首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Luan  Lubao  Ding  Xuanming  Cao  Guangwei  Deng  Xin 《Acta Geotechnica》2020,15(11):3261-3269
Acta Geotechnica - This paper presents a new analytical model for calculating the dynamic performance of pile groups subjected to vertical loads. The derived solution allows considering the robust...  相似文献   

2.
This paper presents a new analytical model for calculating the steady-state impedance of pile groups subjected to vertical dynamic loads. The derived solution allows considering effects of radially but also vertically propagating soil waves on the soil attenuation function, pile interaction factor, and pile group impedance. The proposed model provides accurate estimates of the soil stress field and of the response of the pile group in the low as well as in the high-frequency range, unlike earlier solutions based on the plane-strain model to describe the soil surrounding the piles, which ignores the vertical soil stress gradient. The latter assumption results in underestimating pile group impedance and overestimating radiation damping for frequencies lower than the cutoff frequencies of the system, which are explicitly captured with the proposed solution.  相似文献   

3.
An approach is presented for the prediction of linear and nonlinear load–deformation behaviour of laterally loaded pile groups. The individual pile response is obtained by the conventional p–y curve technique, while group interaction is modelled using the Mindlin's solution. Good agreement is observed when comparing the present method of analysis with the commonly used interaction factor approach for the computation of response of pile groups embedded in a homogenous, isotropic elastic half-space. The predicted pile group behaviour also compares favourably with existing field data on laterally loaded pile groups in soft clay.  相似文献   

4.
This paper describes the development of an approximate approach for the analysis and design of piles subjected to axial and lateral loading and also to vertical and horizontal ground movements. The analysis involves a number of simplifications in order to make it feasible to implement. For example, it considers the behaviour of a ‘representative’ pile in a group to characterize the behaviour of all piles in the group, and adopts approximations to derive free-field interaction factors from the conventional interaction factors for direct loading. The analysis has been implemented via a computer program called EMbankment PIle Group (EMPIG) and has the ability to incorporate the following features:
  • 1. single piles or pile groups,
  • 2. applied vertical, lateral and moment loading on the pile cap,
  • 3. the effects of axial and lateral soil movements caused by embankment construction,
  • 4. a layered soil profile,
  • 5. non-linear axial and lateral response of the piles.
Comparisons between solutions from EMPIG and other independent programs suggest that it is capable of providing results of adequate accuracy for practical design purposes. The analysis has been used to investigate the effects of pile rake on a typical bridge abutment group. The presence of raked piles can have a detrimental effect on group behaviour, especially in the presence of ground movements. Large lateral deflections can be generated and axial forces and moments in the piles are increased. Comparisons are also made with the results of centrifuge model tests on abutment pile groups. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

5.
堆载地基与邻近桩基的相互作用分析   总被引:9,自引:0,他引:9  
本文在分析堆载条件下邻近桩基与土体的相互作用时,提出了改进弹性地基梁模型,采用最小势能原理推导了改进弹性地基梁的有限杆系法平衡方程,并编制了相应的分析程序EFBMPP,对影响桩基变位和弯矩的影响因素进行了计算分析.  相似文献   

6.
孔令刚  张利民 《岩土力学》2009,30(8):2231-2236
建立了一个非线性数学模型来分析群桩扭转问题。该模型利用非线性荷载传递曲线来模拟桩的非线性响应,采用Mindlin解计算各桩水平力间的相互作用,用Randolph解析解分析得到各桩间扭矩对水平力的影响。在各单桩中引入经验性的耦合系数,分析桩身水平变形引起的土体反力对该桩扭转承载力的影响。对比计算结果与离心机模型试验数据,表明该模型能够模拟群桩扭转中主要的桩-土-桩相互作用和荷载耦合作用,较好地反映了实际情况。  相似文献   

7.

The work at hand proposes a method for assessing, under reasonable hypotheses from an engineering perspective, the failure envelope of a pile group subjected to generalized loading conditions involving a vertical and a lateral force along with a moment. Following different assumptions of increasing complexity, a simple closed-form expression, which is however capable of considering also the strong dependence of sectional yielding moment on the axial force, is derived. The use of such formula, which allows a practical hand calculation of the interaction diagrams at failure, returns conservative yet very accurate results. As a follow up, with reference to reinforced concrete piles, design considerations involving both structural and geotechnical failure under lateral load are reported. It is found that for most cases, if steel reinforcement is established to resist the design bending moment, the geotechnical Ultimate Limit State checks are automatically satisfied.

