首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In recent years, a new technique of ground improvement, which involves the combined use of impervious column and vertical drains, has been proposed and utilized in many field projects to accelerate consolidation and increase bearing capacity of soft soil ground. To cover the possible distribution patterns of impervious columns and vertical drains, 2 analytical models, including Model A with outward flow and Model B with inward flow within the soils, are proposed to predict the consolidation of combined composite ground by considering the following factors: (1) disturbance effects of both impervious columns and vertical drains, (2) the well resistance of vertical drains, and (3) time‐variant loadings. The average degrees of consolidation predicted by the proposed analytical models are compared with several existing solutions and then against the measured data in the literature. The consolidation behavior of a combined composite ground is investigated by the proposed analytical solutions. The results show that the combined use of impervious columns and vertical drains can remarkably accelerate the consolidation rate of soft soils compared with the single use of either of them. The average degrees of consolidation predicted by both analytical models agree well with the measured data. Compared with Model B, Model A usually predicts a faster consolidation rate because of a shorter drainage path. Many factors can influence consolidation behavior of combined composite ground, such as loading scheme, distribution patterns and the disturbance effects of impervious columns and vertical drains, and compression modulus ratio of impervious column to soil.  相似文献   

2.
Consolidation behavior of a soft mud treated with small cement content   总被引:1,自引:0,他引:1  
Soft mud can be found in many large size reclaimed lands. Such soils present extremely high settlement potential that needs to be alleviated by means of effective ground improvement techniques. Current knowledge on applying small cement content to reduce settlement potential of soft mud is limited. This study concerns the consolidation behavior and settlement potential of soft mud treated with small cement content. Based on the pH values of soft mud–cement mixtures, oedometer specimens with cement content of 6% were prepared for consolidation tests. The test results show that preconsolidation pressure is rapidly developed and secondary compression is reduced. The ratio of secondary compression index to compression index is also reduced, indicating a change in grain size characteristics. The coefficient of consolidation is increased for consolidation pressures smaller than the preconsolidation pressure. This indicates that treating the soft mud with a small cement content can be very effective for reducing settlements in cases where new loads are small to medium and the time for ground improvement is limited.  相似文献   

3.
Stiffened deep mixed (SDM) column is a new ground improvement technique to improve soft soil, which can be used to increase bearing capacity, reduce deformation, and enhance stability of soft soil. This technique has been successfully adopted to support the highway and railway embankments over soft soils in China and other countries. However, there have been limited investigations on its consolidation under embankment loading. This paper developed an analytical solution for the consolidation of embankment over soft soil with SDM column in which core pile is equal to or shorter than outer DM column. The consolidation problem was simplified as a consolidation of composite soil considering the load shear effect of core pile. The developed solution was verified by a comparison with the results computed by three-dimensional (3-D) finite element analysis. A parametric study based on the derived solution was conducted to investigate influence factors—length of core pile, diameter of core pile, diameter of SDM column, modulus of DM column, and permeability coefficient of DM column—on the consolidation behavior of SDM column-supported embankment over soft soil. The developed solution was applied to a case history of SDM column-supported embankment, and a good agreement was found between the predictions and the field measurements.  相似文献   

4.
大面积软弱地基浅层处理技术研究   总被引:7,自引:0,他引:7  
周健  姚浩  贾敏才 《岩土力学》2005,26(10):1685-1688
结合上海市某工程地基加固实践,对无填料振冲法加固饱和疏松粉细砂地基和井点降水联合低能量强夯法加固粉细砂及下卧扰动软粘土地基的两种技术进行了介绍,经过加固处理的地基均达到设计要求。通过对加固效果进行的分析得出一些有意义的结论,为类似地基处理提供了参考依据。  相似文献   

5.
With ports and other near shore structures expanding, and regions previously not considered prone to earthquakes being re-classified after recent earthquake events, ground improvement by stone columns is increasingly considered to improve loose or soft in situ soils. The Dry Bottom Feed Stone Column construction technique can be used under water if a double-lock stone delivery system is attached to the vibroprobe. The use of pneumatic stone transport from the barge into the vibroprobe receiver tank makes it possible to reach large water and treatment depths. Digital recording of all relevant operation parameters provides a very high level of quality assurance, including a diameter-over-depth profile for each stone column. An introduction to earthquake-resistant design of stone columns and guidelines for specifying Marine Stone Columns are given.  相似文献   

