首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The paper analyzes possible origins of stars located in intergalactic space that are not bound to specific galaxies, which comprise 15–50% of all stars in galaxy clusters. Some such stars can form in streams of intergalactic gas flowing around gas-rich disk galaxies moving in the cluster. Others may be the products of the decay of young, low-mass, spheroidal galaxies after the loss of their gaseous components during an initial burst of star formation. The decay of low-mass disk galaxies moving at high speeds after they have lost their gaseous components due to the pressure of the incident flow of dense intergalactic gas is possible in the cluster core. The largest fraction of intergalactic stars are probably produced by the partial disruption of galaxies as a result of close passages, collisions, or mergers. Collisions of low-mass, gas-rich galaxies are especially good suppliers of intergalactic stars. Both stars from decaying stellar components of galaxies and stars arising in the gaseous components of colliding galaxies can be supplied to the intergalactic medium. The merger of galaxies harboring supermassive black holes in their nuclei could lead to the partial or total disruption of these galaxies during the deceleration of the binary black hole that is formed during the merger. An enhanced density of intergalactic stars is observed in the cores of galaxy clusters, underscoring the role of galaxy collisions in the formation of the intergalactic stellar population, since the frequency of galaxy collisions grows with their density.  相似文献   

2.
We list and analyze the main currently known mechanisms for accelerating the space motions of stars. A high space velocity of a star can be a consequence of its formation in the early stages of the evolution of a massive galaxy, when it was spheroidal and non-stationary, so that stars were born with velocities close to the escape velocity for the galaxy. Another possibility is that the star arrived from another galaxy with a velocity that is high for our Galaxy. The decay of unstable close multiple stars or supernova explosions in close binaries can also provide velocities of up to several hundreds of km/s to main-sequence stars and velocities of up to ∼1000 km/s to degenerate stars, neutron stars, and stellar-mass black holes. The merger of components of a binary system containing two neutron stars or a neutron star and a black hole due to gravitational-wave radiation can accelerate the nascent black hole to a velocity∼1000 km/s. Hypervelocity relativistic stars can be born due to asymmetric neutrino ejection during a supernova explosion. Stars can be efficiently accelerated by single and binary supermassive black holes (with masses from several millions to several billions of solar masses) in the nuclei of galaxies. Thanks to their gravitational field and fast orbital motion (in the case of binary objects), supermassive black holes are able to accelerate even main-sequence stars to relativistic velocities.  相似文献   

3.
Dremova  G. N.  Dremov  V. V.  Orlov  V. V.  Tutukov  A. V.  Shirokova  K. S. 《Astronomy Reports》2015,59(11):1019-1035

The probability of forming a Galactic hypervelocity star is estimated for the scenario of Hills, which describes the dynamical capture of one component of a binary star by the gravitational field of the supermassive black hole in the Galactic center, leading to the ejection of the other component. Ten thousand initial orientations of the binary orbits were considered, and the semi-major axes of the binary orbits were varied in a wide range from 11.3 R to 425 R . Two series of computations were carried out, in which the mass of the supermassive black hole was taken to be 106 M and 3.4 × 106 M . Numerical simulations of encounters of the binary and black hole in the framework of the three-body and N-body problems are used to localize regions favorable for the formation of hypervelocity stars. The motion of the ejected star in the regular field of the Galaxy is calculated, and the conditions under which the star escapes the Galaxy defined. The probability of escaping the Galaxy is caluclated as a function of various parameters the initial separation of the binary components and the distance of the binary from the black hole. On average, the probability of forming a hypervelocity star is higher for closer encounters and more tightly bound binary pairs.

  相似文献   

4.

The conditions for the formation of close binaries containing main-sequence stars, degenerate dwarfs of various types, neutron stars, and black holes of various masses are considered. The paper investigates the evolution of the closest binary systems under the influence of their gravitational-wave radiation. The conditions under which the binary components can merge on a time scale shorter than the Hubble time as a result of their emission of gravitational waves are estimated. A self-consistent scenario model is used to estimate the frequency of such events in the Galaxy, their observable manifestations, the nature of the merger products, and the role of these events in the evolution of stars and galaxies. The conditions for the formation and evolution of supermassive binary black holes during collisions andmergers of galaxies in their dense clusters are studied.

