首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
利用欧洲数值预报中心(ECMWF)发布的第一代全球分辨率ERA-Interim再分析数据,分析了1979—2014年天山山区水汽含量和云水含量的空间分布特征。结果显示:(1)水汽含量的高值中心出现博罗科努山迎风坡,中心值域在10~11 mm之间,低值区位于天山中部的巴音布鲁克附近,中心值域在5~6 mm之间;夏季水汽含量最丰富,在8~11 mm之间。(2)云液水含量的高值区出现在博格达山北坡,而云冰水含量的高值区在西天山海拔较高的托木尔峰地区,低值区均在伊犁河谷等海拔低的地区;夏季云液水含量、云冰水含量均呈减少趋势,云冰水含量较云液水减少得更为明显,下降速率为0.28×10-3 g·kg~(-1)/10 a;(3)垂直分布上,云液水含量在600 h Pa左右的高空出现高值区,中心最大值为10×10~(-3) g·kg~(-1);云冰水含量的高值区则出现在500 h Pa左右的高空,为11×10~(-3) g·kg~(-1);在对流层大气中云冰水含量值远大于云液水,且云冰水发展的高度较云液水更高。  相似文献   

2.
利用欧洲数值预报中心(ECMWF)发布的第一代全球分辨率ERA-Interim再分析数据,分析了1979~2014年天山山区水汽含量和云水含量的空间分布特征。结果显示:(1)水汽含量的高值中心出现在伊犁河谷地区,中心值域在10—11kg m-2之间,低值区位于天山中部的巴音布鲁克附近,中心值域在5—6kg m-2之间;夏季水汽含量最丰富,在8—11kg m-2之间。(2)云液水含量的高值区出现在博格达山北坡,而云冰水含量的高值区在西天山海拔较高的托木尔峰地区,低值区均在伊犁河谷等海拔低的地区;夏季云液水含量、云冰水含量均呈减少趋势,云冰水含量较云液水减少的更为明显,下降速率为0.28kg kg-1/10a;(3)垂直分布上,云液水含量在600hpa左右的高空出现高值区,中心最大值为10kg kg-1;云冰水含量的高值区则出现在500hpa左右的高空,为11kg kg-1;在对流层大气中云冰水含量值远大于云液水,且云冰水发展的高度较云液水更高。  相似文献   

3.
《干旱气象》2021,39(4)
利用ERA-interim再分析资料分析2009—2018年青海省云液水含量和云冰水含量时空分布特征。结果表明:青海省云液水含量和云冰水含量自西北向东南逐渐增多,玉树南部、果洛东南部和祁连山区为云水资源较为丰富的地区,夏秋季节云水资源最为丰富,可达60~70 g·m~(-2)。从云水资源的垂直分布来看,云液水含量和云冰水含量随海拔高度增高呈先增多后减少的变化趋势,云液水含量在海拔4~6 km高度较多,云冰水含量在海拔7~8 km高度较多,云冰水含量峰值所在高度高于云液水含量峰值所在高度。夏秋季节,青南高原云液水含量和云冰水含量垂直变化幅度大,柴达木盆地云液水含量和云冰水含量垂直变化幅度小。从年际变化趋势来看,2009—2018年青海省大部地区云液水含量、云冰水含量呈增多趋势,且秋季增多趋势最为显著。从月际变化看,云液水含量和云冰水含量9月最高,1月最低。柴达木盆地云液水含量和云冰水含量的月际差异最小,东部农业区云液水含量月际差异最大,青南高原云冰水含量月际差异最大。  相似文献   

4.
利用1979—2008年NCEP/NCAR月平均再分析资料,从大气可降水量、水汽输送及收支等方面分析西北干旱区空中水资源的时空变化特征,并揭示其主要原因。研究表明,1979—2008年西北干旱区整层年水汽含量略呈增加趋势,而夏季水汽总收入呈现显著增加趋势。区域空中水资源的变化与中纬度西风水汽输送密切相关。尽管区域西风指数的年代际减弱反映了西北干旱区东、西边界西风水汽输送的减弱趋势;但受区域特殊地形的影响,区域东边界水汽收支的减弱趋势远强于西边界,使得大量的水汽滞留于西北干旱区,从而导致该区域夏季水汽总收入呈现增加趋势。  相似文献   

