首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A transversely isotropic thermo-poroelastic constitutive law is developed and implemented in the finite element code Code_Aster (EDF, France). It is then validated using an analytic solution for an inclined borehole in a transversely isotropic medium. A strategy for identifying the parameters of the transversely isotropic thermo-poroelastic model based on an inverse method is proposed on the basis of different laboratory tests. To demonstrate the efficiency and applicability of the model, it is then applied in a three-dimensional numerical model of an underground structure in a parameter sensitivity study. The results of the modelling highlight the importance of accounting for anisotropic phenomena when determining the dimensions of underground facilities. The whole approach is presented in the paper, from model development to application to 3D numerical modelling to an engineering case study.  相似文献   

2.
天然土体经历开挖卸荷应力路径后,其应力变形特性与常规加载应力路径条件下规律存在较大差异。目前常用土体本构模型大多建立在等向固结单向加载三轴试验基础上,没有考虑初始K0固结和开挖卸荷应力路径的影响。以剑桥模型为基础,借鉴关口-太田模型的建模思想,通过引入新的应力比参数,对p-q平面上屈服轨迹硬化轴进行旋转,调整弹性区范围,以反映初始K0固结的影响;再运用变换应力法将模型三维化处理,从而使模型可以描述土体三向不等向应力状态,最终得到一个能综合反映土体K0固结开挖卸荷应力-应变特性的三维弹塑性本构模型。通过和典型室内应力路径试验结果进行对比,验证了模型的合理性。  相似文献   

3.
多层支撑深基坑变形数值模拟正交试验设计研究   总被引:12,自引:3,他引:9  
孙树林  吴绍明  裴洪军 《岩土力学》2005,26(11):1771-1774
分析了多层支撑深基坑设计中的多个参数,对诸如挡墙和支撑的刚度指标等参数选取进行了分析。对深开挖进行了多因素多水平的有限元数值模拟,在此基础上进行了支撑刚度、位移柔度数、土体变性及强度参数等5因素的4水平正交试验设计,得出了深开挖中的各个参数对多层支撑深开挖变形的影响程度和各个参数的灵敏度。分析结果表明,墙体的位移柔度数是控制基坑开挖变形的主要参数,其他的参数诸如土体的弹性模量等对基坑变形的影响较小。  相似文献   

4.
The Barcelona basic model (BBM) successfully explained many key features of unsaturated soils and received extensive acceptance. It is also one of the few elastoplastic constitutive models for unsaturated soils that have been implemented within finite element codes and applied to the analysis of real boundary value problems. The BBM was proposed in incremental forms according to theories of soil plasticity in which individual aspects of the isotropic virgin behavior are controlled by multiple parameters, whereas at the same time, a single parameter controls more than one aspect of soil behavior. Although a variety of methods have been recently developed for calibrating model parameters for elastoplastic soil models, at present, there are no well‐established, simple, and objective methods for selecting parameter values in the BBM from laboratory tests. This has been one of the major obstacles to the dissemination of this constitutive model beyond the research context. This article presents an optimization approach especially developed for simple and objective identification of material parameters in the BBM. This is achieved by combining a modified state surface approach, recently proposed to model the elastoplastic behavior of unsaturated soils under isotropic stress conditions, with the Newton or quasi‐Newton method to simultaneously determine the five parameters governing isotropic virgin behavior in the BBM. The comparison between results using the proposed method and an existing method for the same laboratory tests was discussed from which the simplicity and objectivity of the proposed method were evaluated. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
The experimental evidence that cohesive and granular soils possess an elastic range in which the elasticity is both nonlinear and anisotropic—with stiffness and directional characteristics strongly dependent on stress and plastic strain (the so‐called ‘stress history’)—is given a formulation based on hyperelasticity. This is accomplished within the framework of elastoplastic coupling, through a new proposal of elastic potentials and a combined use of a plastic‐strain‐dependent fabric tensor and nonlinear elasticity. When used within a simple elastoplastic framework, the proposed model is shown to yield very accurate simulations of the evolution of elastic properties from initial directional stiffening to final isotropic degradation. Within the proposed constitutive framework, it is shown that predictions of shear band formation and evolution become closer to the existing experimental results, when compared to modelling in which elasticity does not evolve. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
郝峰 《探矿工程》2009,36(9):52-55
根据高压旋喷桩复合土钉墙研究现状,提出了有限元数值分析软件Plaxis8.2选择理由,论述了土体本构模型选择原则,支护结构材料模型选择原则,参数取值原则,分步计算过程原则。重点给出了高压旋喷桩、土钉、砼面层相关参数的计算公式。通过代表性的示例研究了高压旋喷桩贡献作用规律。最后通过基坑支护实例,介绍了该程序在高压旋喷桩复合土钉墙设计方面的应用和验证情况。  相似文献   