  相似文献   

5.
The dynamical capture of a binary system consisting of a supermassive black hole (SMBH) and an ordinary star in the gravitational field of a central (more massive) SMBH is considered in the three-body problem in the framework of a modified Hills scenario. The results of numerical simulations predict the existence of objects whose spatial speeds are comparable to the speed of light. The conditions for and constraints imposed on the ejection speeds realized in a classical scenario and the modified Hills scenario are analyzed. The star is modeled using an N-body approach, making it possible to treat it as a structured object, enabling estimation of the probability that the object survives when it is ejected with relativistic speed as a function of the mass of the star, the masses of both SMBHs, and the pericenter distance. It is possible that the modern kinematic classification for stars with anomalously high spatial velocities will be augmented with a new class—stars with relativistic speeds.  相似文献   

6.
Numerical simulations of the dynamical evolution of a galaxy cluster in the framework of the N-body problem taking into account dark matter are presented. These simulations are aimed at studying the role of intergalactic gas in the cluster (the ICM) in the formation of a central, supermassive cD galaxy. The numerical models indicate that deceleration of the galaxies by intergalactic gas supports the observed high temperature of this gas, and accelerates the formation of a supermassive cD galaxy in the cluster core. The accretion of interstellar gas by the cluster core can support a high accretion rate by the central, supermassive black hole associated with the nucleus of the cD galaxy. As a result, this nucleus harbors a bright quasar. The mass of the black hole can grow with time to values 1010 M , as are observed for the brightest quasars.  相似文献   

7.
We present an analysis of data from multi-frequency monitoring of the blazar 3C 454.3 in 2010–2012, when the source experienced an unusually prolonged flare with a duration of about two years. This corresponds to the orbital period of the companion in a scenario in which two supermassive black holes are present in the nucleus of 3C 454.3. The flare’s shape, duration, and amplitude can be explained as a result of precession, if the plane of the accretion disk and the orbital plane of the binary are coincident. We detected small-scale structure of the flare, on time scales of no more than a month. These features probably correspond to inhomogeneities in the accretion disk and surrounding regions, with sizes of the order of 1015 cm. We estimated the size of the accretion disk based on the dynamical and geometrical parameters of this binary system: its diameter is comparable to the size of the orbit of the supermassive binary black hole, and its thickness does not exceed the gravitational radius of the central black hole. The presence of characteristic small-scale features during the flare makes it possible to estimate the relative time delays of variations in different spectral ranges: from gamma-ray to millimeter wavelengths.  相似文献   

8.
A simple model for the dynamics of stars located in a sphere with a radius of one-tenth of the central parsec, designed to enable estimation of the probability of capture in the close vicinity (r < 10?3 pc) of a supermassive black hole (SMBH) is presented. In the case of binary stars, such a capture with a high probability results in the formation of a hyper-velocity star. The population of stars in a sphere of radius <0.1 pc is calculated based on data for the Galactic rotation curve. To simulate the distortion of initially circular orbits of stars, these are subjected to a series of random shock encounters (“kicks”), whose net effect is to “push” these binary systems into the region of potential formation of hyper-velocity stars. The mean crossing time of the border of the close vicinity of the SMBH (r < 10?3 pc) by the stellar orbit can be used to estimate the probability that a binary system is captured, followed by the possible ejection of a hyper-velocity star.  相似文献   

9.
A review of our current understanding of the physics and evolution of close binary stars with various masses under the influence of the nuclear evolution of their components and their magnetic stellar winds is presented. The role of gravitational-wave radiation by close binaries on their evolution and the loss of their orbital angular momentum is also considered. The final stages in the evolution of close binary systems are described. The review also notes the main remaining tasks related to studies of the physics and evolution of various classes of close binaries, including analyses of collisions of close binaries and supermassive black holes in galactic nuclei. Such a collision could lead to the capture of one of the components by the black hole and the acceleration of the remaining component to relativistic speeds.  相似文献   

10.
After 50 years of observational studies of black holes, great progress has been achieved in this branch of astrophysics. Several dozen stellar-mass black holes have been discovered in X-ray binaries, and several hundred supermassive black holes in galactic nuclei. The remarkable recent discovery of gravitational waves from merging black holes in a binary system by LIGO marks the beginning of a new stage in black-hole research. It is quite possible that gravitational-wave studies will provide definitive evidence for the existence of event horizons in black holes in the near future. On the other hand, the development of methods for space and ground-based radio-interferometry observations provides hope that it will be possible to obtain images of “shadows” of supermassive black holes in galactic nuclei, and to observe directly processes occurring in the vicinities of the event horizons of supermassive black holes. This is important for tests of general relativity in extremely strong gravitational fields.  相似文献   

11.
We have calculated the degree and position angle of the polarization of radiation scattered in a magnetized, optically thin or optically thick envelope around a central source, taking into account Faraday rotation of the plane of polarization during the propagation of the scattered radiation and the finite size of the radiation source. The wavelength dependence of the degree of polarization can be used to estimate the magnetic field of the source (a star, the region around a neutron star, or a black hole), and we have used our calculations to estimate the magnetic fields in a number of individual objects: several hot O and Wolf-Rayet stars, compact objects in X-ray close binaries with black holes (SS 433, Cyg X-1), and supernovae. The spectrum of the linear polarization can be used to determine the magnetic field in the vicinity of a central supermassive black hole, where the polarized optical radiation is generated. In a real physical model, this value can be extrapolated to the region of the last stable orbit. In the future, the proposed technique will make it possible to directly estimate the magnetic field in the region of the last stable orbit of a supermassive black hole using X-ray polarimetry.  相似文献   

