-1401

It is important to be fully aware of the dynamic characteristics of saturated soft clays under complex loading conditions in practice. In this paper, a series of undrained tests for soft clay consolidated with different initial major principal stress direction ξ were conducted by a hollow cylinder apparatus (HCA). The clay samples were subjected to pure principal stress rotation as the magnitudes of the mean total stress p, intermediate principal stress coefficient b, and deviator stress q were all maintained constant. The influences of intermediate principal stress coefficient and initial major principal stress direction on the variation of strain components, generation of pore water pressure, cyclic degradation and non-coaxiality were investigated. The experimental observations indicated that the strain components of specimen were affected by both intermediate principal stress coefficient and initial major principal stress direction. The generation of the pore water pressure was significantly influenced by intermediate principal stress coefficient. However, the generation of pore water pressure was merely influenced by initial major principal stress direction when b?=?0.5. It was also noted that the torsional stress–strain relationships were affected by the number of cycles, and the effect of intermediate principal stress coefficient and initial major principal stress direction on the torsional stress–strain loops were also significant. Stiffness degradation occur under pure principal stress rotation. Anisotropic behavior resulting from the process of inclined consolidation have considerable effects on the strain components and non-coaxial behavior of soft clay.

  相似文献   

8.
F.G. Bell 《Engineering Geology》1994,36(3-4):257-266
The Lower Cretaceous in North Yorkshire is represented by a marine succession termed the Speeton Clay. The principal minerals in these clays consist of quartz, mica and clay minerals, although pyrite, glauconite and siderite are notable in some beds. The proportions of clay minerals change within the Speeton Clay and generally illite becomes more important in the younger horizons.

The Speeton Clay is a silty clay which generally has a high plasticity, the latter being influenced by the proportion of clay fraction present. All the clays tested were inactive although they would appear to have a potential for expansion. Neither the plasticity nor the moisture content were affected by depth.

In terms of its undrained shear strength, most of the Speeton Clay could be regarded as a stiff clay. It was also insensitive with generally a low slake-durability index. Its coefficients of volume compressibility were characteristic of overconsolidated and heavily overconsolidated days.  相似文献   


9.
Clay minerals formed through chemical weathering have long been implicated in the burial of organic matter (OM), but because diagenesis and metamorphism commonly obscure the signature of weathering-derived clays in Precambrian rocks, clay mineralogy and its role in OM burial through much of geologic time remains incompletely understood. Here we have analyzed the mineralogy, geochemistry and total organic carbon (TOC) of organic rich shales deposited in late Archean to early Cambrian sedimentary basins. Across all samples we have quantified the contribution of 1M and 1Md illite polytypes, clay minerals formed by diagenetic transformation of smectite and/or kaolinite-rich weathering products. This mineralogical signal, together with corrected paleo-weathering indices, indicates that late Archean and Mesoproterozoic samples were moderately to intensely weathered. However, in late Neoproterozoic basins, 2M1 illite/mica dominates clay mineralogy and paleo-weathering indices sharply decrease, consistent with an influx of chemically immature and relatively unweathered sediment. A late Neoproterozoic switch to micaceous clays is inconsistent with hypotheses for oxygen history that require an increased flux of weathering-derived clays (i.e., smectite or kaolinite) across the Precambrian-Cambrian boundary. Compared to previous studies, our XRD data display the same variation in Schultz Ratio across the late Neoproterozoic, but we show the cause to be micaceous clay and not pedogenic clay; paleo-weathering signals cannot be recovered from bulk mineralogy without this distinction. We find little evidence to support a link between these mineralogical variations and organic carbon in our samples and conclude that modal clay mineralogy cannot by itself explain an Ediacaran increase in atmospheric oxygen driven by enhanced OM burial.  相似文献   

10.
Clay smear is a collection of fault processes and resulting fault structures that form when normal faults deform layered sedimentary sections. These elusive structures have attracted deep interest from researchers interested in subsurface fluid flow, particularly in the oil and gas industry. In the four decades since the association between clay-smear structures and oil and gas accumulations was introduced, there has been extensive research into the fault processes that create clay smear and the resulting effects of that clay smear on fluid flow. We undertake a critical review of the literature associated with outcrop studies, laboratory and numerical modeling, and subsurface field studies of clay smear and propose a comprehensive summary that encompasses all of these elements. Important fault processes that contribute to clay smear are defined in the context of the ratio of rock strength and in situ effective stresses, the geometric evolution of fault systems, and the composition of the faulted section. We find that although there has been progress in all avenues pursued, progress has been uneven, and the processes that disrupt clay smears are mostly overlooked. We highlight those research areas that we think will yield the greatest benefit and suggest that taking these emerging results within a more process-based framework presented here will lead to a new generation of clay smear models.  相似文献   

