首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
This paper presents a numerical solution for the analysis of the axisymmetric thermo‐elastic problem in transversely isotropic material due to a buried heat source by means of extended precise integral method. By virtue of the Laplace–Hankel transform applied into the basic governing equations, an ordinary differential matrix equation is achieved, which describes the relationship between the generalized stresses and displacements in transformed domain. An extended precise integration method is introduced to solve the aforementioned matrix equation, and the actual solution in the physical domain is acquired by inverting the Laplace–Hankel transform. Numerical examples are carried out to demonstrate the accuracy of the proposed method and elucidate the influence of the character of transverse isotropy, the anisotropy of linear expansion coefficient, the anisotropy of thermal diffusivity, and medium's stratification on the thermo‐elastic response. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Based on the governing equations of the thermo-elastic problem, the analytical layer-elements of a finite layer and an underlying half-space are obtained using the Laplace-Hankel transform and the characteristic value method. The cylindrical heat source is divided into several micro cylindrical heat sources, which can be approximately simulated by plane heat sources. Then, the global stiffness matrix for the problem is assembled and solved in the transformed domain, and a Laplace-Hankel transform inversion is taken to obtain the real solution. Finally, the influence of heat source types, division numbers, embedded depths and layered properties on the thermo-mechanical coupling response is investigated.  相似文献   

3.
With the aid of integral transform techniques, this paper presents an extended precise integration solution for thermal consolidation problems of a multilayered porous thermo-elastic medium with anisotropic thermal diffusivity and permeability due to a heat source. From the fundamental governing equations, ordinary differential equations are derived by employing Laplace–Hankel transforms. By applying the extended precise integration method, equations in the transformed domain can be solved, and the actual solutions are further obtained by adopting a numerical inverse transformation. The accuracy and feasibility of the proposed theory is demonstrated by contrastive analysis with existing studies. Finally, several examples are carried out to investigate the influence of heat source’s type, axial distance, burial depth of heat source, ratio of thermo-permeability, permeability anisotropy, thermal diffusivity anisotropy and stratification on the thermal consolidation process.  相似文献   

4.
A novel procedure associated with the precise integration method (PIM) and the technique of dual vector is proposed to effectively calculate the magnitude and distribution of deformations in a homogeneous multilayered transversely isotropic medium. The planes of transverse isotropy are assumed to be parallel to the horizontal surface of the soil system. The linearly elastic medium is subjected to four types of vertically acting axisymmetric loads prescribed either at the external surface or in the interior of the soil medium. There are no limits for the thicknesses and number of soil layers to be considered. By virtue of the governing equations of motion and the constitutive equations of the transversely isotropic elastic body, and based on the Hankel integral transform and a dual vector formulation in a cylindrical coordinate system, the partial differential motion equations can be converted into first‐order ordinary differential matrix equations. Applying the approach of PIM, it is convenient to obtain the solutions of ordinary differential matrix equations for the continuously homogeneous multilayered transversely isotropic elastic soil in the transformed domain. The PIM is a highly accurate algorithm to solve the sets of first‐order ordinary differential equations, which can ensure to achieve any desired accuracy of the solutions. What is more, all calculations are based on the standard method with the corresponding algebraic operations. Computational efforts can be reduced to a great extent. Finally, numerical examples are provided to illustrate the accuracy and effectiveness of the proposed approach. Some more cases are analyzed to evaluate the influences of the elastic parameters of the transversely isotropic media on the load‐displacement responses. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
王小岗 《岩土力学》2011,32(1):253-260
研究了横观各向同性饱和土地基在地表动力荷载作用下的三维瞬态响应。基于饱和多孔介质的三维Biot波动理论,利用Laplace变换,建立圆柱坐标系下横观各向同性饱和土的波动方程;解耦波动方程后,根据算子理论,并借助Fourier展开和Hankel变换技术,得到瞬态荷载作用下,饱和土介质的土骨架位移和应力、孔隙水相对位移和孔隙水压力的一般解;利用一般解,给出横观各向同性饱和地基在地表集中荷载激励下的瞬态Lamb问题的解答。数值算例结果表明,采用各向同性饱和介质的动力学模型,不能准确描述具有明显各向异性特性的饱和土地基的瞬态动力特性。  相似文献   

