首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Corrections of density effects resulting from air-parcel expansion/compression are important in interpreting eddy covariance fluxes of water vapor and CO2 when open-path systems are used. To account for these effects, mean vertical velocity and perturbation of the density of dry air are two critical parameters in treating those physical processes responsible for density variations. Based on various underlying assumptions, different studies have obtained different formulas for the mean vertical velocity and perturbation of the density of dry air, leading to a number of approaches to correct density effects. In this study, we re-examine physical processes related to different assumptions that are made to formulate the density effects. Specifically, we re-examine the assumptions of a zero dry air flux and a zero moist air flux in the surface layer, used for treating density variations, and their implications for correcting density effects. It is found that physical processes in relation to the assumption of a zero dry air flux account for the influence of dry air expansion/compression on density variations. Meanwhile, physical processes in relation to the assumption of a zero moist air flux account for the influence of moist air expansion/compression on density variations. In this study, we also re-examine mixing ratio issues. Our results indicate that the assumption of a zero dry air flux favors the use of the mixing ratio relative to dry air, while the assumption of a zero moist air flux favors the use of the mixing ratio relative to the total moist air. Additionally, we compare different formula for the mean vertical velocity, generated by air-parcel expansion/compression, and for density effect corrections using eddy covariance data measured over three boreal ecosystems.  相似文献   

2.
Energy and CO2 fluxes are commonly measured above plant canopies using an eddy covariance system that consists of a three-dimensional sonic anemometer and an H2O/CO2 infrared gas analyzer. By assuming that the dry air is conserved and inducing mean vertical velocity, Webb et al. (Quart. J. Roy. Meteorol. Soc. 106, 85-100, 1980) obtained two equations to account for density effects due to heat and water vapour transfer on H2O/CO2 fluxes. In this paper, directly starting with physical consideration of air-parcel expansion/compression, we derive two alternative equations to correct for these effects that do not require the assumption that dry air is conserved and the use of the mean vertical velocity. We then applied these equations to eddy flux observations from a black spruce forest in interior Alaska during the summer of 2002. In this ecosystem, the equations developed here led to increased estimates of CO2 uptake by the vegetation during the day (up to about 20%), and decreased estimates of CO2 respiration by the ecosystem during the night (approximately 4%) as compared with estimates obtained using the Webb et al. approach.  相似文献   

3.
In this paper, we present a well-mixed Lagrangian stochasticmodel for vertical dispersion, that can accommodate a Eulerianprobability density function of vertical velocity derived from themaximum missing information (or maximum entropy) principle. Withthis model, we study the effects of skewness (S) and kurtosis (K) ofvertical velocity on the spacial distribution of the mean concentrationdue to sources in the convective boundary layer. Model calculationsshow that the maximum ground-level concentration increases withincreasing S and decreasing K, but the downstream distance to thelocation of the maximum ground-level concentration is ratherinsensitive to S and K. Some earlier predictions of vertical dispersionfor short travel time are examined.  相似文献   

4.
Equations are presented to correct eddy-covariancemeasurements for both fluctuations in density andnon-zero mean advection, induced by convergence ordivergence of flow, and spatial source/sinkinhomogeneity, under steady-state and transientconditions. This correction collapses to theWebb–Pearman–Leuning expression ifthe mean vertical velocity is zero, and formally addsthe Webb–Pearman–Leuning expression to the correctionssuggested by Lee for conditions ofnon-zero vertical velocity and source/sink and meanscalar horizontal homogeneity. The equation requiresmeasurement of the mean vertical gradients of thescalar concentration of interest (air temperature,humidity, CO2) as well as an accurateestimation of the mean vertical velocity, in additionto the vertical eddy covariance of the scalar. Simplemethods for the approximation of sensor tilt andcomplex terrain flow angle are presented, to allowestimation of non-zero mean vertical velocities. Theequations are applied to data from a maize crop and aforest to give examples of when the correction issignificant. In addition, a term for thethermodynamic expansion energy associated with watervapour flux is derived, which implies that the sonictemperature derived sensible heat flux will accuratelyinclude this contribution.  相似文献   

5.
Abstract

Airborne measurements of mean wind velocity and turbulence in the atmospheric boundary layer under wintertime conditions of cold offshore advection suggest that at a height of 50 m the mean wind speed increases with offshore distance by roughly 20% over a horizontal scale of order 10 km. Similarly, the vertical gust velocity and turbulent kinetic energy decay on scales of order 3.5 km by factors of 1.5 and 3.2, respectively. The scale of cross‐shore variations in the vertical fluxes of heat and downwind momentum is also 10 km, and the momentum flux is found to be roughly constant to 300 m, whereas the heat flux decreases with height. The stability parameter, z/L (where z = 50 m and L is the local Monin‐Obukhov length), is generally small over land but may reach order one over the warm ocean. The magnitude and horizontal length scales associated with the offshore variations in wind speed and turbulence are reasonably consistent with model results for a simple roughness change, but a more sophisticated model is required to interpret the combined effects of surface roughness and heat flux contrasts between land and sea.

