首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
An IRSL age of 17.0 ± 2.2 ka (and a “mean age” of ca. 19 ka) reported by Grapes et al. [Grapes, R., Rieser, U., Wang, N. Optical luminescence dating of a loess section containing a critical tephra marker horizon, SW North Island of New Zealand. Quaternary Geochronology 5(2-3), 164–169.] for the Kawakawa/Oruanui tephra, and other ages associated with a loess section in New Zealand are untenable: age data presented are inconsistent, no formal statistical treatments or error determinations were undertaken in age analysis, and the ages proposed are seriously at odds with multiple radiocarbon age determinations on tephra sequences bracketing the Kawakawa/Oruanui tephra and with palaeoenvironmental evidence elsewhere for the time period concerned. We suggest that the bulk polymineral IRSL ages on the tephra and encapsulating loess deposits were underestimated in part because of contamination of the loess by the integration of younger materials during slow deposition and continuous modification by upbuilding pedogenesis. Single-grain luminescence assays may reveal such contamination. A 14C-based age of ca. 27 ± 1 ka cal BP (2σ), reported in 2008, currently remains the best estimate for the age of eruption of the Kawakawa/Oruanui tephra.  相似文献   

2.
《Quaternary Geochronology》2008,3(1-2):99-113
The Chinese Loess Plateau (CLP) is of major interest to Quaternary geologists because it represents an important terrestrial archive of palaeoclimatic fluctuations. Previous multiple-aliquot luminescence dating studies of Chinese loess mainly used thermoluminescence (TL) and infrared stimulated luminescence (IRSL) signals of polymineral fine-grains; these are known to be subject to anomalous fading and thus will tend to yield age underestimations. In this paper we investigate whether the blue-light stimulated luminescence (BLSL) signals from 63 to 90 μm quartz grains extracted from three western Chinese loess sites (Zhongjiacai, Le Du and Tuxiangdao) can be used to establish a reliable chronology. The single-aliquot regenerative-dose (SAR) procedure is used for the equivalent dose (De) determinations and the suitability of our measurement protocol is confirmed by dose recovery tests. The influence of an IRSL signal on the quartz De measurements derived from BLSL has been investigated. From these results we conclude that an IRSL contamination, expressed as an IRSL/BLSL ratio, of up to 10% can be accepted before the values of De are significantly affected. All three sites yield stratigraphically consistent and spatially highly reproducible optical ages up to about 50–70 ka. At the Tuxiangdao site a marked hiatus in the record is identified between ∼20 and ∼30 ka; this remained undetected in previous studies and clearly highlights the importance of high-resolution optical dating in Chinese loess research. The optical ages presented in this work provide more evidence for episodic loess deposition and varying loess accumulation rates in the western part of the CLP. Our study seems to confirm the potential of optically stimulated luminescence (OSL) dating using the SAR procedure applied to the very fine sandy quartz fraction in Chinese loess back to ∼40–50 ka (∼120–150 Gy).  相似文献   

3.
The arguments presented by Lowe et al. [Lowe, D.J., Wilson, C.J.N., Newham, R.M., Hogg, A.G., 2010. Dating the Kawakawa/Oruanui eruption: comment on “optical luminescence dating of a loess section containing a critical tephra marker horizon, SW North Island of New Zealand” by R. Grapes et al. Quaternary Geochronology 5(4), 493–496] against our IRSL results, which suggested that the widespread Kawakawa tephra (KkT) could be considerably younger than the generally accepted 27.1 ka cal BP age, are unsustainable. We discuss the points raised by Lowe et al., in terms of: 1) Presentation and analysis of luminescence ages (comparison between reporting and error margins of luminescence and 14C ages, statistical treatment of age data); 2) Possible sources of error (“upbuilding pedogenesis” and its affect on U and Th distribution in loess, effect of biotubation, variation of K in loess, single grain luminescence dating of quartz, probability of luminescence age underestimation in dating tephra); 3) Stratigraphic and paleoenvironmental considerations (ages of tephras overlying KkT, timing of the end of Ohakea loess deposition and its distribution; 4) Radiocarbon-based ages of KkT (problems with the currently accepted 14C 27.1 ka cal BP age of KkT). We stress that our study was not to establish a new benchmark age for the KkT, but to open debate about the currently accepted benchmark age of the KkT, which we deem to be erroneous.  相似文献   

