首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 995 毫秒
1.
A palaeomagnetic investigation has been carried out of rocks from the eastern part of the Voronezh Massif, which constitutes, together with the Ukrainian Shield, the Sarmatian segment in the southern part of the East European Craton. The samples were collected in a quarry close to the town of Pavlovsk (50.4°N, 40.1°E), where a syenitic-granitic body intrudes Archaean units. U–Pb (zircon) dating has yielded an age of 2080  Ma for the intrusion.
  Two characteristic magnetic components, A and B, were isolated by thermal and alternating-field demagnetization. Component A was obtained from granites and quartz syenites (11 samples) and has a mean direction of D = 229°, I = 28°, and a pole position at 12°N, 172°E. This pole is close to a contemporary mean pole (9°N, 187°E) for the Ukrainian Shield, which implies that the Voronezh Massif and the Shield constituted a single entity at 2.06  Ga. These poles differ from contemporaneous poles of the Fennoscandian Shield, indicating that the relative positions of the two shields were different from their present configuration about 2100  Myr ago.
  A component B, isolated only in quartz monzonites (five samples), has a mean direction D = 144°, I = 49°, and a pole position at 4°N, 251°E, which is close to late Sveconorwegian (approximately 900  Ma) poles for Baltica. This suggests that the East European Craton was consolidated some time between 2080 and 900  Ma. Comparison with other palaeomagnetic data permit us to narrow this time span to 1770–1340  Ma.  相似文献   

2.
We report on the palaeomagnetism of the gabbroic Cape St Mary's sills of the Avalon Peninsula of Newfoundland, which have previously yielded a 441±2  Ma U–Pb baddeleyite age (latest Ordovician or earliest Silurian). At 12 of 19 sites, stepwise alternating-field or thermal demagnetization isolated a stable characteristic remanence carried by magnetite. This remanence is shown to pre-date Early Devonian folding of the sills. Although a baked-contact test was inconclusive, the positive fold test and the low grade of metamorphism of the sills (prehnite–pumpellyite facies) make it likely that the characteristic remanence is primary. The tilt-corrected site-mean characteristic remanence has a declination of 343° and an inclination of −51° ( k =25, α 95=9°), yielding a ∼440  Ma palaeopole at 10°N, 140°E ( dm =12°, dp =8°) for West (North American) Avalonia. The corresponding ∼440  Ma palaeolatitude for the Avalon Peninsula is 32°S±8°. The only other West Avalonian palaeolatitude determination from rocks that could be of similar age is from the Dunn Point volcanics of Nova Scotia; their more southerly palaeolatitude of 41°S±5° suggests that they are significantly older than 440  Ma, a possibility that we recommend testing with U–Pb dating. Although no ∼440  Ma palaeolatitude determinations are available for East Avalonia (parts of southern Britain and Ireland), interpolating between mid-Ordovician and mid-Silurian determinations gives an estimate of ∼25°S. This is consistent with our Cape St Mary's result and, if the Iapetus Ocean closed orthogonally, with a narrow (∼1000  km) Iapetus Ocean of approximately east–west orientation between Avalonia and Laurentia by 440  Ma.  相似文献   

3.
Summary. Palaeomagnetic and isotopic results from the Kaoko lavas, Hoachanas basalts and dolerite sills of South-West Africa indicate that the Upper Triassic-Lower Jurassic Stormberg flows of South Africa may have extended into SW-Africa and that younger igneous events of Lower Cretaceous age were simultaneous with the Serra Geral volcanism in Brazil. Five analyses on three samples of the Keetmanshoop sills gave K-Ar ages between 178 ± 4 and 199 ± 4 Ma, four analyses of two samples of the Hoachanas basalts gave ages between 161 ± 3 and 173 ± 2 Ma and eight analyses of five samples of Kaoko basalt gave ages between 110±4 and 128 ± 2 Ma.
The components of remanent magnetization (RM) used to compute palaeomagnetic pole positions for the Kaoko lavas (48° N, 93° W, A95 = 3°) and for the Hoachanas basalts (61° N, 106° W, A95 = 7° are stable to alternating field (AF) and thermal demagnetization.
Correlation on a pre-drift map and on a map reconstructed for 112 Ma BP (before present) between the palaeomagnetic poles from the Kaoko and Serra Geral lavas suggests that the South Atlantic had not opened appreciably by 112 Ma BP. Cretaceous pole positions for S. America and Africa on a map reconstructed for 80 Ma BP are also discussed.  相似文献   