5.
江西省云水资源特征分析   总被引:1,自引:1,他引:0  
利用江西周边11个探空站资料与江西省内84个站1959—2007年降水资料,根据天气学原理和数理统计学方法,对江西省大气中总水汽量、总云水量、水汽交换次数、水汽更新率、实际总降水量等进行计算分析。结果表明:总水汽量、总云水量最大值均出现在6月(1975年),最小值出现在12月(1963年);中度干旱频率区域总云水量值最大,轻度干旱频率区域总云水量值最小;水汽交换次数平均为7.23次/月;水汽更新率平均4.22天/次;总水汽量、总云水量的地理分布呈北部高、南部低趋势分布;总水汽量、总云水量、总降水量相关性比较好,年变化呈现多峰型。  相似文献   

6.
利用NASA/CERES发布的L3级云资料,选取西南地区(云南、贵州、四川、重庆)2001~2010年水高层云、水雨层云、水层积云、水层云的云水含量数据,研究了该区域4种类型云的年和季节云水含量时空分布特征和变化趋势。结果表明:(1)4种类型云的年和季节云水含量均在海拔低的地方偏多,海拔高的地方偏少。重庆、贵州云水含量高于云南、四川;(2)水雨层云年和季节云水含量最大,其次为水层云和水高层云,水层积云云水含量最少;(3)近10 a来,整个西南地区4种类型云的年平均云水含量均呈递减趋势;(4)4种类型云的云水含量秋季高于春季;(5)春季,中云(水高层云、水雨层云)云水含量既有增加区域,也有减少区域,低云(水层积云、水层云)云水含量呈递减趋势;秋季,中云、低云云水含量均为递减趋势;水雨层云和水层云年和季节云水含量的递减趋势最显著。  相似文献   

7.
对于水平网格距小于10 km的高分辨率非静力平衡的显式云分辨模式,云微物理量的初始化以及物理量之间的相互协调是十分重要的,并且一直是云分析领域的一个难题。考虑在云雨处于定常状态的前提下,根据暖云过程,可得到云中水成物之间相互转化以及与垂直速度的约束关系,而雨水含量跟雷达反射率因子(Z)有关。因此,采用合肥新一代天气雷达2003年7月5日02时(北京时)的观测资料,针对雷达探测的特点对雷达原始数据进行了坐标转换,并进行了插值处理和简单的质量控制,然后依据Z-qr关系和定常暖云方案,反演了雨水混合比(qr)、云水混合比(qc)、水汽混合比(qv)和垂直速度(w)。结果表明,由此得到的雷达回波主要特征及量值分布与雷达站的CAPPI图像基本一致;水汽、云水、雨水和垂直速度量值大小的分布与雷达回波强度的分布也是吻合的,体现出了云中水成物和垂直速度的三维分布结构;各物理量的量值也符合梅雨锋暴雨的特点,梅雨锋积层混合云系中层状云和对流云的差别十分明显。在较强的回波区,雨水在6 km以下含量较大,最大值位于4 km左右,可超过3.0 g/kg;上升速度在5 km左右最大,最大值超过5 m/s;云水含量大值区位于5 km以上,在7 km高度上达到最大,超过3.0 g/kg;雨滴末速度虽然上下比较一致,一般几米每秒,但在5 km左右为大值区。  相似文献   