6.
The fundamental solutions were obtained for step‐like point forces acting in three orthogonal directions and an instantaneous fluid point source in a fluid‐saturated, porous, infinite solid of transversely isotropic elasticity and permeability. After expressing the governing equations in the form of matrix in the Laplace space, we employed Kupradze's method together with the triple Fourier transforms. This method reduces the simultaneous partial differential equations with respect to three displacement components and a pore fluid pressure to a differential equation in terms of only one potential scalar function, which can be operationally solved in the transformed space. After the Laplace inversion of the potential, the residue theorem was applied to its Fourier inverse transform with respect to one of the transformation variables. The Fourier transforms with respect to two other variables were rewritten into the Hankel transforms. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

7.
This paper presents an analytical layer element solution to axisymmetric thermal consolidation of multilayered porous thermoelastic media containing a deep buried heat source. By applying the Laplace–Hankel transform to the state variables involved in the basic governing equations of porous thermoelasticity, the analytical layer elements that describe the relationship between the transformed generalized stresses and displacements of a finite layer and a half‐space are derived. The global stiffness matrix equation is obtained by assembling the interrelated layer elements, and the real solutions in the physical domain are achieved by numerical inversion of the Laplace–Hankel transform after obtaining the solutions in the transformed domain. Finally, numerical calculations are performed to demonstrate the accuracy of this method and to investigate the influence of heat source's types, layering, and the porous thermoelastic material parameters on thermal consolidation behavior. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
多层横观各向同性地基轴对称固结的传递矩阵解   总被引:2,自引:1,他引:1  
艾智勇  王全胜 《岩土力学》2009,30(4):921-925
从横观各向同性地基轴对称Biot固结的基本方程出发,通过关于t的Laplace变换和关于r的Hankel变换,得到关于z的一阶常微分方程组。然后,对变换域内的基本未知量进行线性化处理,建立了变换域内的基本状态变量在z = 0处和任意深度处z的显式关系。利用传递矩阵法,结合层间连续性条件和边界条件,得到了多层横观各向同性地基的Biot固结轴对称问题的解答。该解答能避免随着层数增加而需要求解大型方程组的困难,明显地提高了计算效率。  相似文献   

9.
The dynamic problem of a transversely isotropic multilayered medium is reducible to quasi‐static problem by introducing a moving system that travels synchronously with the load. Based on the governing equations in the moving system, the ordinary differential equations in the Fourier transformed domain are deduced. An extended precise integration method is adopted to solve the ordinary differential equations, and the solution in the physical domain is recovered by the inverse Fourier transform. Numerical examples are performed to verify the accuracy of the presented method and to analyze the influence of material properties and the load characteristic.  相似文献   