Comparisons between aircraft and profile‐adjusted surface measurements of wind speed indicate that Doppler biases of 1–2 m s?1 in the aircraft data caused by surface motions must be accounted for. In addition, the wind direction measurements of the Minimet anemometer buoy deployed in CASP are found to be in error by 25 ± 5°, possibly due to a misalignment of the anemometer vane. The vertical fluxes of heat and momentum show reasonably good agreement with surface estimates based on the Minimet data.  相似文献   

6.
Height, time, and latitude dependences are analyzed of zonal mean vertical component of wind velocity for the period of 1992–2006 from the UKMO atmospheric general circulation model. It is shown that the ascending wind speed can provide vertical transport, against gravity, of rather large (up to 3–5μm) aerosol particles with density to 1.0–1.5 g/cm3 in the stratosphere and mesosphere. The wind velocity vertical component is supposedly a significant factor of particle motion up to 30–40–km levels and can affect sedimentation rate and residence time of the aerosol particles in the stratosphere. Structure of the mean vertical component of wind velocity allows occurrence of dynamically stable aerosol layers in the middle stratosphere.  相似文献   

7.
The probability density function for sensible heat flux was measured above a uniform dry lakebed (Owens lake) in Owens Valley, California. It was found that for moderately stable to near neutral atmospheric stability conditions, the probability density function exhibits well defined exponential tails. These exponential tails are consistent with many laboratory boundarylayer measurements and numerical simulations. A model for the sensible heat flux probability density function was developed and tested. A key assumption in the model derivation was the near Gaussian statistics of the vertical velocity and temperature fluctuations. This assumption was verified from time series measurements of temperature and vertical velocity. The parameters for the sensible heat flux probability density function model were also derived from mean meteorological and surface conditions using surface-layer similarity theory. It was found that the best agreement between modeled and measured sensible heat flux probability density function was at the tails. Finally, a relation between the intermittency parameter, the probability density function, and the mean meteorological conditions was derived. This relation rigorously links the intermittency parameter to mean meteorological conditions.  相似文献   

8.
Based upon comparisons between published experimental data and simulated results on the vertical sand flux distribution in the saltation layer, Shao’s similarity saltation model has been greatly improved by correcting the average vertical particle lift-off velocity and using a more suitable universal roughness length. By the improved model, the vertical sand flux profile over the bare, dry and loose uniform sandy surface, which is quite representative of real desert surfaces, can be reproduced very well. Meanwhile, the surface transport rate and the characteristic and average saltation heights have been simulated and analyzed in detail, disclosing their relationships with friction velocity, particle size and roughness length, and the possible underlying mechanisms. Besides, the average particle lift-off velocity and the average mean vertical aerodynamic action upon the ascending particle, which determine the saltation process, are explicitly expressed by parameters involved in the similarity model, and their relationships with friction velocity, particle size and roughness length are also described concisely. The corrected average particle lift-off velocity makes it possible to investigate the characteristic particle trajectory, whose initial velocity equals the average lift-off velocity, so as to estimate the average particle against surface impacting velocity and the average aerodynamic action upon the saltation process.  相似文献   

9.
Eddy-correlation measurements over snow, wet bare soil, and lake water indicate very small vertical ozone fluxes. Adjustments to the small vertical fluxes are needed to take into account the effect of mean Stefan flow associated with evaporation at the surface and the effects of correlation between density variations and vertical wind fluctuations. For snow, the residual resistance calculated for the surface is about 34 s cm-1, indicating that the maximum deposition velocity is abut 0.03 cm s-1. For cold bare soil well saturated with water, the surface resistance is about 10 s cm-1 (maximum deposition velocity of about 0.1 cm s-1). The highest resistances obtained are for transfer to the surface of Lake Michigan, yielding values near 90 s cm-1 for resistance (0.01 cm s-1 for deposition velocity).Work supported by the U.S. Dept. of Energy and the U.S. Environmental Protection Agency.  相似文献   

