首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Upper Triassic Langjiexue Group, exposed south of the Yarlung-Zangbo suture zone in south Tibet, shows sedimentary features different from typical Tethyan Himalayan successions, and its origin is controversial. In this article we combine field observations with paleocurrent, petrologic, geochronological and isotopic data to determine the provenance of Langjiexue sandstones. These middle to distal deep-sea-fan turbidites are crosscut by Lower Cretaceous diabase sills and dikes generated during rifting of India from Gondwana, indicating that the Langjiexue Group was originally deposited along or adjacent to the northern passive continental margin of India. Flute casts at the base of turbidite beds indicate mostly WNW-ward paleocurrents, pointing to provenance from a source located east of the depositional area. Common volcanic fragments and plagioclase grains together with a cluster of 400–200-Ma-aged magmatic zircons with uniform εHf(t) values from − 5 to + 10 are incompatible with any nearby sources, including the Qiantang Block, the Lhasa Block or the India subcontinent, and indicate instead supply from a long-lived magmatic-arc terrane. Considering what is known about Late Triassic paleogeography, a plausible source for Langjiexue sediments is represented by the Gondwanide Orogen, generated during subduction of the pan-Pacific oceanic lithosphere beneath southeastern Gondwana. This scenario is supported by the age range and Hf isotopic signatures of Late Paleozoic–Early Mesozoic zircons contained in Langjiexue turbidites as in coeval turbidites exposed in western Myanmar. New data are needed to confirm/falsify the existence of a thousand-km-long sediment-routing system similar to the modern Amazon, which – sourced in a cordillera-type orogen rising along the southeastern margin of Gondwana – crossed an entire continent to feed turbiditic fans now exposed from western Myanmar to the northern Tethys Himalaya.  相似文献   

2.
Cenozoic, post-collisional, potassic and ultrapotassic igneousrocks in the North Qiangtang, Songpan–Ganzi and NorthKunlun terranes of the northern Tibetan Plateau are distributedalong a semi-continuous, east–west-trending, volcanicbelt, which is over 1200 km in length. Spatially, there is aclose association with major strike-slip faults, thrust faultsand pull-apart basins. The ages of these magmatic rocks rangefrom 45 Ma to the present (the youngest known eruption occurredin 1951); they are shoshonitic, compositionally similar to K-richsubduction-related magmas, and range in SiO2 from 44 to 66 wt%. There is a relative enrichment of large ion lithophile elements(LILE) and light rare earth elements (LREE) in the most primitivemagmatic rocks (MgO >6 wt %) in the North Qiangtang terranecompared with those in the Songpan–Ganzi and North Kunlunterranes; correspondingly, the primitive magmas have higher87Sr/86Sr and 206Pb/204Pb, and lower 143Nd/144Nd ratios in theNorth Qiangtang terrane than in the Songpan–Ganzi andNorth Kunlun terranes. The dominant factors that control thegeochemical characteristics of the magmas are an enriched asthenosphericmantle source composition, the degree of partial melting ofthis source, and the combined processes of crustal assimilationand fractional crystallization (AFC). Enrichment of the asthenosphereis considered to have occurred by incorporation of subductedsediments into the mantle wedge above a subducted slab of Indianlithosphere during India–Asia convergence. Continentallithospheric mantle, metasomatically enriched during earlierepisodes of subduction, may have also contributed a source componentto the magmas. Trace element modelling indicates that the mantlesource of the most primitive magmas in the North Qiangtang terranecontained higher amounts of subducted sediment (0·5–10%)compared with those in the Songpan–Ganzi and North Kunlunterranes (<2%). The degrees of partial melting required togenerate the primitive potassic and ultrapotassic magmas fromthe enriched mantle sources range from <0·1% to 15%in the three major basement terranes. Energy-constrained AFCmodel calculations show that the more evolved magmatic rocks(MgO <6 wt %) are the results of AFC processes in the middlecrust in the North Qiangtang terrane and the upper crust inthe Songpan–Ganzi and North Kunlun terranes. We proposethat the ultimate driving force for the generation of the post-collisionalpotassium-rich magmatism in north Tibet is the continuous northwardunderthrusting of the Indian continental lithosphere followingIndia–Asia collision. This underthrusting resulted inupwelling of hot asthenosphere beneath north Tibet, squeezedup between the advancing Indian lithosphere and the backstopof the rigid Asian continental lithosphere. Asthenospheric upwellingmay have also contributed to uplift of the northern TibetanPlateau. KEY WORDS: Tibetan Plateau; potassic and ultrapotassic magmatism; enriched asthenospheric mantle source; EC-AFC modelling; geodynamics  相似文献   