8.
基于CloudSat资料的青藏高原地区云微物理特征分析   总被引:1,自引:0,他引:1  
青藏高原云物理特征的认识对高原天气和气候的研究有重要意义。利用2006年6月—2011年4月的CloudSat卫星资料,分析了青藏高原地区云的总云水路径、液态水路径、冰水路径及雷达反射率的分布特征,并对高原与东亚降水云的垂直结构进行对比,得到如下结论:(1) 总云水路径的大值区分布在高原西南坡、东南部及高原中部低值区分布在昆仑山脉、祁连山脉及其以北地区;暖季大于冷季;(2) 高原南部及东部为液水路径大值区,以液相云为主;高原中部、北部及西部为冰水路径大值区,以冰相云为主;(3) 雷达反射率的垂直分布主要介于-27~17 dBz,集中在3~9 km;云粒子群随高度先增大后减小,在4 km高度的大小和浓度最大;暖季云高大于冷季,对流活动旺盛;(4) 高原与东亚降水云的结构不同,季节变化也与东亚有差别。(5) 雷达反射率在近地面层随纬度的增大减小,垂直方向的递减率是暖季小于冷季;(6) 冷季的高原上与周边相比为丰水区,南坡的冰水路径与低层雷达反射率大值区对应,表明南坡阻挡作用促进云中冰粒子的形成。   相似文献   

9.
刘菊菊  游庆龙  王楠 《高原气象》2019,38(3):449-459
利用欧洲中期天气预报中心(ECMWF)提供的1979-2016年ERA-Interim再分析资料分析了青藏高原(下称高原)夏季云水含量及其水汽输送情况。结果表明:高原夏季云水含量占全年48%,东南向西北减少。影响高原云水含量的水汽通道有印度洋通道、南海通道、孟加拉湾北部及伊朗西部通道(依次简称通道1、2、3、4)。高原云水含量和各水汽通道强度均有明显年际变化。云水含量年际变化与通道2,4基本一致。云水含量与各水汽通道强度均呈增加趋势。通道1偏强时,来自印度洋北部和南海的异常水汽在孟加拉湾交汇向高原输送,主要使高原西北部云水含量增多。通道2偏强时,南海、中南半岛的异常偏南通量及孟加拉湾北部的异常西南通量向高原东南部输送更多水汽。通道3偏强时,西风带水汽和来自印度洋水汽更多输送到高原,主要使高原东北部云水含量偏多。通道4偏强时,来自南海-孟加拉湾南部的水汽向高原异常输送,使高原中部、东南部云水含量偏多。此外,西太平洋副热带高压(下称副高)偏西南偏强时,水汽通道2、4强度偏强,有利于水汽向高原输送。  相似文献   

10.
基于CloudSat卫星资料分析青藏高原东部夏季云的垂直结构   总被引:5,自引:1,他引:4  
张晓  段克勤  石培宏 《大气科学》2015,39(6):1073-1080
本文利用CloudSat卫星资料,对青藏高原东部2006~2010年6~8月云垂直结构的空间分布进行分析,结果表明:(1)夏季青藏高原东部云发展可达到平流层,且高原东部云在5km以下以水云存在,5~10km以液相和固相共存的混态存在,在垂直高度10km以上以冰云存在。由于CloudSat卫星资料云相的反演问题,可能会造成水云和混态云的发展上限偏低,冰云的发展下限抬升。(2)研究区整层水汽输送和云水平均路径空间分布存在一定的差异性,云水含量纬向分布表现为在26.5°~30.5°N附近存在一个明显的峰值区,经向分布表现为95°E以西云水含量低于以东。(3)研究区以单云层为主,尤其在青藏高原主体。单云层平均云层厚度4182 m,云顶高度、云厚限于水汽的输送,表现为由南向北波动下降。多层云发生频率在27°N以北明显减少,说明强烈的对流运动更容易激发多层云的产生。  相似文献   

11.
利用2006年7月-2009年2月的CloudSat 2B-GEOPROF-LIDAR资料,分析了中国及周边地区(0°~60°N,70°~140°E)的云垂直结构分布特征,并根据气候特征的地域差异从该区域选出8个子区域,逐区统计了云垂直结构特征.结果表明:整个研究区域内61%的云为单层云,39%的云为多层云,其中77%...  相似文献   