4.
Summary. The Pacific plate's late Maastrichtian (∼ 69 Ma) palaeomagnetic pole, which constrains the northward motion of the Pacific plate during the Cainozoic and latest Cretaceous, was studied. A recently proposed method for obtaining oceanic plate palaeomagnetic poles by combining dissimilar data was extended to accept, as input, the relative amplitudes of magnetic lineations with different azimuths or widely separated sites or both. Combining late Maastrichtian palaeomagnetic data-the relative amplitudes and skewness of magnetic lineations, palaeolatitudes from a palaeomagnetic study of basalt and sediment in vertical cores, a pole from the inversion of the magnetic anomaly over a seamount, and present locations of equatorial sediment facies—yielded a best fit pole of 71°N, 9°E and a 95 per cent confidence ellipse with the major semiaxis of 6° striking 91° clockwise from north and the minor semiaxis of 2° striking 1° clockwise from north. This best fit pole, when compared to the pole expected if the hotspots have been fixed with respect to the spin axis, demonstrates that the hotspots in the Pacific Ocean have shifted ∼ 10° south with respect to the spin axis during the Cainozoic. This best fit pole, when compared to the best fit Campanian pole of the Pacific plate, demonstrates that the pole wandered rapidly, 1.1° Ma-1, with respect to the Pacific plate during the latest Cretaceous.  相似文献   

5.
Measurement of samples from 154 sites in the continental sector of the Cameroon Volcanic Line yielded six palaeomagnetic poles, at 243.6°E, 84.6°N, α 95 = 6.8°; 224.3°E, 81.2°N, α 95 = 8.4°; 176.1°E, 82.0°N, α 95 = 8.5°; 164.3°E, 86.4°N, α 95 = 3.4°; 169.4°E, 82.6°N, α 95 = 4.6° and 174.7°E, 72.8°N, α 95 = 9.5°, belonging to rocks which have been dated by the K–Ar method at 0.4–0.9  Ma, 2.6  Ma, 6.5–11  Ma, 12–17  Ma, 20–24  Ma and 28–31  Ma, respectively. The results are in general agreement with other palaeomagnetic poles from Oligocene to Recent formations in Africa.
  The first three poles for rocks formed between 0.4 and 11  Ma are not significantly different from the present geographical pole. Together with other African poles for the same period, this suggests that the African continent has moved very little relative to the pole since 11  Ma. The other three poles for rocks dated between 12 and 31  Ma are significantly different from the present geographical pole, showing a 5° polar deviation from the present pole in the Miocene and 13° in the Middle Oligocene.  相似文献   

6.
Palaeomagnetic investigations and Rb–Sr dating were carried out on samples from two plutons from the Granite Harbour Intrusives of the Transantarctic Mountains inland of Terra Nova Bay. The Rb–Sr whole rock–biotite ages from Teall Nunatak (475±4, 483±4 Ma), a quartz-diorite pluton cropping out to the south of Priestley Glacier, are older than that from the Mount Keinath monzogranite (450±4 Ma), which is located to the north of the glacier. These results are consistent with the literature data, which suggest that during the last phases of the Ross Orogeny the cooling rate of the basement was significantly lower to the north than to the south of Priestley Glacier. The Teall Nunatak quartz-diorite is characterized by a stable magnetization, whose blocking-temperature spectrum ranges from 530 to 570 °C. At one site, the stable magnetization is screened by a large secondary component of opposite polarity, removed by thermal demagnetization below 300 °C. The characteristic directions after thermal demagnetization yielded a southern pole located at lat. 11°S, long. 21°E. The magnetization of Mount Keinath monzogranite consists of several components with overlapping stability spectra. A characteristic direction was isolated at one site only, obtained by demagnetizing the specimens in the temperature range from 380 to 460 °C.
  Comparison with the other East Antarctica poles shows that those from Victoria Land are very well grouped and give a reliable early Ordovician palaeopole (lat. 5°S, long. 23°E, with K =196 and A 95=3.7°), whereas the poles from Wilkes, Enderby and Dronning Maud Land are dispersed. We tentatively advance the hypothesis that the dispersion reflects different magnetization ages due to the slow cooling of these regions during the last stages of the Ross Orogeny.  相似文献   