10.
台风“珍珠”登陆期间动量通量的多尺度分析   总被引:1,自引:1,他引:1  
利用台风"珍珠"登陆前后的近地层湍流观测资料,分析了该台风经过观测场地前后地面气象要素的变化及其动量通量特征。结果表明,台风"珍珠"经过观测场地前后的近地层气象要素发生了急剧的变化,并且在台风前部存在强的中尺度对流系统,反映在风速能谱密度结构上,频率f在3×10-4~2×10-3Hz之间的中尺度信号对能谱的贡献比平稳天气形势下的能谱贡献大很多,尤其是顺风方向风速的能谱密度的峰值与湍流信号的峰值相当;动量通量分析结果表明,台风中心经过观测场地的前后三小时,近地层通量以向下输送的中尺度通量为主,湍流通量的贡献相对于中尺度通量较小,也是向下输送的;而在其他时段,近地层通量主要以向上输送的湍流通量为主,中尺度通量量值很小,可以忽略。  相似文献   

11.
Non-Gaussianity effects, first of all the influence of the third and fourth moments of the velocity probability density function, have to be assessed for higher-order closure models of turbulence and Lagrangian modelling of turbulent dispersion in complex flows. Whereas the role and the effects of the third moments are relatively well understood as essential for the explanation of specific observed features of the fully developed convective boundary layer, there are indications that the fourth moments may also be important, but little is known about these moments. Therefore, the effects of non-Gaussianity are considered for the turbulent motion of particles in non-neutral flows without fully developed convection, where the influence of the fourth moments may be expected to be particularly essential. The transport properties of these flows can be characterized by a diffusion coefficient which reflects these effects. It is shown, for different vertical velocity distributions, that the intensity of turbulent transport may be enhanced remarkably by non-Gaussianity. The diffusion coefficient is given as a modification of the Gaussian diffusivity, and this modifying factor is found to be determined to a very good approximation by the normalized fourth moment of the vertical velocity distribution function. This provides better insight into the effect of fourth moments and explains the varying importance of third and fourth moments in different flows.  相似文献   

12.
高风速相干结构对通量输送影响的实验研究   总被引:2,自引:0,他引:2  
切变湍流的相干结构是湍流研究中的重大发现,它表明湍流运动并非完全随机,其中具有可检测的有序结构.本文通过处理南京浦口地区大气边界层观测数据,来分析不稳定层结中高风速相干结构特征.本次观测项目包括对场地中央的气象铁塔上2 m和40 m高度上超声风速仪的脉动速度、温度测量以及风廓线雷达对边界层风速廓线的测量.对超声水平风速时间序列数据进行小波变换 (时间尺度400 s),通过阈值来识别这种高风速相干结构.与多普勒风廓线雷达测量结果对比后发现,这种方法确定的相干结构符合常规的认识,具有较长的时间尺度和较大的垂直尺度 (接近边界层厚度).分析三天相干结构特性得到无量纲空间间隔约为6,即每隔6个边界层厚度的水平位置出现一个高速相干结构.通过与垂直风速小波系数的比较,发现高风速相干结构与向下垂直风速之间有较好相关,这与湍流中 “阵风” 现象的研究结论相似.使用四象限分析方法分类得到两种动量通量输送为负的运动:较小水平风速的上扬 (ejection) 运动 (简称为上扬运动) 和较大水平风速的下扫 (sweep) 运动 (简称为下扫运动),这两种运动在整个湍流活动中处于主导地位.高风速相干结构通过促进下扫运动和抑制上扬运动来影响动量通量的输送.  相似文献   