12.
东亚干旱半干旱区空中水资源研究进展   总被引:4,自引:0,他引:4  
系统回顾了近年来中外对东亚干旱半干旱区空中水资源方面的主要研究进展,主要包括大气水汽、云的分布特征、空中水资源的降水转化率及其影响因子等。东亚干旱半干旱区西部及东部水汽含量较中部高,背风坡水汽含量较迎风坡高,季风区及山脉地区云水资源高于盆地、沙漠上空。20世纪80年代中期以后,东亚干旱半干旱区对流层底部的水汽显著增多,其中夏季增加最为明显。在全球气候变化背景下,中国西北部分地区云水路径总体呈现上升趋势,同时呈现"东正西负"的东西向变化差异以及"北正南负"的反相位特征。大气环流、地表温度、下垫面地表特征等因子通过影响东亚干旱半干旱区的水汽输送及蒸散,进而改变东亚干旱半干旱区空中水资源,空中水资源的改变通过影响辐射收支、不同高度云量及第2次相变产生的云水含量进而对局地温度和降水产生影响。以往研究中,大部分主要针对东亚干旱半干旱区大气中的水汽含量和云平均状态的分布与变化特征,而与降水相关联的空中水资源的变化特征目前仍不清楚,有待系统深入地研究。   相似文献   

13.
利用2007~2010年北半球夏季(6~8月)CloudSat卫星搭载的云廓线雷达(Cloud Profile Radar,CPR)探测结果对0°~60°N区域单层、双层和三层云系的水平分布、垂直结构特征及各云层云类组成、云水路径等物理量分布进行分析。云量的统计结果表明CPR探测的单层、双层和三层云系的云量分别为36.63%、8.26%和1.40%,云量的水平分布表明其高值区主要位于对流旺盛区域,且高值区的云层云顶高、厚度大,而低值区则多位于副热带高压区域。对不同云类的出现频率统计分析结果表明,单层云系中各云类的出现频率相近;多层云系的上层以卷云为主,下层以层积云为主。对比海陆差异发现洋面卷云和层积云的出现频率显著高于陆面,但高层云和高积云的出现频率低于陆面。云水路径分析表明,单层云系的冰水路径和液水路径均最大,而在多层云系中云层越高、厚度越大、冰水路径越大,液水路径则随着云层的降低增大。  相似文献   

14.
分析比较了中蒙(35°N~50°N,75°E~105°E)、中亚(28°N~50°N,50°E~67°E)和北非(15°N~32°N,17°W~32°E)三个典型干旱区水汽输送特征的异同,及其1961~2010年间的降水时空变化,分析了水汽来源和输送变化及其可能原因。结果显示,由于受不同的气候系统影响,中蒙、北非和中亚干旱区的降水在年内变化上有着显著不同。中蒙和北非干旱区降水呈现夏季风降水的特征;而中亚干旱区降水则为更多受到冬季风的影响。1961~2010年,随着全球气温上升,中蒙干旱区冬季纬向水汽输送增加而经向输送减少,总水汽输送增加;中亚干旱区冬季纬向输送减少而经向增加,总水汽输送减少;北非干旱区冬季纬向输送增加而经向输送减少,总水汽输送增加。夏季中蒙和北非干旱区经向、纬向输送均减小,中亚干旱区夏季纬向输送减少而经向减少,总输送增加。相应的,中蒙干旱区年、冬季和夏季降水分别以4.2、1.3和1.0 mm/10 a的趋势增加;而中亚干旱区冬季(1.2 mm/10 a)和夏季(0.1 mm/10 a)降水增加,年降水则呈减少趋势(-0.8 mm/10 a);北非干旱区年降水和夏季降水分别以0.5 mm/10 a和0.1 mm/10 a的速率增加。冬季中蒙干旱区主要水汽来源是水汽经向输送,而中亚干旱区水汽主要为纬向输送,经纬向水汽均为净输出是北非干旱区降水极少的主要原因,平均总水汽输送量约为-9.48×104 kg/s。冬季低纬度和高纬度环流通过定常波影响干旱区冬季降水。中蒙和中亚干旱区冬季降水主要受西太平洋到印度洋由南向北的波列影响,北非干旱区冬季降水主要和北大西洋上空由北到南的波列相联系。各干旱区的降水对海温变化有着不同的响应:中蒙干旱区冬季降水与冬季太平洋西海岸和印度洋海温呈显著正相关,夏季与海温相关不显著;中亚干旱区与地中海和阿拉伯海温相关,且与阿拉伯海温为正相关。  相似文献   

