共查询到19条相似文献,搜索用时 62 毫秒
1.
利用呼和浩特市自动站观测的气象要素资料和探空资料以及呼和浩特市环境监测站监测的PM10数据,分析了沙尘暴过境前后地面气象要素、高空风和理查逊数以及PM10变化特征。结果表明:沙尘暴发生前受地面低气压控制,空气极度干暖,风向为稳定的西南风,3~5.5km高度上有较强的动量下传,大气不稳定性在500~400hPa之间。沙尘暴过境时气温迅速下降,风速急剧增大,风向突变为西北风,空气呈干冷状态,1.5~3km高度上有较强的动量下传,大气的不稳定性主要发生在850 hPa以下。沙尘暴发生时较发生前PM10浓度值增加21倍。 相似文献
2.
利用PM10日平均值统计资料、NCEP 2.5°×2.5°分析资料以及温江站探空资料,针对2012年发生在成都的13次PM10典型污染过程进行了环流背景、动力条件、稳定度条件以及水汽条件的分析.结果表明:(1)PM10典型污染过程多发生在南支波动较弱的环流型下,我省受偏西气流或西北气流控制.(2)大气中低层垂直运动较弱,低层为弱辐合,辐合层次较低,不利于污染物的水平和垂直扩散.(3)对流层中下层中常有逆温层或等温层存在,大气热力状态较稳定.(4)大气多为上干下湿的状态,湿层较浅薄. 相似文献
3.
为了探究银川市大气边界层逆温特征和影响因素及其与冬季PM2.5污染的关系,利用2015—2020年银川气象站探空、地面气象观测资料及银川市空气质量监测数据,在分析银川市大气边界层逆温及地面气象要素特征基础上,以冬季为研究时段,探讨逆温与地面气象要素对PM2.5污染的影响。结果表明:(1)银川市清晨大气边界层较傍晚更易出现逆温,且逆温多为贴地逆温,贴地逆温较悬浮逆温强度大、厚度小;逆温频率和厚度冬季最大、夏季最小,逆温强度秋季最强、夏季最弱。(2)冬季晴天,地面平均风速1.0~1.5 m·s-1、相对湿度30%~60%的气象条件下易出现逆温。(3)贴地逆温是影响冬季PM2.5污染天气的主要气象因素之一,当逆温厚度超过596 m、强度超过1.4℃·(100 m)-1时,易出现PM2.5污染天气,且随着逆温厚度增大、强度增强,污染加重。(4)冬季PM2.5污染天气下,清晨天空状况多为晴天,通常地面平均风速小于1.3 m·s-1 相似文献
4.
利用2003年10月北京地区PM10浓度流动观测资料和同期MODIS AOD(Aerosol Optical Depth)高分辨率遥感资料,采用卫星遥感地面观测变分订正处理方法,综合分析了北京地区PM10浓度的空间分布特征以及机动车排放的影响效应。动态观测试验结果表明:北京城区大部分为轻污染区, 北京近郊区PM10浓度高值区沿环路呈环状分布,其中北京西南部、南部和东北部污染较严重,北京城郊街区PM10的空间分布受机动车排放的影响较大。MODIS卫星遥感资料分析表明:北京城区及近郊区AOD值较远郊区高得多,AOD空间分布场中存在虚假高值区,AOD非均匀分布特征不明显。采取点面结合综合观测研究思路,运用卫星遥感地面观测综合变分分析方法,可以取得客观订正的显著效果。经地面实测PM10浓度变分订正后的AOD变分场可以较高分辨率信息描述北京地区AOD的非均匀分布特征,弥补地面PM10浓度观测的缺陷。 相似文献
5.
6.
为了解成都市PM2.5污染特征及其与地面气象要素的关系,利用环境空气质量监测资料和地面气象观测资料,分析了PM2.5质量浓度的季节、月和日变化特征,并分不同空气质量等级分析空气质量与地面气象要素的关系。结果表明:PM2.5质量浓度具有明显的季节、月和日变化特征,且成都市区6个监测站的变化趋势比较一致;成都市相对湿度较大,地面风速较小,约62%的样本分布在相对湿度80%~100%,约85%的样本分布在地面风速0~2 m·s-1,地面风速对成都市PM2.5的水平输送、扩散、稀释不利;降水对PM2.5的清除量随PM2.5初始浓度、降雨持续时间和累积降雨量增加而增大。 相似文献
7.