  相似文献   

8.
Prior to this study, no simplified yet rational methods were available for estimating the vertical displacements of energy pile groups subjected to thermal loads. Observing such a challenge, the goal of this study has been threefold: (i) to extend the interaction factor concept from the framework of conventional pile groups to that of energy pile groups, (ii) to present charts for the analysis of the displacement interaction between two identical energy piles over a broad range of design conditions, and (iii) to propose, apply and validate the interaction factor method for the displacement analysis of energy pile groups.  相似文献   

9.
Gorini  Davide Noè  Callisto  Luigi 《Acta Geotechnica》2022,17(6):2495-2516
Acta Geotechnica - Foundation piles can be used as a means for increasing the capacity of the foundations under static loads or, at the same time, can be regarded as an additional source of energy...  相似文献   

10.
孔令刚  肖方初  樊继营  陈云敏 《岩土力学》2019,40(12):4659-4667
水平偏心受荷群桩同时发生水平移动和绕承台中心的转动,使基桩的运动方向各不相同,因此基桩的运动方向成为影响群桩效应的一个关键因素。研究发现:水平偏心受荷的两根桩,前桩运动方向与两桩连线夹角0o≤η≤90o,后桩夹角?90o≤θ≤90o;量化两桩间桩?土?桩相互作用的折减系数与η和θ密切相关,η和θ组合存在一个范围,在该范围内两桩不存在相互作用;当两桩存在相互作用时,相互作用对后桩的影响往往大于对前桩的影响。通过将定量描述水平受荷群桩群桩效应的p乘子概念拓展到水平偏心受荷群桩,综合运用理论分析、试验和数值计算成果,提出了折减系数计算公式,进而给出了广义p乘子经验计算公式。通过试验案例验证了该计算公式的合理性。  相似文献   

11.
李忠诚  朱小军 《岩土力学》2007,28(Z1):809-814
建立了三维数值模型,进行堆载-弹塑性地基-桩基共同作用有限元数值分析。在地面超载条件下,对自由场土体的侧向位移模式进行了探讨,得出了土体侧向变形规律。在此基础上,对堆载作用下邻近桩基的力学性状进行了分析,包括不同堆载大小、不同堆载距离和不同桩间距等情况下桩基的侧向变形和弯矩的变化规律。分析结果表明:随着堆载的增加,桩基的变形和弯矩都有显著的增长,桩基逐渐弯曲。在同样条件下,增加桩的刚度,桩身弯矩迅速减小,桩身刚度很大时,会发生整体侧移。桩间距和堆载距离对桩身弯矩和变形有重要影响,随着桩间距和堆载距离的增大,桩身的变形和弯矩都将减小。  相似文献   

12.
Numerical analysis of axially loaded vertical piles and pile groups   总被引:3,自引:0,他引:3  
A numerical method, based on a simplified elastic continuum boundary element method, is presented for the settlement analysis of axially loaded vertical piles and pile groups. The soil flexibility coefficients are evaluated using the analytical solutions for a layered elastic half space. Results are presented and compared with existing published solutions for the following cases: (i) piles in homogeneous soil, (ii) piles in finite soil layer, (iii) piles end-bearing on stiffer layer, (iv) piles socketted into stiffer bearing layer, and (v) piles in Gibson soil. Reasonably good agreement is obtained between the present solutions and existing published solutions.  相似文献   

13.
在大桩径、小桩距的群桩条件下,不仅有来自桩侧、桩端和承台传递的多重应力叠加,还有群桩对桩间土的夹持作用影响,桩-土-承台之间作用更加复杂。用有限差分软件模拟固定桩距、桩径,变化竖向荷载下桩-土-承台的相互作用。从各层土的侧摩阻力、不同位置桩的桩顶荷载、荷载-沉降关系、桩间土体位移等方面的计算结果分析桩-土-承台之间的相互影响。结果表明,荷载超出117.8 MN(略大于Pu/2,Pu为群桩极限承载力)后,群桩对上部桩间土的夹持作用开始减小,桩侧上部侧摩阻力增大;桩侧下部侧摩阻力在多重应力叠加作用下呈减小趋势,不同位置的桩侧摩阻力影响范围有差异;用群桩沉降达到5%倍桩径时的荷载作为群桩的竖向极限承载力是可取的;当沉降与桩径的比值超出1%后,承台分担荷载的比例逐渐增大,群桩分担荷载的比例减小。  相似文献   

14.
This investigation is concerned with the mathematical analysis of a viscoelastic prestressed pipe pile embedded in multilayered soil under vertical dynamic excitation. The pile surrounding soil is governed by the plane strain model, and the soil plug is assumed to be an additional mass connected to the pipe pile shaft by applying the distributed Voigt model. Meanwhile, the prestressed pipe pile is assumed to be a vertical, viscoelastic, and hollow cylinder governed by the one‐dimensional wave equation. Then, analytical solutions of the dynamic response of the pipe pile in the frequency domain are derived by means of the Laplace transform and impedance function transfer method. Subsequently, the corresponding quasi‐analytical solution in the time domain for the case of the prestressed pipe pile undergoing a vertical semi‐sinusoidal exciting force applied at the pile top is obtained by employing the inverse Fourier transform. Utilizing these solutions, selected results for the velocity admittance curve and the reflected wave curve are presented for different heights of the soil plug to examine the influence of weld properties on the vertical dynamic response of prestressed pipe pile. The reasonableness of the theoretical model is verified by comparing the calculated results based on the presented solutions with measured results. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