15.
针对2012年7月23日云南腾冲的一次混合型层状云降水过程,联合35 GHz多普勒偏振云雷达、雨滴谱仪和探空仪进行联合观测与分析,根据Z—q_r(雷达反射率因子—雨水含量)的关系式,反演雨水含量(q_r)、云水含量(q_c)以及空气垂直速度(w)。结果表明:在较强回波区,云水含量为0.5~0.8 g·kg~(-1),雨水含量为0.2 g·kg~(-1),空气垂直速度为0.6~1.0 m·s~(-1),对应时段的小时雨量较大;通过云水含量与雨水含量、雨水含量与雷达反射率因子的散点图,分别得到各自的拟合公式。当云水含量0.8 g·kg~(-1)时,直接通过拟合公式得到的云宏观参量的精度较好。  相似文献   

16.
利用美国NASA Langley研究中心提供的云和地球辐射能量系统(CERES),单个卫星视场大气顶/地面通量和云(SSF)的Aqua卫星2002年7月至2004年6月的云水路径和冰水路径资料,分析中国西北地区降水效率和人工增雨潜力。选取天山、祁连山、南疆沙漠和东南部季风区4片有代表性的地域,按该资料的云分类,分别计算低层云和高层云区域月平均值,结合相应时期和地区的降水量,分析不同云层与月降水量的相关。结果表明,西部干旱区降水与高层云相关较好,而东南部季风区则与低层云相关好。整个西北区以低云的云水路径与降水量相关系数最高,平均R2=0.8459。定义月降水效率为月平均降水强度(mm/h)除以总的云水路径,结果表明,不论低层云或高层云的降水效率都是东南部季风区最大,祁连山区略大于天山区,南疆沙漠最小。其年变化低层云除南疆7月最高外,其余地区8月最高。高层云的降水效率东南部季风区8月最大,其余3片7月最高。取(LWP/IWP-C)×LWP作为人工降水最大可能增(减)雨的度量,则4片中祁连山区最大,其次是天山,东南部季风区最小,年平均为负值。人工增雨潜力的年变化表明,高层云的峰值A区和C区在8月,D区则在9月,其余峰值均出现在6或7月。本文重点研究天山、祁连山区地形云人工增雨潜力,为今后人工增雨(雪),开发山区云水资源提供科学依据。  相似文献   

17.
冬季青藏高原东部(22°N~32°N,102°E~118°E)层云区是唯一存在于副热带陆地的层云密集区,环流特征较为复杂,大多数耦合气候系统模式对该地区层云的模拟存在较大的偏差。对该地区层云模拟能力的系统分析评估是改进模式性能的重要基础。本文基于国际卫星云计划(ISCCP)卫星资料,评估了中国科学院大气物理研究所两个版本的气候系统模式FGOALS-s2和FGOALS-g2的大气环流模式试验(AMIP)对青藏高原东侧层云的模拟能力。通过分析云辐射强迫等相关特征、大气环流、稳定度、以及地表气温和云的关系,探讨了模式偏差的可能原因。结果表明,两个模式都不同程度地低估了青藏高原东侧的低层云量和云水含量。在垂直结构模拟方面,FGOALS-s2模式能较好地模拟出高原东侧低云主导的特征,其模拟的云顶高度与卫星资料更为接近;而FGOALS-g2模式则高估了该地区的平均云顶高度。分析表明,两个模式均低估了高原东侧的低层稳定度,同时不同程度地低估了该地区中低层水平水汽输送,导致层云云量的模拟偏少。此外,FGOALS-g2高估了高原东侧的上升运动和垂直水汽输送,使得模拟的低云偏少而云顶高度偏高。  相似文献   