4.
We present the results of K-feldspar IRSL dating of the four lower terraces (T3–T6) of the Portuguese Tejo River, in the Arripiado-Chamusca area. Terrace correlation was based upon: a) analysis of aerial photographs, geomorphological mapping and field topographic survey; b) sedimentology of the deposits; and c) luminescence dating. Sediment sampled for luminescence dating gave unusually high dose rates, of between 3.4 and 6.2 Gy/ka and, as a result, quartz OSL was often found to be in saturation. We therefore used the IRSL signal from K-feldspar as the principal luminescence technique. The K-feldspar age results support sometimes complex geomorphic correlations, as fluvial terraces have been vertically displaced by faults (known from previous studies). Integration of these new ages with those obtained previously in the more upstream reaches of the Tejo River in Portugal indicates that the corrected K-feldspar IRSL ages are stratigraphically and geomorphologically consistent over a distance of 120 km along the Tejo valley. However, we are sceptical of the accuracy of the K-feldspar ages of samples from the T3 and T4 terraces (with uncorrected De values >500 Gy). In these cases the Dose Rate Correction (DRC) model puts the natural signals close to luminescence saturation, giving a minimum corrected De of about 1000 Gy, and thus minimum terrace ages; this may even be true for those doses >200 Gy. Luminescence dating results suggest that: T3 is older than 300 ka, probably ca. 420–360 ka (~Marine Isotope Stage [MIS]11); T4 is ca. 340–150 ka (~MIS9-6); T5 is 136–75 ka (~MIS5); T6 is 60–30 ka (MIS3); an aeolian sand unit that blankets T6 and some of the older terraces is 30–≥12 ka. Collectively, the luminescence ages seem to indicate that regional river downcutting events may be coincident with periods of low sea level (associated, respectively, with the MIS10, MIS6, MIS4 and MIS2).  相似文献   

5.
A sand layer, interpreted as a hyperconcentrated flow deposit, was found interbedded between loess on a Yellow River terrace in Hukou, Shaanxi, China. The site is known as the Longwangchan Palaeolithic site. The deposits from the terrace were dated using optically stimulated luminescence (OSL). Two samples from the sand layer were dated to 30 ± 2 and 33 ± 3 ka using coarse-grained (CG) quartz, and to 82 ± 7 and 94 ± 5 ka using fine-grained (FG) quartz, respectively. The CG quartz OSL ages are believed to be reliable on the basis of the OSL ages of the bracketing loess samples. The overestimation of the FG quartz OSL ages of the sand samples is explained in terms of hyperconcentrated flow processes during sediment transport and deposition. The large difference between the CG and FG quartz OSL ages of the sand samples helps to better understand the formation of the hyperconcentrated flow deposit. The hyperconcentrated flow deposit in this study indicates an extreme river flood occurring at ~30 ka in this area. In addition, the stone artifacts found in the lower loess layer overlying the bedrock of the terrace were dated to ~47 ka.  相似文献   

6.
In the present study, the uppermost 3 cm of muddy, seabed sediment was collected from a deep-sea sediment core, drilled from a water depth of 4 km, near the deepest site of the Mediterranean Sea, outside Pylos, Greece. The core was divided into 7 layer samples, each 3–4 mm thick, in order to get an independent age assessment for each one using luminescence dating; from polymineral coarse grains in the range 30–60 μm. Between 11 and 22 aliquots were measured for each sample using the optically stimulated luminescence, single-aliquot regenerative-dose analysis. The estimated mean equivalent dose values had an uncertainty less than 3% and resulted in optical ages ranging from 3.5 to approximately 5 ka, with uncertainties lying between 5.5 and 7.4%. Multiple-aliquot, thermoluminescence-based, additive-dose, total bleaching approach provided equivalent doses with typical errors of 10–15% and ages in the range of 3.6 and 9.4 ka, with uncertainties up to 17%. Single-aliquot optical ages are shown to be relatively successful, due to their consistency with AMS 14C radiocarbon ages, obtained from Planktonic foraminifera from the same core. Luminescence dates for the topmost 1.5 cm indicate a substantial mix and post burial disturbance of the surface sediment. Below the topmost 1.5 cm, both luminescent approaches indicate ages which increase smoothly with depth. The concordant OSL and TL age estimates for the sample O5, in conjunction with specific luminescence properties and its major-element geochemical chemistry content, suggest that it was heated during the Santorini volcanic eruption. Deposition rates of 8.6–18.9 cm over 10 ka below the sample O5, provided by optical ages, exhibit an excellent level of agreement with the accumulation rate of 7–18 cm over 10 ka at the sea bottom, already reported for the site under study.  相似文献   