10.
This paper presents an exact analytical solution to fully coupled axisymmetric consolidation of a semi‐infinite, transversely isotropic saturated soil subjected to a uniform circular loading at the ground surface. The analysis is under the framework of Biot's general theory of consolidation. First, the governing equations of consolidation are transformed into a set of equivalent partial differential equations with the introduction of two auxiliary variables. These partial differential equations are then solved using Hankel–Laplace integral transforms. Once solutions in the transformed domain have been obtained, the actual solutions in the physical domain for displacements and stress components of the solid matrix, pore‐water pressure and fluid discharge can be finally obtained by direct numerical inversion. The accuracy of the numerical solutions developed is confirmed by comparison with an existing exact solution for an isotropic and saturated soil that is a special case of the more general problem addressed. Numerical analyses are also presented to investigate the influence of the degree of material anisotropy on the consolidation settlement. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
A numerically efficient and stable method is developed to analyze Biot's consolidation of multilayered soils subjected to non‐axisymmetric loading in arbitrary depth. By the application of a Laplace–Hankel transform and a Fourier expansion, the governing equations are solved analytically. Then, the analytical layer‐element (i.e. a symmetric stiffness matrix) describing the relationship between generalized displacements and stresses of a layer is exactly derived in the transformed domain. Considering the continuity conditions between adjacent layers, the global stiffness matrix of multilayered soils is obtained by assembling the inter‐related layer‐elements. Once the solution in the Laplace–Hankel transformed domain that satisfies the boundary conditions has been obtained, the actual solution can be derived by the inversion of the Laplace–Hankel transform. Finally, numerical examples are presented to verify the theory and to study the influence of the layered soil properties and time history on the consolidation behavior. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
This paper presents the analytical layer‐element method to analyze the consolidation of saturated multi‐layered soils caused by a point sink by considering the anisotropy of permeability. Starting from the governing equations of the problem, the solutions of displacements and stresses for a single soil layer are obtained in the Laplace–Hankel transformed domain. Then, the analytical layer‐element method is utilized to further derive the solutions for the saturated multi‐layered soils in the transformed domain by combining with the boundary conditions of the soil system and continuity conditions between adjacent layers. The actual solutions in the physical domain can be acquired by the inversion of Laplace–Hankel transform. Numerical results are carried out to show the accuracy and stability of the proposed method and evaluate the influence of sink depth and anisotropic permeability on excess pore pressure and surface settlement. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
An analytical solution is presented in this paper to study the time‐dependent settlement behaviour of a rigid foundation resting on a transversely isotropic saturated soil layer. The governing equations for a transversely isotropic saturated soil, within Biot's poroelasticity framework, are solved by means of Laplace and Hankel transforms. The problem is subsequently formulated in the Laplace transform domain in terms of a set of dual integral equations that are further reduced to a Fredholm integral equation of the second kind and solved numerically. The developed analytical solution is validated via comparison with the existing analytical solution for an isotropic saturated soil case, and adopted as a benchmark to examine the sensitivities of the mesh refinement and the locations of truncation boundaries in the finite element simulations using ABAQUS. Particular attention is paid to the influences of the degree of soil anisotropy, boundary drainage condition, and the soil layer thickness on the consolidation settlement and contact stress of the rigid foundation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
王俊林  祝彦知  张天航 《岩土力学》2007,28(7):1315-1322
在考虑横观各向同性含液饱和多孔介质固体骨架和流体可压缩性以及固体骨架的黏弹性特征下,基于横观各向同性含液饱和多孔介质u-w形式的三维动力控制方程,以固相位移u、液相相对位移w为基本未知量,综合运用Laplace变换、双重Fourier变换等方法,在直角坐标系下通过引入中间变量,将六元2阶动力控制方程组化为两组各含4个未知变量的常微分方程组,给出了直角坐标系下横观各向同性含液饱和多孔介质三维黏弹性动力反应的积分形式一般解;作为理论推导的验证,通过引入初始条件和边界条件,对横观各向同性含液饱和多孔介质半空间黏弹性瞬态反应问题进行了求解。解答的退化验证表明,所推导的理论解是正确的。  相似文献   

15.
This paper presents the analytical layer element solutions for deformations of transversely isotropic elastic media subjected to nonaxisymmetric loading at an arbitrary depth. The state vectors for the nonaxisymmetric problem are deduced through the substitution of the Hu Hai‐chang solutions into the basic equations for the transversely isotropic elastic media. From the state vectors, the analytical layer element of a single layer is obtained in the Hankel transformed domain. The analytical layer element is an exact and symmetric stiffness matrix whose elements are without positive exponential functions, which can not only simplify the calculation but also improve the stability of computation. On the basis of the continuity conditions between adjacent layers, the global stiffness matrix is obtained by assembling the interrelated layer elements. The solutions for the multilayered elastic media in the transformed domain are obtained by solving the algebraic equation of the global stiffness matrix, which satisfies the boundary conditions. The actual solutions in the physical domain are further obtained by inverting the Hankel transform. Finally, some cases are analyzed to verify the solutions and evaluate the influences of the transversely isotropic character and stratified character of the media on the load–displacement responses. The numerical results show that the variations of the elastic properties between layers have a great effect on the displacements of the multilayered media. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
This paper presents a stable and efficient method for calculating the transient solution of layered saturated media subjected to impulsive loadings by means of the analytical layer element method. Starting with the field equations based on Biot's linear theory for porous, fluid‐saturated media, and the seepage continuity equation, an analytical layer element for a single layer is established by applying Laplace‐Hankel integral transform. The global stiffness matrix in the transform domain for a layered saturated half‐space subjected to a transient circular patch loading is obtained by assembling the layer elements of each layer. The displacements in the time domain are derived by Laplace‐Hankel inverse transform of the global stiffness matrix. Numerical examples are conducted to verify the accuracy of the method and to demonstrate the influences of type of transient loading, buried depth of loading, permeability, and stratification of materials on the transient response of the multilayered saturated poroelastic media.  相似文献   