18.
台风螺旋雨带云结构和降水形成机制研究   总被引:1,自引:1,他引:0  
杨文霞 《气象》2013,39(2):194-202
应用数值模式结果,选择台风登陆后两个不同时次螺旋雨带中两个强降水中心,对台风螺旋雨带的云结构和降水形成机制进行诊断分析.结果发现螺旋雨带云结构和降水形成机制有如下特点:在9~13 km高空范围内冰晶的非均质核化非常活跃,冰晶转化率高于台风眼壁暴雨数倍,但是冰晶通过贝吉龙过程生长为雪、雪通过凝华增长生长为霰的过程相对台风眼壁很弱,螺旋雨带雨水形成微物理机制以霰粒子融化成雨水(pgmlt)为主,冰相粒子转化率大值区位于垂直上升气流大值区,8 km高度霰收集雪(dgacs)干增长是最主要的冰相粒子生长过程,与北方层状云比较,螺旋雨带暴雨冷云中的凝华过程和撞冻过程非常活跃.螺旋雨带云水凝结过程呈双峰型,位于7~8 km高度冷云区的云水凝结峰值较大,暖云区0.5~1.5 km高度云水凝结峰值次之.  相似文献   

19.
利用1998—2013年热带测雨卫星(TRMM)3A12资料,对南海及其周边地区降水、云和潜热的三维特征及其变化进行了对比研究,把南海及其周边地区分为四个区域:华南地区、中南半岛、马来群岛、南海。结果表明:(1)地面降水率EOF分析的第一、二模态方差贡献率分别为57.16%和8.72%,第一模态向量场均为正值,降水呈现南多北少的分布特征;第二模态向量场体现了降水变化南北反相的特征,马来群岛降水变化与其他三个区域反相。从两个模态时间系数序列看出,1998—2005年整个区域降水总体减少,区域降水北部增多南部减少;2005—2013年整个区域降水总体增多,区域降水南部增多北部减少。(2)南海及其周边地区降水夏秋季多,春冬季少,降水中心春夏季北移,秋冬季南撤,其中马来群岛夏季降水最少,冬季最多;其它三个区域都是夏季降水最多,华南和中南半岛冬季最少,南海春季最少。(3)赤道附近对流降水为主,23 °N以北区域层云降水为主,5~23 °N之间区域两种类型降水比例随季节变化,其中陆地降水比例随季节变化明显,特别是华南地区陆地夏季对流降水比例大于50%,冬季层云降水比例大于80%;海洋对流降水所占比例普遍大于50%,随季节变化小。(4)云冰、云水含量水平分布大值区与降水大值区相对应;二者随高度先增加后减少,云冰在13 km高度达到最大值,云水在2.5 km高度达到最大。春冬季,马来群岛云冰含量最大;夏秋季,南海云冰含量最大。云水含量在四个季节都以南海最大。(5)潜热加热率水平分布大值区与降水大值区相对应;随高度呈双峰分布,峰值分别出现在1~2 km高度和4 km高度处,春冬季马来群岛潜热加热率最大。   相似文献   

20.
中国地区夏季6~8月云水含量的垂直分布特征   总被引:6,自引:4,他引:2  
杨大生  王普才 《大气科学》2012,36(1):89-101
基于观测资料的夏季云水含量时空分布情况对于数值天气预报、气候预测以及人工影响天气试验都十分重要。本文利用CloudSat卫星资料, 分析了2006~2008年中国地区夏季月平均云水含量的垂直和区域变化特征。结果显示, 青藏高原地形以及东亚夏季风对月平均云含水量分布具有明显影响。中国中部纬度上对流层中层的月平均液态水含量比南部及北部的量值大。各月平均云液水含量垂直廓线存在两个不同高度上的峰值区, 原因可能主要是受大尺度参数的控制, 以及受到青藏高原和东亚季风环流的影响。平均冰水含量纬向垂直分布的高值区主要在对流层中上部。本文中所揭示的云水含量特征为天气和气候模式改进、人工影响天气及云—辐射相互作用提供了重要的基础信息。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号