3.
The western Dabie orogen (also known as the Hong'an block) forms the western part of the Dabie–Sulu HP–UHP belt, central China. Rocks of this orogen have been subjected to pervasive ductile deformation, and include numerous quartz schists and felsic mylonites cropping out in ductile shear zones. Quartz textures in these mylonites contain important clues for understanding the movement sense of late-collisional extrusion and exhumation of high-pressure–ultrahigh-pressure (HP–UHP) rocks from the lower crustal level to the upper crustal level during Middle Triassic and Early Jurassic. The orientation and distribution of quartz crystallographic axes were used to confirm the regional shear sense across the orogen. The asymmetry of c-axis patterns consistently indicates top-to-the-southeast thrusting across the orogen in early structural stages. Later stages of deformation show different senses of movement in northern and southern parts of the orogen, with top-to-the-northwest sinistral shearing recorded in rocks north of the Xinxian HP–UHP eclogite-facies belt, and top-to-the-southeast dextral shearing south of the same unit.Based on our study on quartz c-axis fabrics and marco- to micro-scale structures, simultaneous southeastward shearing within a large part of the orogen and normal faulting north of the Xinxian HP–UHP unit is explained by upward extrusion in early stages of deformation. The extrusion process has been attributed to syn- and late-collisional processes, accounting for some earlier deformation in the western Dabie orogen such as metamorphic sequences around the core of the Xinxian HP–UHP eclogite-facies unit. Much higher pressure of deformation is also indicated in the aligned glaucophane and omphacite from blueschist and eclogite in the field. An orogen-parallel eastward extrusion of the Xinxian HP–UHP eclogite-facies unit, however, occurred diachronously in later stages of deformation. Therefore, a tectonic model combining an early upward extrusion with a later eastward extrusion is presented. Two different stages and types of extrusion for exhumation of HP–UHP rocks are suitable to all of east central China. Geochronological data shows that the first, upward extrusion occurred during Middle Triassic, the second, eastward extrusion occurred during Late Triassic to Early Jurassic. These two extrusions are correlative with two stages of rapid exhumation of the Dabie HP–UHP rocks, respectively. These two-stage late-collisional (Middle Triassic to Early Jurassic) extrusion events bridge the gap between syn-collisional (Early to Middle Triassic) vertical extrusion and post-collisional (Cretaceous) eastward-directed lateral escape and provide vital clues to understanding the more detailed processes of exhumation of HP–UHP rocks.  相似文献   