15.
长期重复荷载作用下土体与邻近桩基相互作用研究   总被引:1,自引:0,他引:1  
杨敏  周洪波  朱碧堂 《岩土力学》2007,28(6):1083-1090
在前人研究的基础上,基于临界状态土力学理论,在Carter模型中引入临界重复应力的概念形成改进Carter模型;该模型概念明确、参数简单,可以合理地反映重复加卸载作用下土体主要特性。利用改进Carter模型,编制平面应变有限元程序,对长期重复加卸载作用下土体与临近桩基相互作用进行系统分析,探讨了长期重复加卸载作用下有桩和无桩时土体沉降和侧移的变化规律,并讨论了软土屈服面衰减系数、临界重复应力水平、临近桩基刚度等变化时桩土相互作用性状的变化,得出一些有益的结论。  相似文献   

16.
A new and simple approach is presented to analyze the elastic–plastic behavior of a single pile in layered soils using two models. One model adopts a hyperbolic approach to describe the nonlinear relationship between the shaft shear stresses and the displacement surrounding the pile shaft, and the other model uses a bilinear hardening model to simulate the relationship between the settlement and the mobilized load at the pile end. Furthermore, the interaction between identical piles including the pile shaft and the base interaction in multilayered soils is analyzed. Comparisons of the load–settlement responses for two well-instrumented field tests in multilayered soils are given to demonstrate the effectiveness and accuracy of the proposed simple method. This present paper enables a quick estimate of the settlement of a single pile and a pile group embedded in layered soils, resulting in savings in time and cost.  相似文献   

17.
为研究水平和竖向(双向)耦合地震作用下液化场地群桩基础的动力响应,设计了可液化地基-群桩基础-框筒结构动力相互作用体系振动台模型试验。选取不同类型模拟地震波作为振动台试验激励,通过对比水平地震作用和双向耦合地震作用下土体加速度、超孔隙水压力和群桩应变等试验结果,进而分析双向耦合地震作用对可液化地基和群桩基础动力响应的影响。研究结果表明:双向耦合地震作用下,液化场地土体竖向加速度峰值随土体埋深高度的减小而逐渐增大;饱和砂土的液化效应与双向耦合地震作用和输入地震波的类型有关;相比水平地震作用,不同种类波双向耦合地震作用下群桩基础桩身中部和底部的应变峰值增大,桩顶应变峰值变化略有不同;双向耦合地震作用加剧了建筑结构群桩体系的摇摆和倾斜。研究结果对可液化地基上群桩基础的抗震设计和防灾减灾具有十分重要的研究意义。  相似文献   

18.
3-D finite element modelling of pile groups adjacent to surcharge loads   总被引:9,自引:0,他引:9  
The short-term behaviour of pile groups subjected to lateral pressures by deformation of a clay layer under an adjacent surcharge load was studied using three dimensional finite element analysis. The main aim of the analysis was to investigate the pile-clay interaction behaviour. A load-path-dependent, non-linear constitutive model was used to describe the clay, which required knowledge of in situ stresses and recent strain history. Numerical results compared well with those from a centrifuge model test. The effects of the different in situ stresses and strains likely in prototypes and centrifuge model tests were also studied with particular interest in the load-transfer relationships and soil deformation behaviour around the piles.  相似文献   

19.
A variational approach for the analysis of vertical deformation of pile groups is presented. The method assumes that the deformation of piles can be represented by a finite series. The method applies the principle of minimum potential energy to determine the deformation of piles. Using this method, an analytical solution for pile groups in soil modelled by the theoretical load–transfer curves can be obtained rigorously. Analysis of field tests indicates that the method can predict the performance of pile groups reasonably well.  相似文献   

20.
This work investigates the dynamic response of pile groups embedded in a poroelastic medium subjected to horizontal loading. The dynamic response is analyzed using the Muki and Sternberg Method. The load transfer problem is formulated in terms of a second-kind Fredholm integral. The dynamic impedance of the pile groups is computed using the pile–soil–pile dynamic interaction factors. The shear force, bending moment and pore pressure is obtained using the superposition method. Numerical results indicate that the pile flexibility ratio and the pile distance have considerable influence on the dynamic response of the piles and the poroelastic medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号