7.
The constitutive model frequently used in numerical calculations of tunnel excavation is linear-elastic perfectly plastic with a Mohr–Coulomb (MC) failure criterion. Generally, this leads to shallower and wider surface settlement troughs than those observed experimentally. It is therefore necessary to use adapted constitutive models for the design of underground works. In this paper, three constitutive models are implemented in a two-dimensional simulation of an underground excavation in plane strain: a linear-elastic perfectly plastic model (the MC model), an elastoplastic model with isotropic hardening [the hardening soil (HS) model, Schanz et al., Beyond 2000 in computational geotechnics, Balkema, Rotterdam, pp. 281–290, 1999] and an extension of this model which implies an evolution of the stiffness modulus in the small-strain range according to the strain level (the HS model with small-strain stiffness “HS-Small”, Benz, Small-strain stiffness of soils and its numerical consequences. Ph.D. thesis, Universitat Stuttgart, 189 pp., 2007). The study is based on the results of drained triaxial compression tests representing an overconsolidated clay (Gasparre, Advanced laboratory characterisation of London clay. Ph.D. thesis, Imperial College London, 598 pp., 2005); and is then applied to a shallow tunnel. The impact of the constitutive model is highlighted as well as the limits of the simplest constitutive model.  相似文献   

8.
A simple method called anisotropic transformed stress (ATS) method is proposed to develop failure criteria and constitutive models for anisotropic soils. In this method, stress components in different directions are modified differently in order to reflect the effect of anisotropy. It includes two steps of mapping of stress. First, a modified stress tensor is introduced, which is a symmetric multiplication of stress tensor and fabric tensor. In the modified stress space, anisotropic soils can be treated to be isotropic. Second, a TS tensor is derived from the modified stress tensor for the convenience of developing anisotropic constitutive models to account for the effect of intermediate principal stress. By replacing the ordinary stress tensor with the TS tensor directly, the unified hardening model is extended to model the anisotropic deformation of soils. Anisotropic Lade's criterion is adopted for shear yield and shear failure in the model. The form of the original model formulations remains unchanged, and the model parameters are independent of the loading direction. Good agreement between the experimental results and predictions of the anisotropic unified hardening model is observed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
一种土的非线性弹性本构模型参数的反演方法   总被引:2,自引:1,他引:1  
旨在提出一种土的非线性弹性本构模型参数反演的方法。以现今普遍实行的地基载荷试验为基础,依据遗传算法的组合优化理论,采用正演计算和遗传算法优化相结合的方式,建立了土层非线性弹性本构模型参数反演的方法;并依据某黄土场地地基载荷试验数据,实施了黄土土层非线性弹性本构模型参数反演的全过程。计算结果表明,所建立的方法可以实现土层非线性弹性本构模型中相互关联的多个参数的组合优化,并在对初始值要求较低的情况下,可以获得良好的参数反演精度。从而为土的变形特性分析和土与其中及相邻结构的共同作用分析,提供了较好的土体本构模型参数的确定方法。  相似文献   

10.
In this paper an extension of existing multilaminate soil models is presented, which can account for inherent and stress‐induced cross‐anisotropic elasticity in the small strain range and its dependency on the load history. In the multilaminate framework, material behaviour is formulated on a number of local planes in each stress point, and the macroscopic response of the material is obtained by integration of the local contributions. Strain‐induced anisotropy, which adds to the stiffness anisotropy inherently present in the material, is therefore intrinsically taken into account. Micro–macro relations between local parameters on plane level and global parameters on macroscopic level are obtained by the spectral decomposition of the global elastic compliance matrix. The model is implemented into a finite‐element code, and model predictions are compared with experimental data of triaxial tests on different soils involving small and large load cycles. The importance of cross‐anisotropic elasticity within the small strain range for predicting ground deformations in geotechnical boundary value problems is discussed at the example of an excavation problem. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
Summary  A new formulation is presented for deep circular tunnels in rock with cylindrical anisotropy. The formulation is an exact solution since it satisfies equilibrium, strain compatibility, and the anisotropic constitutive model. Complete solutions have been found for two scenarios: tunnel with excavation damage zone, and tunnel with rockbolt support. The solution is based on the assumption of a deep, circular tunnel in a medium with two homogeneous zones: an inner zone surrounding the tunnel, which is either isotropic or anisotropic, and an outer zone, for the remainder of the medium, which is isotropic. Plane strain conditions, elastic response of rock, rockbolts and support, and simultaneous excavation and support installation are also assumed. For tunnels surrounded by an excavation damage zone with reduced rock properties, the tangential stresses and the radial deformations at the tunnel wall are very sensitive to both the magnitude of stiffness reduction of the damaged rock and the size of the damaged zone. The effect of the rockbolts on the rock is approximated by treating the rockbolt-rock composite as a material with cylindrical anisotropy with stiffnesses related to the properties of the rock and rockbolts, and spacing of the rockbolts. Comparisons between the analytical solution and a numerical method show small differences and provide confidence in the approach suggested.  相似文献   