4.
Geochronology of detrital zircons and their overgrowths combined with whole-rock geochemical and Sm–Nd isotopic data can be used to distinguish different stages of sediment recycling and metamorphism during multiphase orogenic evolution. This approach is applied to the Paleoproterozoic sedimentary rocks of the Tampere and Pirkanmaa belts (southern Finland) in the center of the composite Svecofennian orogen.The lower part of the Tampere belt succession and bulk of the Pirkanmaa belt are characterized by turbidites whereas the upper part of the Tampere belt succession is dominated by 1.90–1.89 Ga mature arc-type volcanic rocks. Detrital zircon geochronology indicates that the Tampere and Pirkanmaa belts have a coeval 1.92–1.89 Ga depositional and tectonic history. Ages of pre-depositional zircon overgrowths vary from 1.91 Ga to 2.0 Ga with clusters at 1.92 Ga and 1.98 Ga. Within the Pirkanmaa belt, post-depositional zircon overgrowths indicate metamorphic culmination at c. 1885 Ma in the Vammala Ni-zone and at c. 1875 Ma in the northern part.The lower conglomerates and graywackes in the Tampere belt and their equivalents in the Pirkanmaa belt are rich both in Neoarchean and Paleoproterozoic grains, the latter ranging in age from 1.9 to 2.1 Ga. Compared to these, a sample from the Vammala Ni-zone has an exotic provenance with at least c. 1.90 Ga, 2.04–2.15 Ga, 2.38–2.48 Ga and 2.57–2.63 Ga components.A sedimentary recycling and tectonic model for the central Fennoscandia is proposed, in which the Paleoproterozoic Keitele + Bergslagen continent was formed during an unnamed orogeny at 1.98–1.97 Ga. The Archean Norrbotten microcontinent was attached to the continent at 1.97–1.93 Ga. Upper Kaleva turbidites, derived from the Lapland-Kola orogen in the north, were deposited before 1.92 Ga on a passive margin of the Archean Karelia craton. The Karelia craton collided with the Keitele + Bergslagen + Norrbotten continent at c. 1.92 Ga forming the Lapland-Savo orogen. Subsequent evolution led to rifting and break-up of the latter continent into two microcontinents in the hinterland. At 1.92–1.91 Ga the rift was developed into a subsiding passive margin of the Keitele microcontinent with voluminous turbidite deposition, now seen as graywackes in the Tampere, Pirkanmaa and Pohjanmaa (western Finland) belts. The turbidite material was derived from the rising Lapland-Savo orogen and included recycled Upper Kaleva, recycled (sandstones) and first-cycle 2.03–1.97 Ga detritus from Keitele, 1.93–1.92 Ga Savo arc material, as well as detritus from the Archean craton and its cover deposits. The collision between Karelia and Keitele caused a subduction reversal and the onset of Tampere arc volcanism at 1.90 Ga. Arc-derived materials started to deposit and were mixed with older sedimentary rocks, and trench-parallel distal turbidites from exotic source were being deposited in the accretionary wedge.  相似文献   

5.
The western Qinling region of central China is situated centrally in the Kunlun, Qilian, Qinling, Longmenshan, and Songpan–Ganzi orogens. Late Palaeozoic and Early Mesozoic sediments deposited here may provide keys to understanding the tectonic evolution of the Palaeo-Tethys and collision of the North China and Yangtze Cratons. We conducted in situ U–Pb and Lu–Hf isotope analyses of 568 detrital zircons collected from Upper Palaeozoic to Mesozoic sandstones in the central Qinling block, Taohe depression, and Bailongjiang block in western Qinling to constrain the sources of these sandstones. Our results reveal that the Bailongjiang block has affinities with the Yangtze Craton, from which it may have been rifted. Therefore, the Palaeo-Tethyan Animaqen suture between the two cratons lies north of the Bailongjiang block. We identified the North China Craton as the main source for Triassic flysch in central China. It is possible that the Bailongjiang block could have blocked detritus shed from the North China Craton into the main depositional basins in the SongpanGanzi area. The dominance of 300–200 Ma detrital zircons of metamorphic origin in Lower Jurassic sandstones indicates that the Dabie–Qinling orogen was elevated during Early Jurassic time. In addition, our Lu–Hf isotopic results also reveal that Phanerozoic igneous rocks in central China were mostly products of crustal reworking with insignificant formation of juvenile crust.  相似文献   