13.
Mesoscale resolution ocean general circulation model (EGCM) experiments have been carried out under a variety of different model physical assumptions, and the different model systems often produce very different deep mean flow fields. The flat bottom, rectangular basin experiments exhibit two distinct types of deep mean flow, which are here called “corotating” and “counterrotating”. Counterrotating deep flow, in which two adjacent deep gyres, with circulation of opposite senses, underlie the upper ocean eastward jet and its recirculation, has been found only in models with adiabetic two-layer model physics. None of the more complex model systems exhibit counterrotating deep flows; this type of flow is apparently restricted to a particular range of forcing/dissipation parameter space and/or particular model physical assumptions.Since the deep flow in these EGCM systems is generally weak, geostrophic dynamics provides the basic deep flow interior balance and the mean vertical velocity field, through the lower layer vorticity equation, largely determines the deep interior flow. The dynamical constraints on the mean vertical velocity field introduced by different model physical equations are reviewed and the adiabatic quasi-geostrophic (QG) two-layer model system is shown to be strongly constrained in several respects. In particular, the idea that eddy and mean heat flux divergence (or “layer thickness flux divergence”) drive the mean vertical velocity does not generalize to more complicated dynamical systems in which there is the possibility of altering the mean vertical density profile and/or in which the horizontal flow can be divergent. As a consequence of the constraints, there can be no basin net vorticity input to the lower layer via vortex stretching in the QG system.Because of the adiabatic QG constraints and the particular parametric regime in which the published adiabatic QG EGCM experiments exist, a very plausible explanation can be found for the existence of the deep cyclonic circulation of the model subtropical gyre. It is this cyclonic circulation that causes these deep flows to differ so dramatically from those of the more physically complex model systems. Because all the published adiabatic QG experiments that have non-trivial deep flows exhibit the counterrotating behavior, and because available ocean data do not support the existence of such a gyre in the North Atlantic, it seems important to thoroughly understand the reasons for the existence or absence of the deep cyclonic circulations. If they are an invitable feature of adiabatic QG systems, these models may need to be treated with caution as tools for understanding the mean ocean circulation.  相似文献   

14.
Horizontal and Vertical Co2 Advection In A Sloping Forest   总被引:7,自引:1,他引:7  
A system measuring the horizontal and vertical advection was devised and installed in a sloping forest at the Vielsalm site, Belgium. The measurements showed that under stable conditions a flow regime established below the canopy: air flowed horizontally along the slope and entrained the air above the canopy vertically. This movement occurs during stable nights characterised by strongly negative net radiation. It creates negative air concentration gradients in both the vertical and horizontal directions. The advection fluxes associated with these movements are opposite and of a similar order of magnitude. This implies that the horizontal advection cannot be ignored in the carbon budget equation at night. Unfortunately, the large variability of, and considerable uncertainty about, advection fluxes does not enable one to produce estimates of the source term from these equations. Advection measurement systems should be improved in order to enable such estimates to be made. Particular attention should be paid to the estimation of the vertical velocity above the canopy and to the vertical profiles of the horizontal velocity and horizontal CO2 gradient below the canopy.  相似文献   

15.
Turbulence measurements of the vertical velocity component were obtained by an instrumented aircraft under fair weather conditions in the St. Louis, Missouri, metropolitan area. Time series of vertical velocity fluctuations from horizontal flight segments made in the lower part of and near the middle of the convective boundary layer (CBL) over the urban area and surrounding region were subjected to various statistical and objective analyses. Higher order vertical velocity moments, and positive and negative velocity statistics, were computed. The horizontal dimensions of updrafts and downdrafts, and related properties of these turbulent eddies were derived by conditional sampling analysis. Emphasis is on a comparison of the results from urban and selected rural measurements from the lower part of the CBL.The vertical velocity probability density distribution for each segment was positively skewed and the mode was negative. The means and standard deviations of positive and negative velocity fluctuations were greater over the urban area. The urban vertical velocity variance was 50% greater than rural values, and power spectra revealed greater production of vertical turbulent energy in the urban area over a wide frequency range.The mean and maximum widths of downdrafts were generally larger than the corresponding values for updrafts. Differences between urban and rural eddy sizes were not statistically significant. The widths of the largest updraft and downdraft are comparable to the boundary-layer depth, Z i, and the mean value of the ratio of spectral peak wavelength to Z iwas about 1.3 and 1.1 for urban and rural areas, respectively. Convective similarity scaling parameters appeared to order both the urban and rural measurements.On assignment from the National Oceanic and Atmospheric Administration, U.S. Dept. of Commerce.  相似文献   