12.
敏感环境下基坑数值分析中土体本构模型的选择   总被引:15,自引:1,他引:14  
徐中华  王卫东 《岩土力学》2010,31(1):258-264
数值分析已成为敏感环境下基坑工程分析的最重要手段,其关键是选择合适的土体本构模型和计算参数。在分析了岩土数值分析中常用土体本构模型特点的基础上,通过算例较系统地对比了各类模型在基坑开挖数值分析中的适用性。敏感环境下的基坑工程需重点关注墙后土体的变形,从满足工程需要和方便实用的角度出发,建议采用能考虑黏土的塑性和应变硬化特征、能区分加荷和卸荷且刚度依赖于应力水平的硬化类弹塑性模型,如MCC模型和HS模型进行分析。具体工程实例的分析,表明了硬化类弹塑性模型在敏感环境下基坑开挖数值分析中的适用性。  相似文献   

13.
This article presents three-dimensional structural optimization in geotechnical engineering for foundations in granular soil. The general design (topology) of a shallow foundation is optimized with respect to its deformational behaviour within the service limit state. The SIMP (solid isotropic material with penalization) method is applied to optimize the distribution of foundation material. The soil is modelled as a hypoplastic material with a constitutive model suitable for optimization using finite element analysis. Two load cases are examined. The optimized topology is validated against two-dimensional optimization and 1g-model test results. The present study proves the applicability and shows the potential of topology optimization in geotechnical engineering.  相似文献   

14.
热黏弹塑性本构模型是描述土在温度(热)和时间(黏)耦合作用下的应力-应变关系的本构模型。在一些新型岩土工程诸如高放核废料地质处置、地热资源开发与贮存的建设中,需要同时考虑温度和时间对土的影响,所以建立一个热黏弹塑性本构模型具有理论和实际意义。将温度变化对黏土体积和强度参数的影响引入笔者之前提出的超固结土等向应力-应变-时间关系,建立了一个等向应力条件下的应力-应变-时间-温度关系。随后,基于该关系推导了屈服面硬化定律,并将其与超固结土统一硬化模型的屈服方程和流动法则结合,建立了超固结土的热黏弹塑性本构模型。最后,使用新模型预测室内试验,证明新模型能够反映时间和温度对土体积、一维压缩曲线和前期固结压力的耦合影响。  相似文献   

15.
Dual-continuum (DC) models can be tractable alternatives to explicit approaches for the numerical modelling of multiscale materials with multiphysics behaviours. This work concerns the conceptual and numerical modelling of poroelastically coupled dual-scale materials such as naturally fractured rock. Apart from a few exceptions, previous poroelastic DC models have assumed isotropy of the constituents and the dual-material. Additionally, it is common to assume that only one continuum has intrinsic stiffness properties. Finally, little has been done into validating whether the DC paradigm can capture the global poroelastic behaviours of explicit numerical representations at the DC modelling scale. We address the aforementioned knowledge gaps in two steps. First, we utilise a homogenisation approach based on Levin's theorem to develop a previously derived anisotropic poroelastic constitutive model. Our development incorporates anisotropic intrinsic stiffness properties of both continua. This addition is in analogy to anisotropic fractured rock masses with stiff fractures. Second, we perform numerical modelling to test the DC model against fine-scale explicit equivalents. In doing, we present our hybrid numerical framework, as well as the conditions required for interpretation of the numerical results. The tests themselves progress from materials with isotropic to anisotropic mechanical and flow properties. The fine-scale simulations show that anisotropy can have noticeable effects on deformation and flow behaviour. However, our numerical experiments show that the DC approach can capture the global poroelastic behaviours of both isotropic and anisotropic fine-scale representations.  相似文献   