12.
The conditions for the acceleration of the spatial motions of stars by close-binary supermassive black holes (SMBHs) in galactic nuclei are analyzed in order to derive the velocity distribution for stars ejected from galaxies by such black holes. A close binary system consisting of two SMBHs in circular orbits was subject to a spherically symmetrical “barrage” of solar-mass stars with various initial velocities. The SMBHs were treated as point objects with Newtonian gravitational fields. Models with binary component-mass ratios of 1, 0.1, 0.01, and 0.001 were studied. The results demonstrate the possibility of accelerating neutron stars, stellar-mass black holes, and degenerate dwarfs to velocities comparable to the relative orbital velocities of the binary-SMBH components. In the stage when the binary components are merging due to the action of gravitational-wave radiation, this velocity can approach the speed of light. The most massive binary black-holes (M ? 109M) can also accelerate main-sequence stars with solar or subsolar masses to such velocities.  相似文献   

13.
Numerical simulations of the motions of stars in the gravitational fields of binary black holes with various component mass ratios have been carried out. Two models are considered: (1) the two-body problem with two fixed centers; (2) the general three-body problem. The first model is applicable only over short times Δt ? T, where T is the period of the binary system. The second model is applicable at all times except for during close encounters of stars with one of the binary components, r ≤ 0.00002 pc, where r is the distance from the star to the nearer black hole. In very close passages, relativistic corrections must be taken into account. Estimates of the probability of formation of high-velocity stars as a result of such interactions are obtained. It is shown that this mechanism is not suitable for the nucleus of our Galaxy due to the probable absence of a second massive black hole in the central region of the Galaxy.  相似文献   

14.
The formation of hypervelocity stars due to the dynamical capture of one component of a closebinary system by the gravitational field of a supermassive black hole (SMBH) is modeled. The mass of the black hole was varied between 106 and 109 M . In the model, the problem was considered first as a three-body problem (stage I) and then as an N-body problem (stage II). In the first stage, the effect of the inclination of the internal close-binary orbit (the motion of the components about the center of mass of the binary system) relative to the plane of the external orbit (the motion of the close binary around the SMBH) on the velocity with which one of the binary components is ejected was assessed. The initial binary orbits were generated randomly, with 10 000 orbits considered for each external orbit with a fixed pericenter distance r p . Analysis of the results obtained in the first stage of the modeling enables determination of the binary-orbit orientations that are the most favorable for high-velocity ejection, and estimation of the largest possible ejection velocities V max. The boundaries of the region of stellar disruption derived from the balance of tidal forces and self-gravitation are discussed using V max-r p plots, which generalize the results of the first stage of the modeling. Since a point-mass representation does not enable predictions about the survival of stars during close passages by a SMBH, there is the need for a second stage of the modeling, in which the tidal influence of the SMBH is considered. An approach treating a star like a structured finite object containing N bodies (N = 4000) enables the derivation of more accurate limits for the zone of efficient acceleration of hypervelocity stars and the formulation of conditions for the tidal disruption of stars.  相似文献   

15.
We present the results of population syntheses obtained using our “scenario machine.” The mass spectra of black holes in X-ray binary systems before and after the stage of accretion from an optical companion are obtained for various evolutionary scenarios. The results of the model computations are compared to observational data. The observational data are used to estimate the fraction of a presupernova’s mass that collapses into a black hole. This model can explain the formation of low-mass (2–4M) black holes in binary systems with optical companions. We show that the number of low-mass black holes in the Galaxy is sufficiently high for them to be detected. The population-synthesis results suggest that the vast majority of low-mass black holes are formed via the accretion-induced collapse of neutron stars. The percentage of low-mass black holes in binary systems that form due to accretion-induced collapse is 2–15% of the total number of black holes in binaries, depending on the evolutionary scenario.  相似文献   