6.
软土地基上高填方刚性涵洞地基承载力分析   总被引:2,自引:0,他引:2  
陈保国  骆瑞萍  徐颖 《岩土力学》2013,34(2):353-358
山区沟谷软土地基上高填方刚性涵洞的应用较为广泛,然而,现有的计算理论对该类条件下涵洞地基承载力的认识还不够充分,对地基承载力提出过高的要求,反而为结构带来了不利影响。通过数值模拟和试验手段对涵洞的地基承载力进行深入分析。探讨基础埋深、宽度及软土固结对涵洞地基承载力的影响。研究表明,当基础埋深系数 5时,涵洞地基承载力特征值随着基础埋深的增大近似线性增加,当 5时,基础埋深对地基承载力特征值影响逐渐减小;但基础宽度对软土地基上刚性涵洞地基承载力特征值的影响甚小,实际工程中可不予考虑。此外,试验结果表明,固结度和固结压力对软土的黏聚力和内摩擦角有复合影响,固结度较大时,黏聚力和内摩擦角随固结压力的增大而明显增大。固结度和固结压力对内摩擦角的影响比对黏聚力的影响要大。高填方涵洞地基极限承载力随着软土固结度的增大而提高,当固结度达到90%时,地基极限承载力通常可提高36%以上;地基极限承载力随固结压力的增加呈非线性增大,其提高的幅度逐渐减小。  相似文献   

7.
真空降水联合强夯法在软弱路基处理中的应用研究   总被引:9,自引:0,他引:9  
周健  张健  姚浩 《岩土力学》2005,26(Z1):198-200
结合上海市某大面积软弱路基加固实践,对真空强排水联合低能量强夯动力固结法加固粉细砂和下卧扰动软粘土路基的技术进行了介绍,经过加固处理的地基均达到设计要求,通过对加固效果进行的分析,得出一些有意义的结论,为以后类似地基处理提供了参考依据。  相似文献   

8.
张明  王威  刘起霞  赵有明 《岩土力学》2013,34(11):3117-3126
采用Barron轴对称固结及大变形固结问题的某些简化与假定,推导建立了砂井地基大变形固结控制方程,利用建立的双层砂井地基大变形固结方程及编制的计算程序,通过引入软土渗透系数、有效应力与孔隙比之间的幂函数关系k =ced与e=a( )b,对瞬时加载下双层砂井地基固结性状进行算例计算。结果表明:(1)双层软土幂函数渗透关系及压缩关系中诸参数对双层砂井地基固结性状有重要影响:随着两层软土幂函数渗透关系中参数c1、c2的增加(渗透性增加)、或幂函数压缩关系中参数a1、a2的增加,各土层水平径向与竖向孔隙比减小更快,沉降发展速率与超静孔压消散速率也相应增加,且沉降发展速率快于孔压消散速率。(2)两层土在分界面处的孔隙比及平均超静孔压均出现明显的突变,将沿深度分布曲线分成形状不同的两段,表现出不同的固结性状。  相似文献   

9.
To meet the increasing demand for air transportation, Ministry of Land, Infrastructure and Transport had carried out the offshore extension project at Tokyo International Airport (Haneda Airport). The airport should be constructed to be perfectly level, but the ground conditions with very thick layers of super soft dredged soils and need for reclamation made the task very difficult. Because of large amount of consolidation settlement, ground improvement by combined vertical drain method was applied to decrease residual and differential settlement after opening of new airport. This paper is aimed to introduce the design concept and method of ground improvement for this project. In addition the result of ground improvement is keeping satisfactory performance for operating airport confirmed by long-term monitoring for airport facilities.  相似文献   

10.
刘飞  陈俊松  柏双友  姚燕雅 《岩土力学》2013,34(12):3453-3458
有机质中的纤维素和腐殖质会影响软土的力学性质,有机质含量越高,软土的力学特性就会越差。为研究高有机质软土的固结特性,通过对不同深度高有机质软土的渗透性、固结以及微、细观结构特征进行试验,并利用分解程度试验结果,分析高有机质软土的特殊渗透、固结和结构特征的形成机制。研究结果表明,不同埋深的高有机质软土渗透系数差别较大,且渗透固结速度较快,基本处于粉砂到粉质黏土数量级;0.5~1.8 m埋深的土层垂直渗透系数小于水平渗透系数,其余深度垂直渗透系数均大于水平渗透系数;分解程度的研究表明,分解程度直接影响高有机质软土的压缩固结特性,低分解程度的土层更容易发生塑性变形。由埋藏从浅到深,结构由絮凝结构逐渐向叠片结构转化,最后转变为集块结构。结合土体的分解程度分析,得出高有机质软土的分解程度高低直接影响高有机质软土的渗透、固结以及结构特性。  相似文献   