16.
Finite-element modeling of a complex deep excavation in Shanghai   总被引:2,自引:0,他引:2  
The excavation of the north square underground shopping center of Shanghai South Railway Station is a complex deep excavation using the top-down construction method. The excavation has a considerable size and is close to the operating Metro Lines. In order to predict the performance of the excavation more accurately, 3D finite-element analyses are conducted to simulate the construction of this complex excavation. The effects of the anisotropic soil stiffness, the adjacent excavation, and zone excavation on the wall deformation are investigated. It is shown that the numerical simulation with anisotropic soil stiffness yields a more reasonable prediction of the wall deflection than the case with isotropic soil stiffness. The deformation of the shared diaphragm wall between two excavations is influenced by the construction sequence of the two excavations. The zoned excavation can greatly reduce the diaphragm wall deformation. However, only the zoned excavation at the first excavation stage affects the deformation of the walls significantly. When the depth of the excavation increases, the zoned excavation has minor effect on the deformation of diaphragm walls.  相似文献   

17.
The shape of an underground opening is a major factor influencing the stability of the underground excavation. Obtaining an optimized shape is significant in civil and mining engineering applications for increasing stability and reducing costs. This paper presents an updated method for finding the optimal shape of an underground excavation using the latest bi-directional evolutionary structural optimization (BESO) techniques considering material nonlinearities. Recent development in the BESO applications to underground excavation is discussed through illustrated examples. Details are given of the BESO method used to finding the optimal shape based on the global stiffness. The methodology of the stiffness based optimization techniques is described with examples of applications to underground excavation. Applications to underground void structures, such as cavern and tunnel, as well as underground solid structure such mine pillar are demonstrated. It is concluded that stiffness based optimization techniques are applicable to underground excavations and practical shape of an excavation can be generated as a result of the BESO application.  相似文献   

18.
Performance observation is a necessary part of the design and construction process in geotechnical engineering. For deep urban excavations, empirical and numerical methods are used to predict potential deformations and their impacts on surrounding structures. Two inverse analysis approaches are described and compared for an excavation project in downtown Chicago. The first approach is a parameter optimization approach based on genetic algorithm (GA). GA is a stochastic global search technique for optimizing an objective function with linear or non-linear constraints. The second approach, self-learning simulations (SelfSim), is an inverse analysis technique that combines finite element method, continuously evolving material models, and field measurements. The optimization based on genetic algorithm approach identifies material properties of an existing soil model, and SelfSim approach extracts the underlying soil behavior unconstrained by a specific assumption on soil constitutive behavior. The two inverse analysis approaches capture well lateral wall deflections and maximum surface settlements. The GA optimization approach tends to overpredict surface settlements at some distance from the excavation as it is constrained by a specific form of the material constitutive model (i.e. hardening soil model); while the surface settlements computed using SelfSim approach match the observed ones due to its ability to learn small strain non-linearity of soil implied in the measured settlements.  相似文献   

19.
This paper discusses the quality of the procedure employed in identifying soil parameters by inverse analysis. This procedure includes a FEM‐simulation for which two constitutive models—a linear elastic perfectly plastic Mohr–Coulomb model and a strain‐hardening elasto‐plastic model—are successively considered. Two kinds of optimization algorithms have been used: a deterministic simplex method and a stochastic genetic method. The soil data come from the results of two pressuremeter tests, complemented by triaxial and resonant column testing. First, the inverse analysis has been performed separately on each pressuremeter test. The genetic method presents the advantage of providing a collection of satisfactory solutions, among which a geotechnical engineer has to choose the optimal one based on his scientific background and/or additional analyses based on further experimental test results. This advantage is enhanced when all the constitutive parameters sensitive to the considered problem have to be identified without restrictions in the search space. Second, the experimental values of the two pressuremeter tests have been processed simultaneously, so that the inverse analysis becomes a multi‐objective optimization problem. The genetic method allows the user to choose the most suitable parameter set according to the Pareto frontier and to guarantee the coherence between the tests. The sets of optimized parameters obtained from inverse analyses are then used to calculate the response of a spread footing, which is part of a predictive benchmark. The numerical results with respect to both the constitutive models and the inverse analysis procedure are discussed. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
近年来在花岗岩残积土层运营地铁线路周边进行的工程建设逐渐增多,对盾构隧道安全的影响不容忽视。有限元法是评估临近施工对隧道影响的有效手段,但其可靠程度取决于土体本构模型和参数的合理选取。首先对花岗岩残积土硬化土模型参数取值现状进行评述,随后提出一种基于自钻式旁压试验的残积土硬化土模型参数反演方法,最后将反演的参数应用于深圳典型基坑上跨隧道施工的工程案例中进行验证分析,确定较为合理的残积土硬化土模型参数取值范围。研究结果表明,花岗岩残积土硬化土模型的强度参数可根据室内试验确定,刚度参数 、 和 是反演的关键参数,适用于工程实际的 : : 可取为1:1:3~1:1:5,根据比例不同, 取值范围在36~43 MPa之间。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号