16.
The formation and evolution of supermassive (102?1010 M ) black holes (SMBHs) in the dense cores of globular clusters and galaxies is investigated. The raw material for the construction of the SMBHs is stellar black holes produced during the evolution of massive (25?150M ) stars. The first SMBHs, with masses of ~1000M , arise in the centers of the densest and most massive globular clusters. Current scenarios for the formation of SMBHs in the cores of globular clusters are analyzed. The dynamical deceleration of the most massive and slowly moving stellar-mass (< 100M ) black holes, accompanied by the radiation of gravitational waves in late stages, is a probable scenario for the formation of SMBHs in the most massive and densest globular clusters. The dynamical friction of the most massive globular clusters close to the dense cores of their galaxies, with the formation of close binary black holes due to the radiation of gravitational waves, leads to the formation of SMBHs with masses ? 103 M in these regions. The stars of these galaxies form galactic bulges, providing a possible explanation for the correlation between the masses of the bulge and of the central SMBHs. The deceleration of the most massive galaxies in the central regions of the most massive and dense clusters of galaxies could lead to the appearance of the most massive (to 1010 M ) SMBHs in the cores of cD galaxies. A side product of this cascade scenario for the formation of massive galaxies with SMBHs in their cores is the appearance of stars with high spatial velocities (> 300 km/s). The velocities of neutron stars and stellar-mass black holes can reach ~105 km/s.  相似文献   

17.
We have used two astrometric methods developed at the Main Astronomical Observatory of the Russian Academy of Sciences—the method of apparent-motion parameters (AMP) and a direct geometrical method (DGM)—to derive the orbit of the star S2 around the Galactic center, and thereby the mass of the supermassive black hole at the Galactic center. The AMP method, which is based on measurements of the curvature of a fairly short orbital arc, is efficient if observational data on the relative radial velocity are available. The mass of the supermassive black hole was also estimated using astrophysical methods, based on the empirical relation between the masses of the supermassive black holes at the centers of galaxies and quasars and the radio and X-ray luminosities of these regions. We estimate the magnetic-field strength near the event horizon of the supermassive black hole at the Galactic center using a synchrotron self-absorption model.  相似文献   

18.
We have analyzed the evolution of the components of the unique massive binary system WR 20a, which consists of a Wolf-Rayet nitrogen star and an Of star with an extremely small separation. The estimated masses of the components are 83 and 82 M , which are among the highest stellar mass inferred. We have carried out numerical modeling of the evolution of the components, taking into account the mass loss due to the stellar wind inherent to massive stars. In a scenario in which the systemis detached from the time the components reach the main sequence until its present state, the initial component masses are inferred to be close to 110 M , if the initial masses of the stars were equal, or 120 and 100 M , if they were different. Currently, the components are evolved main-sequence stars, whose surfaces are relatively little enriched by helium. The further evolution of the system will result in one of the components filling its Roche lobe and evolution within a common envelope. As a result, the components may coalesce, leading to the formation of a single massive black hole the supernova explosion. Otherwise, depending on the masses of the resulting black holes, either a binary system with two black holes or two free black holes will be formed. In the latter case, gamma-ray bursts will be observed.  相似文献   

19.
Astronomical observations of last few years have presented a surprising evidence that the Universe at redshift of order 10 is densely populated by supermassive black holes (quasars), supernovae, and contains very large amount of dust. All these data are in conflict with the canonical theory of quasar and supernova formation. A model is discussed which in a simple and natural way solves all these problem. In addition it explains an existence of supermassive black holes in each large galaxy and even in small ones. An inverted picture of galaxy formation is suggested when primordial black holes serve as seeds of galaxy formation. Simultaneously the origin and properties of black hole binaries, sources of gravitational waves registered by LIGO are explained. As a by-product the model may lead to abundant cosmological antimatter even in the Galaxy.  相似文献   

20.
The current evolutionary stage of the binary systems IC 10 X-1 and NGC 300 X-1, which contain a massive black hole and a Wolf–Rayet star with a strong stellar wind that does not fill its Roche lobe, is considered. The high X-ray luminosity and X-ray properties testify to the presence of accretion disks in these systems. The consistency of the conditions for the existence of such a disk and the possibility of reproducing the observed X-ray luminosity in the framework of the Bondi–Hoyle–Littleton theory for a spherically symmetric stellar wind is analyzed. A brief review of information about the mass-loss rates of Wolf–Rayet stars and the speeds of their stellar winds is given. The evolution of these systems at the current stage is computed. Estimates made using the derived parameters show that it is not possible to achieve consistency, since the conditions for the existence of an accretion disk require that the speed of the Wolf–Rayetwind be appreciably lower than is required to reproduce the observedX-ray luminosity. Several explanations of this situation are possible: (1) the real pattern of the motion of the stellar-wind material in the binary is substantially more complex than is assumed in the Bondi–Hoyle–Littleton theory, changing the conditions for the formation of an accretion disk and influencing the accretion rate onto the black hole; (2) some of the accreting material leaves the accretor due to X-ray heating; (3) the accretion efficiency in these systems is nearly an order of magnitude lower than in the case of accretion through a thin disk onto a non-rotating black hole; (4) the intensity of the Wolf–Rayet wind is one to two orders of magnitude lower than has been suggested by modern studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号