对2002年1月1日-2002年12月31日日照市环境监测中心提供的PM10(可吸入颗粒物)日平均浓度资料和对应时段的日照市地面气象资料做了深入的分析,揭示了污染物PM10变化特征及其随气象要素的变化规律。同时分析了主要污染物PM10与地面风速、风向间的相关关系,发现日照市大于等于3级的PM10污染日均出现在1-4月,地面风速对污染物PM10浓度有一定影响,当地面风速超过5m/s时,3级及以上污染日很少出现,当地面风速超过6.5m/s时,随着风速的提高,污染物浓度呈下降趋势。污染物浓度呈明显的季节变化,冬、春季节明显高于夏、秋季节。 相似文献
8.
对中国中东部3个区域大气本底观测站2015年12月—2017年12月PM10质量浓度及其化学成分空间分布与季节变化特征进行研究,结果显示:研究期间龙凤山站、临安站和金沙站平均PM10质量浓度分别为57.5,62.2 μg·m-3和57.6 μg·m-3。其中临安站和金沙站2017年PM10质量浓度较2016年有所下降,但龙凤山站有所上升。与2013年相比,临安站和金沙站平均PM10质量浓度分别降低29.3%和26.2%。临安站SO42-,NO3-和NH4+平均质量浓度分别为9.9,8.2 μg·m-3和3.7 μg·m-3,金沙站分别为10.2,6.7 μg·m-3和2.6 μg·m-3,均高于龙凤山站的5.9,4.9 μg·m-3和2.1 μg·m-3,其中龙凤山站和临安站的NO3-与SO42-质量浓度比值较高(0.9和0.8),金沙站较低(0.6)。龙凤山站的有机碳(OC)和元素碳(EC)质量浓度分别为10.1 μg·m-3和2.7 μg·m-3,临安站为6.7 μg·m-3和3.1 μg·m-3,金沙站为4.7 μg·m-3和2.3 μg·m-3,即龙凤山站OC最高,金沙站最低,3个站点的EC基本相当,临安站略高。与2013年相比,研究期间临安站SO42-,NH4+和OC分别下降38.1%,26.0%和55.6%,金沙站分别下降46.3%,51.9%和44.7%,但临安站和金沙站的NO3-分别上升12.3%和15.5%;临安站EC下降27.9%,金沙站EC上升4.5%。3个站点夏季PM10,NO3-,EC质量浓度及NO3-与SO42-质量浓度比值均最低。 相似文献
9.
四川盆地是中国空气污染最严重的区域之一,为研究降水对四川盆地PM2.5、PM10的清除作用,利用2016—2021年四川盆地90个环境监测站PM2.5、PM10质量浓度观测资料和17个地面气象站观测资料,首先分析了降水对四川盆地PM2.5、PM10空间分布的影响;然后基于描述降水前后气溶胶粒子质量浓度变化的清除率,揭示了降水强度、时长对PM2.5、PM10清除效果的影响;最后,利用雨滴谱分布、雨滴大小、下降末速度等雨滴谱参量计算污染物的清除系数,分析了四川盆地4次污染事件中降水对PM2.5、PM10的清除效果。结果表明:(1) 四川盆地降水影响PM2.5、PM10空间分布,降水量越大、降水持续时间越长,清除率越大,清除效果越明显;(2) 大雨个例中,降水持续时间大于6 h后,清除率对降水持续时间增加不敏感;(3) 当雨滴直径、雨滴总个数和分钟雨强出现峰值,雨滴谱加宽变强后,PM2.5、PM10质量浓度快速降低;(4) 清除系数对PM2.5和PM10质量浓度变化具有指示意义,当清除系数峰值达10 h-1以上,降水对PM2.5和PM10清除效果显著。
相似文献10.
利用潮州市2014—2020年空气质量逐小时质量浓度数据,分析了PM2.5质量浓度的年、月、日变化特征,并结合相应时段的潮州国家站气象资料,分析了PM2.5质量浓度与气象要素的关系。结果表明:2014—2020年潮州市区PM2.5年平均质量浓度、超标出现日数均呈下降趋势。PM2.5质量浓度具有明显的月和季节变化特征,其峰值出现在3月、谷值在6月,秋冬春季的质量浓度较高及超标日较多,尤其是1—4月份,需加强PM2.5污染防控。二级和轻度污染质量浓度的日变化呈双峰型分布,主峰在20:00,次峰在01:00;中度污染质量浓度出现3个峰区,第1峰在01:00、第2峰在21:00、第3峰在09:00,各级最低谷均出现在14:00—15:00。各级质量浓度对应的气象条件有较大差异,其中一级时平均雨量较大、气温较高、风速较大;超标时平均雨量较小、气温较低、风速较小;二级处于一级和超标之间。日雨量1 mm以下、平均气温15~20℃之间、风速≤1.5 m/s时,平均质量浓度及超标率较高。西风及静... 相似文献
11.