17.
基于Biot固结理论,考虑了土体和孔隙流体压缩性,通过对控制方程的解耦,得到在横观各向同性饱和土体中圆形隧洞边界上作用随时间变化的轴对称荷载或流体压力所引起的应力、位移和孔隙水压力场在拉普拉斯变换域中的解析表达式,运用拉普拉斯数值逆变换进行算例分析,得到在时间域中的解,讨论了单级加载和循环加载对计算结果的影响,并与瞬时加载条件下的结果进行了比较。同时也分析了土体的横观各向同性性质对应力、位移和孔隙水压力场的影响。  相似文献   

18.
王路君  艾智勇 《岩土力学》2018,39(6):2052-2058
采用解析层元法对存在地下点热源的岩土工程问题进行解答。首先从热弹性力学三维问题的基本控制方程出发,利用拉普拉斯-傅里叶积分变换推导出其在变换域内单层介质及下卧半空间的解析层元;然后结合有限单元法原理组装得到总刚度矩阵,结合边界条件,得到其在变换域内的解答,最后应用拉普拉斯-傅里叶积分逆变换技术,得到物理域内的解。编制了相应的计算程序,算例分析表明:该结果与已有文献吻合较好,该方法求解层状半空间的热-力耦合响应问题具有较好的适用性和较高的精度;层状岩土介质体系中,热扩散系数对温度及地表隆起的变化过程影响显著,但对其初始值和最终稳定值影响不明显;分层特性对岩土介质温度分布及地表位移变化过程均有显著影响。  相似文献   

19.
In this paper, the numerical model of the transverse vibrations of a thin poroelastic plate saturated by a fluid was proposed. Two coupled dynamic equations of equilibrium related to the plate deflection and the equivalent moment were established for an isotropic porous medium with uniform porosity. The fundamental solutions for a porous plate were derived both in the Laplace transform domain and in the time domain. A meshless method was developed and demonstrated in the Laplace transform domain for solving two coupled dynamic equations. Numerical examples demonstrated the accuracy of the method of the fundamental solutions and comparisons were made with analytical solutions. The proposed meshless method was shown to be simple to implement and gave satisfactory results for a poroelastic plate dynamic analysis. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
艾智勇  张逸帆  王路君 《岩土力学》2018,39(5):1885-1890
利用扩展精细积分法求解横观各向同性地基的平面应变问题。扩展精细积分法具有高精度和较高计算效率的特点,是求解微分方程的有效方法,相比于解析法可以节省大量理论推导工作量。从直角坐标下弹性力学控制方程出发,推导出Fourier变换域内地基的常微分矩阵方程;之后对地基微层元进行消元合并,进一步得到荷载作用在地基内部时层状地基的扩展精细积解。与已有文献的对比验证了方法的精确性,并分析了横观各向同性参数、层状性质和荷载作用点对计算结果的影响。结果表明:土体竖向位移随着横观各向同性参数n的增大而减小,而随着横观各向同性参数m的增大而增大;荷载作用点 的变化只对作用点以上的土体有影响,而上层土体的模量对竖向位移计算结果的影响更为显著,土体成层性对沉降的影响要比对竖向应力的影响更为显著。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号