11.
固结与流变特性及其参数取值研究是软基上结构物长期沉降课题的重要组成部分。针对宁波轨道交通工程的两个典型土层,开展了基于GDS固结仪的流变固结试验,获得了土样的主固结与次固结性状参数。采用Gibson三元件流变模型结合Matlab软件的拟合功能,得到了土样的三元件流变模型参数。通过对试验结果进行分析总结,发现宁波软土的次固结过程表现出较明显的非线性。次固结系数Ca与压缩指数Cc近似符合 Ca/Cc=0.02±0.01。宁波软土的一维流变过程符合Gibson三元件流变模型规律,且其模量参数和黏滞系数均随固结压力的增大而增大。  相似文献   

12.
Columnar inclusion is one of the effective and widely used methods for improving the engineering properties of soft clay ground. This article investigates the consolidation behavior of composite soft clay ground using both physical model tests under an axial-symmetry condition and finite element simulations using the PLAXIS 2D program. It was determined that the final settlement and the rate of consolidation of the composite ground depended on the stress state. For an applied stress that is much lower than the failure stress, the final settlement of the composite ground was lower, and the consolidation was rapid. When the soil–cement column failed, the stress on the column suddenly decreased (due to strain-softening); meanwhile, the stress on the soil increased to maintain the force equilibrium. Consequently, the excess pore pressure in the surrounding clay increased immediately. The cracked soil–cement column acted as a drain, which accelerated the dissipation of the excess pore pressure. The consolidation of the composite ground was mainly observed in the vertical direction and was controlled by the area ratio, which is the ratio of the diameter of the soil–cement column to the diameter of the composite ground, a. The stress on the column was shown to be low for a composite ground with a high value of a, which resulted in less settlement and fast consolidation. For a long soil–cement column, the excess pore pressures in the surrounding clay and the column were essentially the same at a given consolidation time throughout the improvement depth. It is proposed that the soil–cement column and surrounding clay form a compressible ground, and the consolidation occurs in the vertical direction. The composite coefficient of consolidation (cv(com)) that was obtained from the physical model test on the composite ground can be used to approximate the rate of consolidation. This approximation was validated via a finite element simulation. The proposed method is highly useful to geotechnical engineers because of its simplicity and reliable prediction.  相似文献   

13.
Ground improvement is a complex issue, and accurately predicting the consolidation and settlement of soft soil with prefabricated vertical drain (PVD) presents a significant challenge. Recent laboratory and field tests have highlighted the influence of the variable discharge capacity of PVD and the non-Darcian flow behavior of soft soil on consolidation. However, existing theories have not yet considered these two factors simultaneously. To address this gap, a numerical solution for consolidation analysis incorporating non-Darcian flow and variable discharge capacity of PVD was developed and applied in a test area. The results of this study demonstrate the significant impact of both non-Darcian flow and variable discharge capacity on the consolidation rate. A comprehensive comparison between the findings of this numerical solution, the degenerate solution, and monitored data reveals clear differences. Notably, the non-Darcian exponent (s) and discharge capacity parameters (A3) were found to exert a greater influence on consolidation behavior compared to other factors. These findings provide valuable guidance for the design and implementation of following airport ground improvement strategies.  相似文献   

14.
ABSTRACT

Use of granular pile as a ground improvement technique in case of soft soils is one of the reliable and economic options. Analysis of a partially stiffened group of granular floating piles has been numerically assessed and presented here. Partial stiffening simply means that instead of using conventional material for making the granular pile (GP) in its full length, top region is replaced partially by some suitable material, having better mechanical properties, i.e. higher deformation modulus. Various normalised parameters like settlement influence factor for top of GP, settlement interaction factor, settlement reduction factor, percentage load shared by the base and shear stress distribution along the length of the granular pile are evaluated. The settlement influence factor for top of GP is found to decrease with the increase in the values of the stiffening parameters. The interfacial shear stresses get redistributed along the length of the granular pile.  相似文献   

15.
Liu  Yang  Zheng  Jun-Jie  Zhao  X.  You  Lingyun 《Acta Geotechnica》2023,18(2):1093-1110
Acta Geotechnica - Electro-osmotic consolidation is taken as a valid and practical approach for soft ground improvement, and it is of vital significance to study the consolidation behaviour of...  相似文献   