16.
刘黎平  谢蕾  崔哲虎 《大气科学》2014,38(2):223-236
本文首先利用数值模拟的方法,分析了利用毫米波云雷达功率谱密度反演雨滴谱时,降水粒子米散射效应、空气湍流、空气上升速度等对雨滴谱和液态水含量等参数反演的影响;建立了功率谱密度处理及其直接反演雨滴谱、液态水含量、降水强度和空气上升速度的方法;并利用2012年7月在云南腾冲观测的二次弱降水数据,采用毫米波雷达和Ku波段微降水雷达观测的回波强度、径向速度垂直廓线以及780 m高度上的功率谱密度对比的方法,以及毫米波云雷达观测的780 m高度上功率谱密度、回波强度与地面雨滴谱计算得到的这些量的对比方法,分析了毫米波雷达数据的可靠性;并将780 m高度上毫米波雷达反演的雨滴谱与地面雨滴谱数据进行了对比,分析了毫米波雷达反演的雨滴谱的准确性;分析了毫米波雷达回波强度偏弱的原因,讨论了该高度以下降水对毫米波雷达衰减的影响。结果表明:空气湍流对弱降水微物理参数反演影响不大,而空气上升速度和米散射效应均对反演结果有一定影响;毫米波雷达观测到的径向速度和功率谱密度与微降水雷达比较一致,回波强度的垂直廓线的形状与微降水雷达也比较一致,但毫米波雷达观测的回波强度偏弱;与雨滴谱计算值相比,毫米波雷达观测的低层的回波强度也偏弱,天线上的积水是造成毫米波雷达回波强度变弱的主要原因。毫米波雷达观测的低层的功率谱密度与地面雨滴谱观测的数据形状比较一致,但有一定的位移。毫米波雷达反演的雨滴谱与地面观测的谱型和粒子大小也比较一致。这些结果初步验证了毫米波雷达观测的功率谱密度及其反演方法的可靠性。  相似文献   

17.
Momentum and turbulent kinetic energy (TKE) budgets across a forest edge have been investigated using large-eddy simulation (LES). Edge effects are observed in the rapid variation of a number of budget terms across this vegetation transition. The enhanced drag force at the forest edge is largely balanced by the pressure gradient force and by streamwise advection of upstream momentum, while vertical turbulent diffusion is relatively insignificant. For variance and TKE budgets, the most important processes at the forest edge are production due to the convergence (or divergence) of the mean flow, streamwise advection, pressure diffusion and enhanced dissipation by canopy drag. Turbulent diffusion, pressure redistribution and vertical shear production, which are characteristic processes in homogeneous canopy flow, are less important at the forest transition. We demonstrate that, in the equilibrated canopy flow, a substantial amount of TKE produced in the streamwise direction by the vertical shear of the mean flow is redistributed in the vertical direction by pressure fluctuations. This redistribution process occurs in the upper canopy layers. Part of the TKE in the vertical velocity component is transferred by turbulent and pressure diffusion to the lower canopy levels, where pressure redistribution takes place again and feeds TKE back to the streamwise direction. In this TKE cycle, the primary source terms are vertical shear production for streamwise velocity variance and pressure redistribution for vertical velocity variance. The evolution of these primary source terms downwind of the forest edge largely controls the adjustment rates of velocity variances.  相似文献   

18.
对塔城盆地1998-1999年15个大降水个例进行了诊断分析,发现了T106产品700hPa垂直速度和水汽通量与塔城盆地大降水量级呈正相关,并给出了定量预报指标。  相似文献   

19.
青藏高原五道梁地区湍流输送特征的研究   总被引:25,自引:11,他引:25  
祁永强  王介民 《高原气象》1996,15(2):172-177
根据1994年6-7月在青藏高原五道梁地区的湍流脉动观测资料,分析了该地区近地层能量平衡、感热和谱热的日变化及湍流强度和端流谱特征。结果表明:晴天该地区近地层能量基本平衡,各能量分量的日变化与常情况相同;白天感热通量的输送占主导地位,潜热通量占次要地位,符合半干旱的一般特征。  相似文献   

20.
When density fluctuations of scalars such as CO2 are measured with open-path gas analyzers, the measured vertical turbulent flux must be adjusted to take into account fluctuations induced by ‘external effects’ such as temperature and water vapour. These adjustments are needed to separate the effects of surface fluxes responsible for ‘natural’ fluctuations in CO2 concentration from these external effects. Analogous to vertical fluxes, simplified expressions for separating the ‘external effects’ from higher-order scalar density turbulence statistics are derived. The level of complexity in terms of input to these expressions are analogous to that of the Webb–Pearman–Leuning (WPL), and are shown to be consistent with the conservation of dry air. It is demonstrated that both higher-order turbulent moments such as the scalar variances, the mixed velocity-scalar covariances, and the two-scalar covariance require significant adjustments due to ‘external effects’. The impact of these adjustments on the turbulent CO2 spectra, probability density function, and dimensionless similarity functions derived from flux-variance relationships are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号