7.
Qinghai Lake is situated in the northeast of the Qinghai-Tibetan Plateau (QTP). Its size and proximity to the junction of three major climate systems make it sensitive to climate changes. Some investigations on shorelines of Qinghai Lake suggested highstands during MIS 3, but to what extent the lake level was higher than today is yet undetermined. Others proposed that the maximum highstands probably dated to MIS 5. It has also been shown that the lake level 120 m higher than today occurred at around 12 ka. Most of these previous ages were obtained using 14C dating or multiple-aliquot IRSL/OSL dating. For 14C dating, because of the dating limit (<40 ka) and the lack of suitable dating materials in this arid area, it is difficult to establish reliable chronological control. In the present study, seven samples collected from lacustrine deposits (five samples) and sand wedges (two samples) were dated using quartz optically stimulated luminescence (OSL) with the single aliquot regenerative-dose (SAR) protocol. OSL dating results showed that (1) the lake had experienced two high lake levels, one was in MIS 5 and another in early to middle MIS 3; (2) no evidence of high lake levels in MIS 4 has been found; (3) the alluvial gravels, whose surface is at an elevation of ~3246 m, were formed at least 28.8 ± 2.3 ka ago, and the widespread sand wedges within the alluvial gravels were formed during the period of 15.1–28.8 ka, which implied that the lake level had not reached an elevation of ~3240 m after 28.8 ± 2.3 ka.  相似文献   

8.
We present sub-crystal-scale 238U–230Th zircon ages and 238U–230Th–226Ra plagioclase ages of bulk mineral separates from the Holocene (2.0–2.3 ka) eruptions of the Rock Mesa (RM) and Devil's Hills (DH) rhyolites at South Sister volcano, Oregon. We link these age data with sub-crystal trace-element analyses of zircon and plagioclase to provide insight into the subvolcanic system at South Sister, as an example of a small-volume continental arc volcano. Our results document the presence of coeval yet physically-distinct regions within the magma reservoir and constrain the timescales over which these heterogeneities existed. Zircons from the RM and DH dominantly record ages from 20 to 80 ka, with some grains recording ages > 350 ka, whereas plagioclase records 230Th–226Ra ages of 2.3–6.8 ka (RM) and 4.0–9.6 ka (DH-3) and a 238U–230Th age of 10 ± 34 ka (DH-3). We interpret zircons with ages < 350 ka as antecrysts inherited from a longer lived upper-crustal magma reservoir from which the rhyolites were generated, based on crystallization ages coeval with earlier periods of silicic volcanism at South Sister, the undersaturated nature of the RM and DH magmas with respect to zircon, and Ti-in-zircon temperatures consistent with low-temperature (< 815 °C) crystallization. In contrast, plagioclase ages are near the eruption age and dominantly preserve information about the recent (< 10 ka), higher-temperature evolution of the host magmas. Although zircon and plagioclase record different crystallization ages, each phase crystallized over the same time period in the RM compared to DH rhyolites. Linking these crystal age data with sub-crystal trace-element analyses demonstrates that zircon and plagioclase have distinct trace-element characteristics between eruptions, which require that the RM and DH crystals (and therefore magmas) were derived from distinct regions that had evolved independently for > 50 ka within a heterogeneous magmatic system and coexisted as physically-distinct, dominantly-liquid bodies prior to eruption. Thus, we favor a model where rhyolites are generated in independent batches by accumulation of evolved liquids in a heterogeneous, largely crystalline reservoir. Similarities in crystal age and chemical data to that at other young silicic systems (e.g., Mount St. Helens, Okataina Caldera Complex) suggest that this model may be more generally applicable to silicic magmas.  相似文献   