11.
Granular pile-anchor (GPA) technique has been found to be an innovative foundation technique for expansive clays posing the dual problem of swelling and shrinkage. Swelling occurs during absorption of water and shrinkage during evaporation of water. Generally, in field expansive clay beds, swelling takes place during rainy seasons and shrinkage during summers. GPA is a recent innovative foundation technique devised to ameliorate the dual swell-shrink problem of structures founded on expansive clay beds. The other innovative techniques are drilled piers, belled piers and under-reamed piles. Laboratory scale model studies and field scale experiments on GPAs yielded useful results and revealed that swelling of expansive clay beds was effectively controlled by GPA technique. Studies on swell-shrink behaviour of GPA-reinforced clay beds have not been performed so far. This paper presents results obtained from laboratory scale model studies on GPA-reinforced expansive clay beds subjected to alternate cycles of swelling and shrinkage. The data presented in this paper pertain to the swelling of test clay beds under the influence of three swell-shrink cycles (N) spanning a time period of 300 days. The test clay beds were reinforced with varying number of GPAs (n = 0, 1, 2 and 3). Heave (mm) in a given swell-shrink cycle decreased with increasing number of GPAs. Further, for a given number of GPAs (n), heave (mm) also decreased with increase in depth from the top of the clay bed. It was found that the resultant thickness of the clay bed (Hr) for swelling increased with increasing number of cycles. However, the percentage heave (ΔH/Hr) decreased as the number of swell-shrink cycles (N) increased.  相似文献   

12.
Clay mineralogy studies of ore rocks versus barren rocks in the Grants mineral belt, New Mexico, show that some combination of chlorite (rosette form), illite, mixed-layer illite-montmorillonite, (±Mg-montmorillonite) are penecontemporaneous with uranium minerals in trend ore; these same clay minerals plus kaolinite are related to the roll-type ore near the main redox front of the Grants mineral belt. Clay minerals from barren rocks are characterized by a greater abundance of Na-montmorillonite, kaolinite, and face-to-edge form chlorite. Chlorites from ore zones contain much more vanadium than do chlorites from barren rocks. Trend orr probably formed from southeasterly flowing waters following paleochannels in the Late Jurassic. These deposits are found almost entirely in reduced rocks, and organic carbon may have been an important reductant to remove U-V-U-V-Se-Mo from solution as carbonate from ore zones contains some organic carbon based on stable isotope studies. Uplift, remobilization, and reprecipitation of some of the trend ore resulted in the formation of redistributed ore, some of which possesses a roll-type geometry. Mineralization for the roll-type ore was apparently controlled by sulfide-sulfate equilibria at or near the main redox front in the Grants mineral belt. Trend and roll-type ore possess different assemblages of clay minerals and different trace element abundances. Laramide-age faults cut both trend ore and some roll-type ores. Stack ore is found in Laramide-age fault zones. Limited oxygen isotopic data from clay minerals collected from two mines at Ambrosia Lake in reduced rocks indicate probable preservation of ancient, formational waters and show no evidence of infiltration by young meteoric waters. This information, plus the pre-Laramide-age faults, suggest, but do not unequivocally prove, that the main redox front has been relatively stable since its formation, probably some time in the Cretaceous. Younger encroachment of the redox front in post-Laramide time is proposed by others, however, and the problem is unresolved. Uranium for the deposits was most likely carried in solution as an oxyion, probably as (UO2(CO3)2·2H2O2– or (UO2(HPO4)2)2–, although organic transport cannot be entirely ruled out. Oxyions of vanadium, selenium, molybdenum and possible arsenic and antimony, are interpreted from Eh-pH diagrams to have been segregated and transported with U6+ soluble species and precipitated when a chemically reducing environment was reached. The rare-earth elements are also enriched in ore zones, but is it not clear if they were transported with the U-V-Se-Mo-(As)-(Sb) suite or derived from a more local source.  相似文献   