6.
The petrography and geochemistry (major, trace, and rare earth elements) of clastic sedimentary rocks from the Paleogene Dainan Formation (E2 d) in the North Jiangsu Basin, eastern China, are investigated to trace their provenance and to constrain their tectonic setting. The studied samples are characterized by LREE enrichment, flat HREE, and negative Eu anomaly similar to the upper continental crust composed chiefly of felsic components in the source area. Petrographic observation indicates that the sandstones contain predominant metamorphic and sedimentary clasts that were derived from peripheral recycled orogen and intrabasinal materials. The trace element ratios (Co/Th, La/Sc, La/Th, and Th/U) and the La-Th-Sc ternary plot further confirm that the sandstones are derived from granitic gneiss sources from recycled orogen and the intrabasinal mixed sedimentary provenance. The granitic gneiss source rocks may have derived from the Proterozoic granitic gneiss denuded in the eastern Dabie-Sulu orogen; and the intrabasinal provenance may come from the underlying strata during the Late Paleocene Wubao movement. The chemical index of alteration (CIA) and A-CN-K plot show that these source rocks may have experienced weak to medium chemical weathering. Analysis on tectonic setting of the source area suggests an active continental margin, which is intimate with tectonic feature of the Dabie-sulu orogen and the Yangtze block. In summary, we suggest that the North Jiangsu Basin is an ideal site for the study of the coupling between the uplift of the orogen and the subsidence of the foreland basin.  相似文献   

7.
In order to constrain the detrital provenance of the siliciclastic rocks, palaeogeographic variations, and crustal growth history of central China, we carried out simultaneously in situ U–Pb dating and trace element and Hf isotope analyses on 368 detrital zircons obtained from upper Permian–Triassic sandstones of the Songpan terrane, eastern Tibetan Plateau. Two groups of detrital zircons, i.e. magmatic and metamorphic in origin, have been identified based on cathodoluminescence images, zircon Ti-temperatures, and Th/U ratios. Our data suggest that the derivation of siliciclastic rocks in the Songpan terrane was mainly from the Qinling, Qilian, and Kunlun orogens, whereas the Yangtze and North China Cratons served as minor source areas during late Permian–Triassic times. The detrital zircons from Middle–Late Triassic siliciclastic rocks exhibit wide age spectra with two dominant populations of 230–600 Ma and >1600 Ma, peaking at ~1.8–1.9 Ga and ~2.4–2.5 Ga, suggestive of a derivation from the Qinling, Qilian, and Kunlun orogens and the Yangtze Craton being the minor source area. The proportions of detrital zircon populations from the northern Qinling, Qilian, and Kunlun orogens distinctly decreased during Middle–Late Triassic time, demonstrating that the initial uplift of the western Qinling occurred then and it could have blocked most of the detritus from the Qilian–northern Qinling orogens and North China Cratons into the main Songpan–Ganzi depositional basin. The relatively detrital zircon proportions of the Yangtze Craton source decreased during Early-Middle Late Triassic time, indicating that the Longmenshan orogen was probably being elevated, since the early Late Triassic and gradually formed a barrier between the Yangtze Craton and the Songpan terrane. In addition, our Lu–Hf isotopic results also reveal that the Phanerozoic magmatic rocks in central China had been the primary products of crustal reworking with insignificant formation of a juvenile crust.  相似文献   

8.
DANIELA FONTANA 《Sedimentology》1991,38(6):1085-1095
The Upper Cretaceous Pietraforte Formation, an allochthonous unit of the Ligurian domain in the northern Apennines, provides a case study of the importance of detrital carbonate grains for provenance determination in sandstones. The Pietraforte Formation is composed of turbidite sandstones with subordinate conglomerate, deposited in an external sector of the Ligurian ocean, close to the Adriatic margin. The sandstones have a lithic composition, characterized by abundant sedimentary and metasedimentary rock fragments (35–56% of the terrigenous framework), little feldspar (<7%) that is almost exclusively plagioclase, and a high ratio of fine- to coarse-grained polycrystalline quartzose grains to total quartzose grains (average Qp/Qt=0.37). Carbonate rock fragments dominate the lithic association of both sandstones and conglomerates and provide the most detailed information for provenance determination. They are composed primarily of dolostones and a wide variety of limestones containing identifiable age-diagnostic microfossils. Fossils and rock textures of carbonate clasts document the erosion of Upper Triassic to Lower Cretaceous shelf and pelagic carbonate units which can be matched with Mesozoic rock types present in the Tuscan domain of the northern Apennines. Compositional results constrain the source of the Pietraforte Formation sandstones to the western margin of the Adriatic plate, from uplifted sedimentary and metasedimentary rocks of the Tuscan domain and its low-grade metamorphic basement. Coeval intrabasinal sources provided additional supplies to the depositional basin of the Pietraforte Formation; this intrabasinal supply consists of shelf carbonate allochems, planktonic foraminifera and argillaceous rip-up clasts. The presence of carbonate grains from shallow-water environments may indicate the existence during deposition of marginal shelf areas favourable for carbonate allochem production.  相似文献   