16.
软土中盾构隧道施工不可避免地扰动周围地层,进而引起地面沉降,沉降过大时将危及邻近建(构)筑物的正常使用和结构安全。全面理解盾构隧道施工引起的地面沉降的影响因素及对沉降的准确预测,对于减少施工环境危害十分重要。考虑盾构压重后,引入Mindlin解计算盾构下卧土层中的附加应力,采用单向压缩分层总和法计算盾构下卧土层的总固结沉降,由盾构掘进速度及停机时间确定附加应力作用时间后,应用太沙基一维固结理论计算在该作用时间内的固结沉降,应用Peck公式建立了盾构下卧土层沉降与地面沉降的关系,并以杭州庆春路过江隧道地面沉降的实测验数据对上述理论进行了验证。分析表明,考虑盾构掘进速度及停机时间的地面沉降计算理论基本合理;盾构掘进速度及停机时间会对隧道施工引起的地面沉降产生显著影响;在其他施工条件相同的前提下,提高盾构掘进速度和减少停机时间有利于减少地面沉降。  相似文献   

17.
天津滨海地区晚新生代地层自然固结与地面沉降研究   总被引:1,自引:0,他引:1  
天津滨海地区地处渤海湾西岸,晚新生代沉积了巨厚的松散沉积物。地下水位下降、地层自然固结、地表载荷的加速增长等复合因素造成了严重的地面沉降。利用在天津滨海新区塘沽地区施工的一眼1 226 m全取芯钻孔,通过原状样品测试分析,系统研究了晚新生代土层的物理力学性质、黏性土固结特征,并结合欠固结黏性土层沉降量计算等方法阐述了土层固结状态空间特征,探讨了土层固结特征与地面沉降的相关关系。结果表明:该地区0~100 m深度土层具有低天然密度、高孔隙比、高含水率、高压缩性等特点,表现出软土的性质,在地表荷载增大的情况下,易发生地面沉降;100~550 m的黏性土大都处于超固结和微超固结状态,主要是由于过去地下水的大量开采造成的;550 m以下的黏性土多为正常固结,局部存在欠固结黏性土夹层。钻孔中存在合计约218 m的欠固结黏性土夹层,这些欠固结黏性土夹层在自重应力下的最终沉降量为1 985 mm,沉降量最大的土层对应于第1、6含水组,分别达614 mm和665 mm,这一沉降过程完成所需时间为数十年甚至上百年。  相似文献   

18.
考虑流变与固结效应的桩筏基础-地基共同作用分析   总被引:2,自引:0,他引:2  
栾茂田  崔春义  杨庆 《岩土力学》2008,29(2):289-295
土的流变性与地基固结的综合作用,导致了上部结构与地基变形的时效性,并呈现出明显的非线性,对桩筏基础与地基共同作用的工作机理及其工作性能产生重要影响。为此,采用弹黏塑性流变模型考虑土的流变特性,通过有限元方法数值求解Biot耦合固结方程,对桩筏基础与地基共同作用的时间效应问题进行了非线性数值分析。通过算例计算,对加载后桩筏基础荷载分配和沉降特性及下覆土层中孔隙水压力的扩散和消散规律进行了探讨。研究表明,地基孔隙水压力的增长和消散不仅具有Mandel-Cryer效应,而且依赖于土的流变变形,尤其在排水条件较差时更为明显。因此,在分析桩筏基础内力变形的时效性时必须考虑土的流变性与地基的固结作用的联合效应。  相似文献   

19.
吹填细砂软弱地基处理试验研究   总被引:2,自引:0,他引:2  
结合实际工程情况,针对吹填细砂及下卧软黏土地基的工程性质,对强夯-降水联合法和无填料振冲法结合整体塑料排水板加固此类地基的适用性进行了试验研究。在试验的基础上,确定了振冲施工工艺的振冲间距、上拔间距等振冲大面积施工参数,同时分析了强夯过程中下卧黏性土中孔隙水压力的增长消散过程及影响因素,得到了一些有益的结论,对类似工程有一定的借鉴意义。  相似文献   

20.
The application of Pastor–Zienkiewicz constitutive model for sands to dynamic consolidation problems is presented in this paper. This model is implemented in a coupled code formulated in terms of displacements for both solid and fluid phases (u?w formulation), which is firstly compared with u?pw formulation for some simple examples. Its range of validity, previously established for elastic problems and harmonic loading, is explored. Once the suitability of the u?w formulation has been ascertained for this kind of dynamic problems in soils, one‐ and two‐dimensional (plane strain) dynamic consolidation numerical examples are provided, aiming to give some light into the physics of this ground improvement technique. A ‘wave of dryness’, observed at the soil surface during the impact in field cases, is numerically reproduced and justified. Some hints on the influence of the loading zone size are also given. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号