13.
A non-associated constitutive critical state model is proposed. The yield surface is that of Modified Cam Clay, whilst the plastic potential is an empirical function. The yield and plastic potential surfaces in the octahedral plane vary from circular at low stress ratios, to the Matsuoka-Nakai surface at failure. Assessment of the model has been by comparison with laboratory tests on soft clay. Further validation has been by predicting centrifuge model behaviour using a modified form of the CRISP finite element program. Comparisons of the numerical analyses, using the proposed model and Modified Cam Clay, show improved correlations with the experimental data. ©  相似文献   

14.
Boom Clay is currently viewed as a reference host formation for studies on deep geological disposal of radioactive waste in Belgium. The interactions between bulk rock Boom Clay and 0.1 M KOH, 0.1 M NaOH, 0.1 M Ca(OH)2, young cement water and evolved cement water solutions, ranging in pH from 12.5 to 13.2, were examined as static batch experiments at 60 °C to simulate alkaline plume perturbations, which are expected to occur in the repository due to the presence of concrete. Both liquids and solids were investigated at specific times between 90 and 510 days in order to control the elemental budget and to search for potential mineralogical alterations. Also, the clay fraction was separated from the whole-rock Boom Clay at the end of each run and characterized for its mineralogical composition. Thereby, the importance of the mineral matrix to buffer the alkaline attack and the role of organic matter to protect clay minerals were also addressed. The results indicate that the degree of geochemical perturbation in Boom Clay is dependent on the initial pH of the applied solution together with the nature of the major cation in the reactant fluids. The higher the initial pH of the media, the stronger its interaction with Boom Clay. No major non-clay mineralogical alteration of the Boom Clay was detected, but dissolution of kaolinite, smectite and illite occurred within the studied experimental conditions. The dissolution of clays is accompanied by the decrease in the layer charge, followed by a decrease in the cation-exchange capacity. The highest TOC values coincide with the highest total elemental concentrations in the leachates, and correspondingly, the highest dissolution degree. However, no quantitative link could be established between the degree of organic matter decomposition and clay dissolution.  相似文献   

15.
The Belterra Clay in Northern Brazil is a uniform, yellowish, unstratified kaolinitic clay with variable contents of gibbsite. It is generally 5–10 m thick and covers a lateritic weathering crust on remnants of a dissected table-land. Complete profiles with Belterra Clay, the underlying bauxite/laterite and saprolite/bed rock were sampled in three areas of the Amazon region. The chemical and mineralogical data show a distinct affinity between the Belterra Clay and the underlying layers above all with the saprolite. Variations in the composition of the underlaying layers are reflected by the Belterra Clay. Among the structural and textural features important for the discussion of the origin of the Belterra Clay are the sharp contact between the clay cover and the underlying laterite as well as conglomeritic/brecciate textures and occasional bedding structure in the upper part of the lateritic crust. The detailed analyses do not permit definite conclusions on the origin of the Belterra Clay. Three hypotheses ar discussed:
  1. In-situ formation of the clay cover by weathering processes.
  2. Clay deposition after lateral transport of saprolitic material coming from former elevations inside or outside the present laterite areas.
  3. Vertical transport of the saprolitic material to the surface by termites. However, thicknesses up to 20 m of the Belterra Clay cannot be explained solely by this process.
The compositional relations of the Belterra Clay with the underlying layers are of practical relevance for geological mapping and for mineral exploration.  相似文献   

16.
Water chemistry, sediment texture, clay mineralogy and foraminiferal contents from the bottom of Meda creek were studied to assess the geo-environmental status of the creek. Water quality data for three seasons suggests domination of marine environment as pH remained above 8 and salinity above 35‰ throughout. Clay dominate the bottom sediments, except near mouth. Montmorillonite, illite and kaolinite are the major clay minerals in the sediments. In absence of any source rock in the catchment of the Meda creek, the presence of illite and kaolinite indicates their transportation and depositions from near coastal waters during high tides. Ammonia sp. is the most dominating foraminifera. Reworked forms as well as angular asymmetric forms of foraminifera were dominant in clay rich areas of the creek.  相似文献   