9.
占王忠  谭富文 《沉积学报》2020,38(4):876-885
羌塘盆地晚三叠世古地理格局是研究其沉积演化史和油气资源评价关键基础。通过地层划分对比、沉积相分析、沉积序列等方法,结合最新的地质调查及其研究结果,对羌塘盆地晚三叠世岩相古地理环境进行恢复,并讨论了上三叠统烃源岩基本特征。羌塘盆地晚三叠世受北侧碰撞造山挤压和南侧班公湖—怒江中特提斯洋盆打开双重影响,北羌塘前陆盆地逐渐萎缩消亡,南羌塘则经历走滑作用开始接受沉积。盆地北部的可可西里造山带、东部的岛链状隆起带和中部的中央隆起带为该时期盆地内三个物源区。北部边缘、中央隆起带东部边缘和盆地的中、东部地区,形成滨岸—三角洲相沉积。盆地中西部沉积较稳定的缓坡相碳酸盐岩。南羌塘坳陷的南部,沉积了向上水体逐渐变深的浅海陆棚相沉积物。此时期碳酸盐岩缓坡相区发育的烃源岩,具有高残余有机碳,高成熟度,低残余生烃潜量等基本特征,综合评价属于中等—较好烃源岩,以生气为主。推测多格错仁地区是今后油气勘探的优选目标和首选地区。  相似文献   

10.
藏夏河组是指发育于北羌塘盆地北部的一套砂、泥质互层的复理石相沉积地层, 其时代为晚三叠世诺利期.由于其形成时间正是羌塘地体与可可西里-松潘地体沿金沙江缝合带进行碰撞、缝合的时期, 因此该套地层对于探讨晚三叠世藏北地质演化具有重要的指示意义.通过对北羌塘盆地多色梁一带藏夏河组砂岩进行X射线衍射, 全岩常量、稀土和微量元素分析, 以及锆石裂变径迹等方法分析该套砂岩的物源、沉积构造背景, 进而探讨晚三叠世羌塘盆地的性质.研究结果表明, 其岩石类型为杂砂岩, 物源主要为长英质火成物质, 另有少量古地壳再循环物质加入, 沉积大地构造背景为活动大陆边缘与大陆岛弧.结合前人研究资料, 推断晚三叠世北羌塘盆地的性质可能为前陆盆地, 藏夏河组为一套造山前或同造山期形成的复理石沉积建造.   相似文献   