7.
i
Oriented cores have been secured from fourteen sites in the Great Rhodesian Dyke, by means of a portable sampling drill. The natural remanent magnetizations showed high dispersion at all sites except one. After demagnetization in alternating magnetic fields, nine sites gave well grouped directions of primary magnetization. These sites include five rock types distributed among three Complexes of the Great Dyke and two satellite dykes, over 200 miles of the length of the Dyke and through several thousand feet in depth as the rocks were originally intruded. The nine site mean directions of primary magnetization are closely grouped and are believed to represent directions of thermo-remanent magnetization at the date of intrusion of the Great Dyke. It is suggested that the dates of magnetization at the sites must cover a sufficient time interval to give a mean pole position close to the axial geocentric dipole freed from secular variation. On the assumption of a geocentric dipole field, the position of the mean South magnetic pole is 211/2 °N, 611/2 °E, with radius of 95 per cent confidence 9°. This pole position is close to positions of North magnetic poles given by studies of the palaeo-magnetism of the Pilansberg Dykes and Bushveld gabbro.  相似文献   

8.
207Pb/206Pb single-grain zircon, 40Ar/39Ar single-grain hornblende and biotite, and 40Ar/39Ar bulk-sample muscovite and biotite ages from the Nelshoogte trondhjemite pluton located in eastern Transvaal, South Africa, show that this granitoid had a protracted thermal history spanning 3213±4  Ma to about 3000  Ma. Whole-rock 40Ar/39Ar ages from cross-cutting dolerite dykes indicate that these were intruded at about 1900  Ma. There is no evidence of this or other, later events significantly affecting the argon systematics of the minerals from the pluton dated by the 40Ar/39Ar method.
  The pluton has a well-defined palaeomagnetic pole which is dated at 3179±18 (2 σ ) Ma by 40Ar/39Ar dating of hornblende. This pole (18°N, 310°E, A 95=9°) yields a palaeolatitude of 0°, significantly different from other Archaean poles from the Kaapvaal Craton. The palaeolatitude difference implies that there was significant apparent polar wander during the Archaean. A second, overprinting magnetization seen in the pluton is also seen in the lower-Proterozoic dolerite dykes, and is consistent with other lower-Proterozoic (2150–1950  Ma) poles for southern Africa.  相似文献   

9.
Upper Jurassic red sandstones and red siltstones were collected from 67 layers at 12 localities in the Penglaizhen formation. This formation is in the north of Bazhong county (31.8°N, 106.7°E) in the Sichuan basin, which is located in the northern part of the Yangtze craton. Thermal demagnetization isolated a high-temperature magnetic component with a maximum unblocking temperature of about 690 °C from 45 layers. The primary nature of the magnetization acquisition is ascertained through the presence of magnetostratigraphic sequences with normal and reversed polarities, as well as positive fold and reversal tests at the 95 per cent confidence level. The tilt-corrected mean direction of 36 layers is D = 20.0°, I = 28.8° with α 95 = 5.8°. A Late Jurassic palaeomagentic pole at 64.7°N, 236.0°E with A 95 = 7.0° is calculated from the palaeomagnetic directions of 11 localities. This pole position agrees with the two other Late Jurassic poles from the northern part of the Yangtze craton. A characteristic Late Jurassic pole is calculated from the three poles (68.6°N, 236.0°E with A 95 = 8.0°) for the northern part of the Yangtze craton. This pole position is significantly different from that for the southern part of the Yangtze craton. This suggests that the southern part of the Yangtze craton was subjected to southward extrusion by 1700 ± 1000  km with respect to the northern part. Intracraton deformation occurred within the Yangtze craton.  相似文献   