9.
A 5.6-m-long lake sediment core from Bear Lake, Alaska, located 22 km southeast of Redoubt Volcano, contains 67 tephra layers deposited over the last 8750 cal yr, comprising 15% of the total thickness of recovered sediment. Using 12 AMS 14C ages, along with the 137Cs and 210Pb activities of recent sediment, we evaluated different models to determine the age–depth relation of the core, and to determine the age of each tephra deposit. The selected age model is based on a mixed-effect regression that was passed through the adjusted tephra-free depth of each dated layer. The estimated age uncertainty of the 67 tephras averages ±105 yr (95% confidence intervals). Tephra-fall frequency at Bear Lake was among the highest during the past 500 yr, with eight tephras deposited compared to an average of 3.7/500 yr over the last 8500 yr. Other periods of increased tephra fall occurred 2500–3500, 4500–5000, and 7000–7500 cal yr. Our record suggests that Bear Lake experienced extended periods (1000–2000 yr) of increased tephra fall separated by shorter periods (500–1000 yr) of apparent quiescence. The Bear Lake sediment core affords the most comprehensive tephrochronology from the base of the Redoubt Volcano to date, with an average tephra-fall frequency of one every 130 yr.  相似文献   

10.
Palaeolimnological studies together with geomorphological investigations of exposed lacustrine sections on the Tibetan Plateau provided valuable palaeoclimate records. Radiocarbon dating is the most commonly used method for establishing chronologies of lake sediments. However, 14C dating of such sediments could be problematic due to the lack of organic matter or a reservoir effect, which commonly appears in radiocarbon ages of lacustrine sediments from the Tibetan Plateau. OSL dating is an alternative for dating the lake sediments and also provides the opportunity to independently test radiocarbon chronologies. The current study tries to compare OSL and 14C dating results in order to evaluate the reservoir effect of 14C dating, and then based on quartz OSL dating and stratigraphic analysis, to construct the chronostratigraphy of a lacustrine sedimentary sequence (TYC section), an offshore profile from Tangra Yumco lake on the southern Tibetan Plateau. Results suggest that: (1) it is possible to obtain robust OSL age estimates for these lake sediments and the OSL ages of the three samples range from ca. 7.6 ka to ca. 2.3 ka; (2) The discrepancy between the OSL and 14C ages is ca. 4–5 ka, which possibly results from the age overestimate of 14C dating due to a reservoir effect in the studied lake; (3) the chronostratigraphy of TYC section and sedimentological environmental analysis show a large lake with a lake level distinctively above the present during ca. 7.6–2.7 ka indicating a wet mid-Holocene in the study area.  相似文献   

11.
We have used cosmogenic 3He to date pre- and post-collapse lava flows from southwestern Fogo, Cape Verdes, in order to date rift zone magmatic reorganisation following the lateral collapse of the flank of the Monte Amarelo volcano. The post-collapse flows have exposure ages ranging from 62 to 11 ka. The analysis of multiple flow tops on each lava flows, often at different elevations, provides an internal check for age consistency and the exposures ages conform with stratigraphic level. The exposure ages suggest that volcanic activity along the western branch of the triple-armed rift zone was more or less continuous from before 62 ka to approximately 11 ka. The absence of magmatic activity for the last 11 kyr reflects a structural reconfiguration of the volcano and may be related to renewed flank instability. This volcanic hiatus is similar in duration to that observed in the Canary Islands. Replicate 3He exposure ages of a pre-collapse flow (123.0 ± 5.2 ka) brackets the time of the Monte Amarelo collapse between 62 ka and 123 ka. Reproducible cosmogenic 3He exposure ages of less than 123 ka from flows away from major erosion features demonstrates that the technique is a viable alternative to the radiocarbon, K/Ar and 40Ar/39Ar chronometers for dating recent volcanism in arid climate zones.  相似文献   

12.
In-situ cosmogenic 3He exposure ages of pyroxene phenocrysts from basalts from the Upper Neostromboli formation in southwest Stromboli date its eruption at 7.0 ± 0.3 ka (1σ, n = 3, Ginostra site) and 6.8 ± 0.2 ka (1σ, n = 10, Timpone del Fuoco site) respectively. Correlation of our new data to previous K/Ar and palaeomagnetic ages from the northwestern Neostromboli phase suggests that it erupted within a confined period between roughly 6 and 14 ka. The low uncertainty on the 3Hecos ages as well as on individual exposure ages (4.4–8.7%) demonstrates that 3Hecos exposure dating is a viable tool for dating Holocene basalt lavas. The ages compare favourably to uncertainties obtained for radiocarbon dating of similar rocks.  相似文献   