17.
文章通过对长江三角洲南翼7个钻孔样品的孢粉、藻类分析,从晚第四纪第一硬质粘土层中提取出了种类和数量均较可观的孢粉、藻类化石,从而可以判别第一硬质粘土层形成时的沉积环境和植被类型,为长江三角洲地区硬质粘土层的成因研究提供了生物化石依据。研究结果表明,第一硬质粘土层中有多种孢粉、藻类化石组合。高含量淡水藻类的存在说明硬质粘土形成受到流水的作用,亦即硬粘土的形成环境可能为水域环境。化石组合中含量较低的海生沟鞭藻表明,长江三角洲地区在硬质粘土形成时曾受到海水影响。硬质粘土层中的禾本科-莎草科-落叶栎-松、禾本科-落叶栎-松-蒿和莎草科-落叶栎-香蒲孢粉组合指示研究区低地为平原区草甸,而周边的山地有针阔叶混交林分布,当时该地区属于温凉略湿的温带气候。  相似文献   

18.
文章通过对长江三角洲南翼7个钻孔样品的孢粉、藻类分析,从晚第四纪第一硬质粘土层中提取出了种类和数量均较可观的孢粉、藻类化石,从而可以判别第一硬质粘土层形成时的沉积环境和植被类型,为长江三角洲地区硬质粘土层的成因研究提供了生物化石依据。研究结果表明,第一硬质粘土层中有多种孢粉、藻类化石组合。高含量淡水藻类的存在说明硬质粘土形成受到流水的作用,亦即硬粘土的形成环境可能为水域环境。化石组合中含量较低的海生沟鞭藻表明,长江三角洲地区在硬质粘土形成时曾受到海水影响。硬质粘土层中的禾本科-莎草科-落叶栎-松、禾本科-落叶栎-松-蒿和莎草科-落叶栎-香蒲孢粉组合指示研究区低地为平原区草甸,而周边的山地有针阔叶混交林分布,当时该地区属于温凉略湿的温带气候。  相似文献   

19.
Zhou  Jian  Luo  Ling-Hui  Yu  Liang-Gui  Nangulama  Horris 《Acta Geotechnica》2020,15(12):3357-3370

The hydraulic conductivity k, one of the most important engineering properties of soft clay, plays a great role during the whole life cycle of underwater tunnel. Therefore, it is necessary to systematically study the responses of k to the dynamic load under the background of the great development of geotechnical engineering in the world. In this study, a series of seepage tests after cyclic loading were conducted on reconstituted kaolin clay using a modified hollow cylinder apparatus. The influence of cyclic load on the permeability characteristics of soft clay was illustrated in two aspects. The cumulative axial deformation of clay induced by cyclic loading resulted in the smaller hydraulic conductivity of the specimens, and also, the dynamic load reconstructed the microstructure of clay and made the number of large pores getting decreased and the small pores increased. There was a positive correlation between the deformation of soil and the change of hydraulic conductivity, but the reconstruction effect was irregular with the frequency of dynamic load. The measured k values got affected at the beginning, this phenomenon appropriately explains the positive correlation between the number of cycles of dynamic load and the change of hydraulic conductivity.

  相似文献   

20.
Abstract

The characteristics and distribution of clay minerals and their effects on reservoir quality in the Huagang sandstones in the Xihu Sag, East China Sea Basin were studied by using X-ray diffraction, casting thin-sections, scanning electron microscopy, electron microprobe analysis, fluid inclusion analysis, constant-rate mercury injection and nuclear magnetic resonance. Clay minerals consist of kaolinite, chlorite, illite and illite–smectite mixed layer (I/S); kaolinite forms from dissolved feldspars, chlorite occurs as clay coatings that are transformed from clay precursors owing to the flocculation of suspended detrital clays or the crystallisation of pore fluids, and illite forms from the illitisation of detrital smectite, authigenic kaolinite and K-feldspars. Clay distribution is controlled by sedimentary environments, burial history and lithologies. Typical reservoirs in the western sub-sag are thin and developed in braided river facies at relatively shallow burial depths with clays dominated by kaolinite. However, typical reservoirs in the central inversion tectonic zone are thicker and developed in a braided delta front facies at deeper burial depths with clays mainly consisting of chlorite, illite and I/S. High-quality reservoirs are characterised by coarse granularity, high quartz content and low clay content with widespread development of chlorite coatings that inhibit quartz cements at low temperatures. At higher temperatures, the high-quality reservoirs develop more pores providing growth space for quartz cements and result in the coexistence of chlorite coatings and quartz cements. The high-quality reservoirs are controlled by their lithological characteristics rather than chlorite coatings. Illite and I/S clays create severe damage to reservoirs by reducing the size and connectivity of pore-throats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号