10.
A magnetic study was carried out on lacustrine sediments from the Zoigê basin, Tibetan Plateau, in order to obtain a better understanding of palaeoclimatic changes there. Gyromagnetic remanence (GRM) acquisition is unexpectedly observed during static three-axis alternating field (AF) demagnetization in about 20 per cent of a large number of samples. X-ray diffraction (XRD) analysis on a magnetic extract clearly shows that greigite is the dominant magnetic mineral carrier. Scanning electron microscopy (SEM) reveals that the greigite particles are in the grain size range of 200–300  nm, possibly in the single-domain state. Greigite clumps of about 3  μm size are sealed by silicates. Fitting of XRD peaks yields a crystalline coherence length of about 15  nm, indicating that the particles seen in the SEM are polycrystalline.
  GRM intensities of most samples are of the same order as the NRM, while others show much stronger GRM although their magnetic properties are similar. Variation of the demagnetization sequence confirms that GRM is mainly produced perpendicular to the AF direction. The anisotropy direction can be derived from GRM, but more systematic studies are needed for detailed conclusions. An attempt to correct for GRM failed due to high GRM intensities and because smaller GRM acquisition was also found along the demagnetization axis. Behaviours of acquisition and AF demagnetization of GRM are comparable with those of NRM, ARM, IRM, indicating fine grain sizes of remanence carriers.  相似文献   

11.
40Ar/39Ar whole-rock and alkali feldspar ages demonstrate that dioritic to monzonitic dykes from Bøverbru and Lunner belong to the youngest recorded magmatic activity in the Oslo Rift region, southeast Norway. These dykes represent the terminal phase of rift and magmatic activity in the Oslo Graben, at the dawn of the Triassic (246–238 Ma).
  The Bøverbru and Lunner dyke ages are statistically concordant. However, the palaeomagnetic signature of the Bøverbru dyke is complex, and directions from the margins and the interior of the dyke differ in polarity. Therefore, the new Early Triassic palaeomagnetic pole for Baltica (Eurasia) is exclusively based on the less complex Lunner dykes and contacts (palaeomagnetic pole: latitude=52.9°N, longitude=164.4°E, dp / dm =4.5 ° /7.3°). The early Triassic palaeomagnetic pole [mean age: 243±5 Ma (2 σ )] is slightly different from the Upper Carboniferous–Permian (294–274 Ma) and Kiaman-aged poles from the Oslo Rift.  相似文献   

12.
Summary. Two late Mesozoic dolerite sills, situated near Agardhbukta on the east coast of Vestspitsbergen and dated radiométrically at 100 ± 4 Myr BP, have been sampled in five localities and subjected to detailed mineralogical and rock magnetic studies to determine the direction and origin of their magnetization. Although the sills lie outside the Tertiary orogenic belt, one locality (no. 4) has undergone strong hydrothermal alteration and a small part of another locality (no. 3) has also been affected. A conventional procedure based on examination of Zijderveld diagrams, applied to specimens demagnetized by alternating fields and thermally, yielded similar remanence directions at all five localities, except at the altered part of locality 3. Using a least squares computer méthod of analysis of step demagnetization data, comparable directions were isolated from all localities, including the altered part of locality 3. Except in this last case, all directions were reversed. The adjusted mean direction obtained from this analysis is D = 159.0°, I = 62.2°, α95= 9.0° yielding a palaeomagnetic pole situated at 225.0°, 54.3°N comparable with pole positions obtained from other late Mesozoic igneous rocks on Spitsbergen and distinct from palaeopoles derived from Mesozoic rocks in North America and Eurasia. This suggests that during the late Mesozoic Svalbard existed as a semi-independent microplate.  相似文献   