13.
The Alleret maar (Massif Central, France) is part of the few Western European early middle Pleistocene lacustrine sequences. In the AL3 core several new ash layers were recovered in the 10 first meters of the sedimentary filling. We obtained three 40Ar/39Ar ages, which range from 683 ± 5 ka (MSWD: 1.2, n = 17) to 722 ± 6 ka (MSWD: 3.2, n = 18). All the studied ash layers belong to the Super-Besse eruptive cycle of the Sancy volcano. Based on the chronostratigraphy that we have derived we estimate that the age of the main eruption could correspond to the Sancy volcano caldera formation at 725 ka close to the end of MIS 18 and that the Super-Besse explosive episode duration lasted only about 40 ka. The time framework we build evidences that the Alleret lacustrine sequence represents a time interval of probably 180 ka spanning from MIS 18 to MIS 14. This sequence offers the first well constrained comparison between terrestrial environmental history and that preserved in marine sediments during the Mid-Pleistocene Revolution.  相似文献   

14.
A whole emu egg, with infilling sediment believed to be coeval with egg laying and burial, was found in late Pleistocene lunette sediments near Lake Eyre, central Australia. The stratigraphic context and initial amino acid racemization (AAR) results suggested an age between 25 ka and 35 ka, ideal for a multiple cross-dating comparison. The sediment infilling the egg provided material for luminescence dating that minimized problems of association. Age estimations from AAR, 14C and U series methods were obtained from the eggshell and optically stimulated luminescence (OSL) of the infilling sediment. All methods agreed within their respective dating uncertainties confirming the utility of all four methods. They indicate an age for the emu egg of 31.24 ± 0.34 ka.  相似文献   

15.
We present a new speleothem record of atmospheric Δ14C between 28 and 44 ka that offers considerable promise for resolving some of the uncertainty associated with existing radiocarbon calibration curves for this time period. The record is based on a comprehensive suite of AMS 14C ages, using new low-blank protocols, and U–Th ages using high precision MC-ICPMS procedures. Atmospheric Δ14C was calculated by correcting 14C ages with a constant dead carbon fraction (DCF) of 22.7 ± 5.9%, based on a comparison of stalagmite 14C ages with the IntCal04 (Reimer et al., 2004) calibration curve between 15 and 11 ka. The new Δ14C speleothem record shows similar structure and amplitude to that derived from Cariaco Basin foraminifera (Hughen et al., 2004, 2006), and the match is further improved if the latter is tied to the most recent Greenland ice core chronology (Svensson et al., 2008). These data are however in conflict with a previously published 14C data set for a stalagmite record from the Bahamas — GB-89-24-1 (Beck et al., 2001), which likely suffered from 14C analytical blank subtraction issues in the older part of the record. The new Bahamas speleothem ?14C data do not show the extreme shifts between 44 and 40 ka reported in the previous study (Beck et al., 2001). Causes for the observed structure in derived atmospheric Δ14C variation based on the new speleothem data are investigated with a suite of simulations using an earth system model of intermediate complexity. Data-model comparison indicates that major fluctuations in atmospheric ?14C during marine isotope stage 3 is primarily a function of changes in geomagnetic field intensity, although ocean–atmosphere system reorganisation also played a supporting role.  相似文献   

16.
The luminescence characteristics of volcanic plagioclase from an andesitic tephra (Hakone-Tokyo pumice, Hk-TP) from Japan were studied in order to assess if optical dating of plagioclase could be applied to Quaternary tephra. The tephra was shown to contain two kinds of plagioclase grains, labradorite which had a smooth surface and bytownite with a rough surface. The aliquots consisting of smaller grains contained more bytownite; these showed higher luminescence sensitivity and a higher fading rate compared to the larger-grained aliquots containing only labradorite. The fading rates of both OSL and IRSL signals were similar for each grain size. However, the OSL signal showed severe thermal transfer which made it difficult to use for dating. Using the IRSL signal from grains ranging from 150 to 212 μm, an age was obtained in agreement with the independent evidence, once a small fading correction had been applied.  相似文献   

17.
The stratigraphic chronology of Yellow River terraces was investigated and studied in Lanzhou Basin, western Chinese Loess Plateau. The optically stimulated luminescence (OSL) dating results show that terraces T1, T2 and T3 formed at 8 ka, 20 ka and 70 ka, respectively. Lateral accretion of the riverbed facies gravel sediments occurred during interglacial periods while vertical aggradations of the terrace sediments deposited predominantly under cold and dry glacial period. A thick layer of aeolian loess with a basal age about 35 ka indicates a remarkable drop of air temperature and a dry, cold climate. The temporal correlation between terrace formation and tectonic movement has not yet been established in this research, but the stratigraphic chronology of the terrace sections provides the timing of the terrace formation, the incision rate of the Yellow River, and the slip rate of the fault horizon.  相似文献   