12.
13.
14.
日照市区PM10污染物特征及其与气象要素的关系 总被引:18,自引:3,他引:18
对2002年1月1日~2002年12月31日日照市环境监测中心提供的PM10(可吸入颗粒物)日平均浓度资料和对应时段的日照市地面气象资料做了深入的分析,揭示了污染物PM10变化特征及其随气象要素的变化规律。同时分析了主要污染物PM10与地面风速、风向间的相关关系,发现日照市大于等于3级的PM10污染日均出现在1-4月,地面风速对污染物PM10浓度有一定影响,当地面风速超过5m/s时,3级及以上污染日很少出现,当地面风速超过6.5m/s时,随着风速的提高,污染物浓度呈下降趋势。污染物浓度呈明显的季节变化,冬、春季节明显高于夏、秋季节。 相似文献
15.
文章针对大同市2006—2009年、榆社县2006—2008年PM10质量浓度数据,使用趋势分析、后向轨迹模拟不同高度的PM10的传输路径,可以看出:PM10浓度的日变化特征为"两高三低";PM10浓度日际变化不明显,只在典型日PM10浓度值明显增大;PM10浓度月变化特征为1、5、12月浓度高,春季5月份由于为沙尘期浓度高。PM10浓度季节变化规律与采暖期和非采暖期变化相符合,即采暖期的冬春季浓度高、非采暖期的夏秋季浓度低;从2006—2009年间,两站PM10质量浓度基本呈逐年下降趋势。不同气象要素与PM10浓度的相关性,按相关系数绝对值从大到小排列依次为:露点温度、气温、降水量、相对湿度。其中露点温度和PM10浓度呈显著负相关性,气温与PM10浓度呈较弱负相关性。 相似文献
16.
17.
18.
选用咸宁市金沙区域2006年6月至2007年5月可吸入颗粒物质量浓度监测资料,分析了金沙颗粒物质量浓度时间分布特征。分析结果表明:金沙三种可吸入颗粒物PM10、PM2.5、PM1.0质量浓度变化规律基本一致,年季变化表现为秋冬大,夏春小;日变化呈双峰双谷型周期性变化,白天大于夜间,最大值出现在下午16-19时,最小值出现在清晨03-07时,除秋季外第二峰谷表现不明显。且雨雾天气PM10浓度较晴到多云低。且通过与2006年6月至2007年5月的地面气象要素资料相关分析,发现PM10质量浓度与气温、气压呈显著正相关,与降水、风速、湿度呈显著负相关。 相似文献
19.
对2013年河北省中南部的石家庄、保定、沧州、衡水、邢台和邯郸6个地市市区各站点逐小时PM10和PM2.5监测资料及相应气象资料分析结果表明:6个地市中邢台年污染日数最多,对应其年平均风速最小;沧州的最少,年平均风速最大。各地市各个级别污染日数不同,五、六级重污染天气均集中在10月—次年3月。首要污染物主要是PM10和PM2.5,但比例不尽相同。特殊的地理位置、污染源差异和气象条件的差异造成各地市污染日数、级别的差异。6个地市污染天气过程时段大都相同,区域性污染明显。各地市PM10和PM2.5浓度平均最大值均出现在冬季,PM10浓度平均最小值均出现在夏季,各市PM2.5浓度平均最小值出现的季节不同。6个地市PM10和PM2.5浓度值的月变化趋势相似。不同季节各地市PM10和PM2.5浓度日变化趋势不同,极值出现的时间也各不相同,极值出现的时间与气象条件和人类活动关系密切。秋、冬季各地市PM10和PM2.5浓度日较差多大于春、夏季的。各地市PM10和PM2.5浓度日均值与当地的日均气温、风速、能见度呈负相关关系,与相对湿度呈正相关关系且相关性比较显著。 相似文献