13.
The remanent magnetic properties of an 88  m bore core are unrelated to either the dolomite content or the sedimentological textures and are considered to be carried primarily by biogenetic magnetite that was cemented in during very early diagenesis. Individual readings represent time intervals of c . 720 ± 32  yr and, after 40  mT partial demagnetization, they provide an almost continuous record of averaged geomagnetic secular variations over a period of some 3.17  Myr. The magnitude of directional secular variation is twice that of the present day, despite being smoothed, and the secular variations appear to grade into polarity transitions, suggesting no difference in their mechanisms. The rates of change in direction between subjacent levels in the core have a log-normal distribution which extends smoothly beyond 90° and has a median value of 13°/700  yr, the same as for unsmoothed European secular variation during the last 2000  yr. The intensity of remanence, after 40  mT partial demagnetization, appears to provide a reasonable approximation to geomagnetic field intensity. This tends to be weaker when the direction is moving faster, reflecting averaging, but is unrelated to the distance of the vector from the mean direction; that is, it depends on the rate of change and not on the virtual pole latitude. The virtual poles, after correction for tectonic rotations about horizontal and vertical axes, have latitudes that form a strongly platykurtic Fisherian distribution, while their longitudes have a circular distribution on which are superimposed two Gaussian peaks, 180° apart. This bore core thus provides detailed information of smoothed geomagnetic secular variation in the Lower Cretaceous (127 ± 3  Ma) which shows clear regularities in behaviour, some related to changes in the Earth's orbital parameters.  相似文献   

14.
A palaeomagnetic study of 115 samples (328 specimens) from 22 sites of the Mid- to Upper Cretaceous Bagh Group underlying the Deccan Traps in the Man valley (22°  20'N, 75°  5'E) of the Narmada Basin is reported. A characteristic magnetization of dominantly reverse polarity has been isolated from the entire rock succession, whose depositional age is constrained within the Cretaceous Normal Superchron. Only a few samples in the uppermost strata have yielded either normal or mixed polarity directions. The overall mean of reverse magnetization is D m=144°, I m=47° ( α 95=2.8°, k =152, N =18 sites) with the corresponding S-pole position 28.7°S, 111.2°E ( A 95=3.1°) and a palaeolatitude of 28°S±3°. The characteristic remanence is carried dominantly by magnetite. Similar magnetizations of reverse polarity are also exhibited by Deccan basalt samples and a mafic dyke in the study area. This pole position falls near the Late Cretaceous segment of the Indian APWP and is concordant with poles reported from the Deccan basalt flows and dated DSDP cores (75–65  Ma) of the Indian Ocean. It is therefore concluded that the Bagh Group in the eastern part of the Narmada Basin has been pervasively remagnetized by the igneous activity of Deccan basalt effusion. This overprinted palaeomagnetic signature in the Bagh Group indicates a counter-clockwise rotation by 13°±3° and a latitudinal drift northwards by 3°±3° of the Indian subcontinent during Deccan volcanism.  相似文献   

15.
Summary. In order to contribute to the resolution of the problem of the plate tectonic character of the Caribbean, a palaeomagnetic study has been carried out on some Jamaican igneous rocks. Sixteen Late Cretaceous intrusives and lavas and one Late Miocene lava sampled in five sites have been investigated. Because of widespread maghaemitization of the predominantly large-grained deuteric class 1 titanomagnetites, some difficulty was experienced in identifying stable directions of magnetization in the Cretaceous rock units. Using thermal demagnetization technique, two distinct directions of magnetization were obtained, significantly different from those observed in contemporaneous North American rocks. Nine units yield a palaeomagnetic pole at 143.8°W, 44.1°N, referred to as 'normal', while seven units yield'equatorial'poles situated both east and west of Jamaica. It is not possible to decide which of the two directions of magnetization reflects the Late Cretaceous geomagnetic field in Jamaica, but from other evidence they appear to merit palaeotectonic interpretation. They are consistent with the plate tectonic behaviour of the Caribbean since Late Cretaceous and its motion from the southwest relative to the present day frame of reference, with a simultaneous large anticlockwise horizontal rotation of Jamaica. Late Miocene lavas, containing high-coercivity magnetic material, yield closely grouped directions giving a palaeopole at 152.4°W, 73.3°N, supporting the deductions made from the Cretaceous data.  相似文献   