11.
Systematic results of major and trace element geochemistry and Sm-Nd isotopic geochemistry on detrital sedimentary rocks of Precambrian to Triassic in the Ganzi-Songpan block and Longmen Mountains are presented. The rocks are classified into greywackes or feldspar sandstones, grains of which are the mixtures of mafic rocks, felsic rocks, and quartz+calcite. Total rare earth elements (REE) contents of the rocks increase gradually and negative Eu anomalies become more obvious from Precambrian to Triassic, which may indicate intensifying crustal anatexis. Tectonic setting was stable during the Late Paleozoic, therefore there are obvious negative Ce anomalies. Nd model ages are between 1.6 Ga and 2.4 Ga, which are very similar to those of the Yangtze craton, South Qinling and North Qinling belts and quite different from those of the North China craton. Therefore, provenance of the sedimentary rocks in the Ganzi-Songpan block and Longmen Mountains was the Yangtze craton and/or the Qinling orogen, which evolved on the basis of the Yangtze craton. The correlation between provenances and tectonostratigraphic strata of the western Yangtze craton shows that the source materials should be primarily from Neoproterozoic. Secondary sources were Archean and Paleoproterozoic strata. Triassic clastic sedimentary rocks contain Late Paleozoic mantle-derived materials, represented by the Emeishan Permian flood basalts. Spatial distribution of initial Nd isotopic compositions indicates that denudating areas were in the east and the north and depositing areas of deep water were in the west and the south for the Ganzi-Songpan basin during Triassic. Translated from Geology in China, 2006, 33(1): 109–118 [译自: 中国地质]  相似文献   

12.
In contrast with the commonly accepted notion regarding ancient turbidites, non-greywacke sandstones are not uncommon in the typically graded turbidite facies of the Cambrian and Silurian sediments in north Wales. The sandstones are the arkosic and lithic types of PETTIJOHN (1957) or the feldspathic and lithic arenites of GILBERT (1954) and occur at the bottom of graded beds when the grain size tends to be above medium grade. Petrological features suggest that debris forming the sandstones in north Wales was not significantly modified during transportation and original provenance characters are well preserved. The occurrence of such sandstones implies that: (1) the current concept of ancient graded greywackes in the turbidite facies should be revised; (2) non-greywacke sandstones in ancient turbidites are comparable in petrological features to recent deep-sea sands; (3) these sandstones are important in connection with the origin of the clay matrix in greywacke.  相似文献   

13.
Petrographic and geochemical characteristics of the Upper Triassic sandstones in the western Ordos Basin were studied to provide insight into weathering characteristics, provenance, and tectonic implications. Petrographic features show that the sandstones are characterized by low-medium compositional maturity and textural maturity. The CIA and CIW values reveal weak and moderate weathering history in the source area. The geochemical characteristics together with palaeocurrent data show that the northwestern sediments were mainly derived from the Alxa Block with a typical recycled nature, while the provenance of the western and southwestern sediments were mainly from the Qinling-Qilian Orogenic Belt. The tectonic setting discrimination diagrams signify that the parent rocks of sandstones in the western and southern Ordos Basin were mainly developed from continental island arc, which is closely related to the evolution of the Qinling-Qilian Orogenic Belt. However, the sandstones in the northwestern Ordos Basin show complex features, which may be resulted from a typical recycling process. Overall evidence from petrography, geochemistry and sedimentology, together with previous researches suggest the Kongtongshan and Helanshan areas were the southwestern and northwestern boundary of the Ordos Basin, respectively, and there was no clear boundary between the Hexi Corridor Belt and Ordos Basin, where a large, uniform sediment dispersal system developed during the Late Triassic.  相似文献   

14.
Geochemical composition (major and trace elements) of Miocene sandstones of the Surma Group exposed in Sitapahar anticline, Southeastern Bengal Basin was determined to reveal their provenance, tectonic setting and source area weathering conditions. The sandstones are sub-arkosic, sub-lithic and greywacke in composition with abundant low-grade metamorphic, sedimentary lithics (mainly chert with some shale fragments), low feldspars and little volcanic detritus. Compared to the average sandstone value, the Surma Group sandstones are depleted in CaO and enriched in Al2O3, Fe2O3 and Na2O. The Chemical Index of Alteration (CIA) values for the Miocene Surma Group sandstones vary from 57 to 73 with an average of 65, indicating low to moderate weathering of the source areas. The geochemical characteristics suggest an active continental margin to passive margin setting for the Surma Group sandstones; preserve the signatures of a recycled provenance that is agreement with sandstone petrography and derivation of these sandstones from felsic source rocks.  相似文献   