18.
U–Pb dating is increasingly used to date speleothems that are too old for precise U–Th disequilibrium dating; however there is little data that can independently validate its application to such material. This study presents U–Pb ages for speleothems from the Spannagel Cave in the Austrian Alps including a detailed comparison with U–Th ages from an unusually U–rich sample that yields precise ages by both methods. Sample SPA4 is a flowstone with three growth phases separated by distinct hiatuses. For the youngest growth phase the U–Pb and U–Th ages are 267 ± 1 ka and 267 ± 5 ka respectively; the middle growth phase is 291 ± 1 versus 295 ± 11 ka while for the oldest growth phase a single sub-sample, assuming the same initial Pb composition as for the younger phases, yields an age of 340 ± 2 ka compared to 353 ± 9 ka by U–Th. Correlation of these ages with the marine isotope stages confirms that these speleothems grew during glacial stages as suggested by previous work on the same sample. Sample SPA 15 has U–Th isotopic compositions indistinguishable from secular equilibrium; the U–Pb data on the main growth phase of this sample give an age of 551 ± 10 ka, whereas a single analysis from the oldest phase suggests it may be on the order of 40 ka older. This detailed comparison of U–Pb and U–Th ages provides important support for the potential validity of the U–Pb method in older samples beyond the range of U–Th.  相似文献   

19.
We have measured 36Cl in three rock surfaces of the Yenicekale building complex in Hattusha (Bo?azköy, Turkey). Hattusha was the capital of Hittite Empire which lasted from about 1650/1600 to 1200 BC. At Yenicekale, Hittite masons flattened the summit of an outcropping limestone knoll to form an artificial platform as the foundation for a building. Next they built a circuit wall along the lateral precipices of the flattened bedrock platform. We took one sample from the limestone bedrock platform and two samples from limestone building blocks of the circuit wall for cosmogenic 36Cl analysis. Calculated exposure ages are 20 ± 1 ka for the sample from the bedrock platform and 24 ± 1 ka and 52 ± 2 ka for the circuit wall blocks. These exposure ages are significantly older than the age expected based on the estimated time of construction between 3.2 ka and 3.7 ka. We conclude that the sampled surfaces contain significant inherited cosmogenic 36Cl. We cannot directly determine exposure ages for the building complex based on these three samples. On the other hand we may use the measured concentrations to determine how much of the rock was removed from the platform during flattening. To this end we modeled the variation of 36Cl production with depth at Yenicekale using the results from the bedrock sample. We conclude that the Hittite masons removed only around 3 m from top of the limestone block. This means that the volume of rock removed from the bedrock platform is significantly less than the volume in the circuit wall atop the platform. They did not gain enough rock from this flattening to make the building. In agreement with this, the first results of our detailed microfacies analysis indicate that many of the building blocks are not of the same facies as the underlying limestone and must have been quarried elsewhere. Although we were not able to exposure date the Yenicekale complex due to the presence of inherited 36Cl, our data suggest that Hittite masons excavated (most of) the building stones not at Yenicekale, but in quarries outside of Hattusha and then transported them to the construction site. These quarries have not yet been identified.  相似文献   

20.
The Nihewan Formation, consisting of thick fluvio–lacustrine sediments with abundant mammalian faunas and Paleolithic remains, is widely distributed in the Nihewan Basin, northern Hebei Province, China. In this study the fluvio–lacustrine sediments of the Nihewan Formation and the loess–paleosol sequence evident in the Haojiatai Section were dated by recuperated OSL (ReOSL) of fine-grained quartz (Wang, X.L., Lu, Y.C., Wintle, A.G., 2006a. Recuperated OSL dating of fine-grained quartz in Chinese loess. Quaternary Geochronology 1, 89–100.). The preliminary ReOSL dating results show that: (i) the loess–paleosol sequence in the upper part of the profile started to develop at about 128 ka ago; (ii) the unconformity separating the loess–paleosol from the underlying Nihewan Formation represents a sedimentation break of about 130 ka. On the basis of the ReOSL dates and related stratigraphic evidence it is proposed that the ancient Lake Nihewan dried shortly after about 266 ka.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号