15.
出露于羌塘盆地沃若山地区的雀莫错组砂岩是北羌塘盆地早侏罗世的沉积物,对研究早侏罗世沉积盆地的演化特征具有重要的意义。通过对其地球化学特征的分析研究,结果表明该组砂岩为被动大陆边缘裂陷期的沉积产物,岩性主要为岩屑砂岩,岩石矿物成分主要在钾长石、斜长石、伊利石、绿泥石以及石英之间变化。化学风化作用指标(CIW)、化学蚀变作用指标(CIA)和A-CN-K图解,反映该组砂岩的碎屑成分受到了强烈的风化环境,并在风化过程中发生钾交代作用,长石发生伊利石化。化学组分指标(ICV)表明岩石碎屑为近源的第一次旋回沉积物,受沉积分选和再循环作用影响不大;A-CN-K图解还反映出砂岩碎屑源岩中斜长石含量高于钾长石含量,主要在花岗岩和花岗闪长岩之间变化;稀土元素特征表明该组砂岩具有同源性,其成分主要受源区岩石成分控制,为酸性火山岩类。  相似文献   

16.
The Ordovician Turquoise Bluff Slate in northeastern Tasmania is a 2?km-thick sequence of deep-marine siliceous black slates. It is dominated by meta-siltstones with bimodal grainsize distributions typical of turbidite TE-1 and TE-2 facies. The slates have high SiO2 indicating they are hemipelagites. The high Ba and V indicate they were deposited in an anoxic environment associated with high oceanic productivity. All these features are common in muddy turbidites. U–Th–Pb dating of detrital monazite and authigenic xenotime in the slates supports previous evidence that the dominant cleavage, in this unit, formed during the Benambran Orogeny. The whole-rock composition of the slates is similar to black slates in the Adaminaby Group, NSW. A review of Paleozoic whole-rock compositions from the Lachlan Orogen confirms they all have trace element contents similar to average Australian shale. However, there are subtle differences in composition. The Turquoise Bluff Slate and other Mathinna Supergroup rocks from the Eastern Tasmania Terrane have higher average Cr content than similar age turbidites from Victoria and NSW. This probably reflects a small contribution from Tasmania Cambrian ultramafic rocks in the provenance. If this were correct, northeastern Tasmania was closer to western Tasmania in the Paleozoic than other provinces of the Lachlan Orogen, southeastern Australia. Other subtle features of the whole-rock composition of Paleozoic sedimentary rocks from the Lachlan Orogen indicate it may be possible to recognise provincial variations in composition that will provide new constraints on tectonic models of southeastern Australia.  相似文献   

17.
酒西盆地中新生代碎屑组分特征及指示意义   总被引:2,自引:0,他引:2       下载免费PDF全文
通过岩石碎屑成分分析,研究酒西盆地砂砾岩储集层沉积碎屑成分特征对物源属性、盆-山格局演化及油气成藏特征的指示意义。研究表明,酒西盆地下白垩统下沟组砂岩成分成熟度低,物源构造属性以再旋回造山带和部分岩浆弧为特征,物源岩石类型主要为中酸性岩浆岩和变质岩(沉积岩碎屑极少),岩石成分及其组合显示盆地东、西部的物源差异明显;古近系白杨河组在岩石成分、岩屑组成上与下白垩统下沟组砂岩有较大不同,显示物源属性的明显改变。物源属性的改变在一定程度上反映构造格局分异、盆-山格局的演变历程,控制了酒西盆地内油气富集和晚期成藏特征。碎屑成分特征在一定程度上决定了储集层的储集空间类型及裂缝发育规律,值得进一步深入研究。  相似文献   

18.
We conducted in situ U–Pb and Lu–Hf isotope analyses of 401 detrital zircons collected from the Songpan–Ganzi Triassic turbidite complex in an attempt to understand the provenance variations of the siliciclastic rocks and the crustal growth history of central China. These detrital zircons exhibit a wide age spectrum with three major peaks at 1.7–2.0 Ga, 750–1050 Ma, and 210–500 Ma. They are dominated by negative ?Hf(t) values with a large range. Synthesis of the zircon U–Pb and Lu–Hf isotopic data indicate that the Triassic Songpan–Ganzi turbiditic succession could have been derived dominantly from the Tibetan terrains + the Kunlun and Qinling orogens. Our samples are characterized by a common, prominent group of Hf crust formation model ages at 0.8–4.1 Ga with a peak at 2.7–3.4 Ga. This fact indicates that (1) Phanerozoic magmatism in central China could have been predominantly products of crustal reworking with insignificant formation of juvenile crust and (2) the Neoarchaean was an important period of continental growth in central China. In addition, our data set also reveal that three widespread tectonothermal events could have occurred in the region during the late Mesoproterzoic, Palaeozoic, and early Mesozoic, respectively.  相似文献   

19.
This paper reports results from detrital zircon U–Pb geochronology, Hf isotopic geochemistry, sandstone modal analysis, and palaeocurrent analysis of the early Mesozoic strata within the Ningwu basin, China, with the aims of constraining the depositional ages and sedimentary provenances and shedding new light on the Mesozoic tectonic evolution of the northcentral North China Craton (NCC). The zircons from early Mesozoic sandstones are characterized by three major populations: Phanerozoic (late Palaeozoic and early Mesozoic), late Palaeoproterozoic (with a peak at approximately 1.8 Ga), and Neoarchaean (with a peak at approximately 2.5 Ga). Notably, three Phanerozoic zircons in the Early Triassic Liujiagou Formation were found to have positive εHf(t) values and characteristics typical of zircons from the Central Asian Orogenic Belt (CAOB). Therefore, the CAOB began to represent the provenance of sediment in the sedimentary basins in the northern NCC no later than the Early Triassic (261 Ma), implying that the final amalgamation of the NCC and CAOB occurred before the Early Triassic. The U–Pb geochronologic and Hf isotopic results show that the Lower Middle Triassic sediments were mainly sourced from the Yinshan–Yanshan Orogenic Belt (YYOB), and that a sudden change in provenances occurred, shifting from a mixed YYOB and CAOB source in the Middle Jurassic to a primarily YYOB source in the Late Jurassic. The results of the sandstone modal analysis suggest that the majority of the samples from the Lower Middle Jurassic rocks were derived from either Continental Block or Recycled Orogen sources, whereas all the samples from the Upper Jurassic rocks were derived from Mixed sources. The change in source might be ascribed to the southward subduction and closure of the Okhotsk Ocean and the resulting intense uplift of the YYOB during the Late Jurassic. This uplift likely represents the start of the Yanshan Orogeny.  相似文献   

20.
Lower Jurassic sandstones of Shemshak Formation of Kerman basin, central Iran were analyzed for major and select trace elements to infer their provenance, palaeoweathering of source rocks and tectonic setting. Average modal framework components (Qt: F: L= 67.25: 2.41: 30.48) and chemical composition of the sandstones classify them as litharenites. The sandstones are quartz-rich (~ 67% quartz; 75.34 wt.% SiO2) and derived from a recycled orogen composed of quartzose sedimentary rocks. Average CIA, PIA and CIW values (69%, 76% and 80%, respectively) indicate moderate to intense chemical weathering of the source material. The inferred index of weathering/alteration is the sum total of intensities of weathering witnessed by the lithocomponents during atleast two cycles of sedimentation involving (1) chemical weathering of the source rocks («ultimate» granodiorite source and «proximal» quartzose sedimentary source), (2) chemical weathering during fluvial transport of the detritus, (3) chemical weathering of the detritus in depocenters, and (4) chemical weathering during diagenesis. Sandstones exhibit moderate maturity and were deposited under humid climatic conditions. Plots of the chemical analyses data on tectonic setting discrimination diagrams indicate active continental margin setting, which is in agreement with the tectonic evolutionary history of the Central Iran during Jurassic period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号