16.
Palaeomagnetic results are presented from a volcanic sequence in Zhijin County, Guizhou Province, Southern China. The lavas and associated volcanic breccias comprising the sequence represent a southern extension of the Emeishan volcanic province. Biostratigraphic dating of interbedded limestone units and stratigraphic constraints indicate that the section formed during the late Permian (∼263–255  Ma), and is thus somewhat older than the Emei stratotype section in Sichuan Province, and close in age to reported estimates of the termination of the Permo-Carboniferous (Kiaman) reverse superchron. Rock magnetic analyses and reflected light microscopy indicate that the magnetic mineralogy of the lava units is dominated by fresh, primary magnetites containing a significant fraction of single-domain grains. Thermal demagnetization behaviour of the breccia units is poor, but most lava samples have one or two components of remanence above 250 °C. The normal polarity characteristic remanence held by the lavas implies a post-Kiaman age for this succession and suggests that the termination of the Kiaman occurred prior to 263  Ma, supporting recently published estimates. According to standard criteria, Thellier palaeointensity results from the lavas are of good quality and reveal that the dipole field strength was comparatively low shortly after the termination of the superchron. 80 per cent of samples record relative VDM values in the range 42–52 per cent of the present-day value, supporting recent studies of mid-Kiaman field intensity. This suggests that a low-energy dipole existed at least between 300 and 255  Ma and does not appear to have been confined to the stable reverse polarity interval.  相似文献   

17.
Summary. One hundred and fifty oriented samples were collected from 12 sites from the Tertiary basalts of Wadi Abu Tereifiya (30.0°N, 32.1° E). After alternating field demagnetization the mean direction of the natural remanent magnetization is, D = 187.9°, I = -20.8° with α95= 5.8°. This yields a palaeopole at 69.4°N, 188.3° E.
Also, 30 oriented samples were collected from two sites from Mandisha in Bahariya Oasis (28.4°N, 28.9° E). After cleaning, the mean direction of the NRM is D = 191.0°, I = 5.2° with α95= 9.9°. This yields a palaeopole position at 58.2°N, 186.7° E.
Besides, the NRM of 70 oriented samples collected from seven dioritic dykes from Wadi Abu Shihat (26.3°N, 33.2° E) was found to have a mean direction, D = 142.0°, I = -0.3°, which leads to a palaeopole position at, 44.9°N, 273.0° E. This agrees with other Mesozoic pole positions from Africa.  相似文献   

18.
Summary. A zone of concentrated induced electric currents crossing parts of Zimbabwe, Botswana and South West Africa was discovered during a magnetovariational study conducted in 1972. In 1977, a second study was made with 27 recording magnetometers distributed across the width of South West Africa between latitudes 19 and 22°S. Several geomagnetic disturbances were recorded with high recording efficiencies. Three of these time sequences were digitized for analysis. Magnetograms and Fourier transform amplitude and phase maps in the period range 22–128min were used to delineate the westward continuation of the conductive structure revealed by the earlier investigation. The conductive zone runs approximately east-west from the Botswana border (21°E) to 17°E longitude. From here to the Atlantic coast it trends in a NE—SW direction. Anomalous fields, normalized to the horizontal field at a station recording the normal field, were used to obtain maximum depth estimates of around 45 km for the induced currents. Several deep Schlumberger soundings were done over the anomalous zone and the results showed that the conductive structure is, in places, only 3 km from the surface and that it has a resistivity of less than 20 Ωm. The resistivity of the upper crust outside the structure ranges from 5000 to more than 20000 Ωm. Some 14 post-Karoo alkaline igneous complexes occur along the course of the resistivity anomaly. These intrusive complexes represent the youngest igneous activity in the Damara Orogenic Belt and were most probably emplaced along a line of weakness in the lithosphere. The resistivity anomaly would seem to delineate this line of weakness.  相似文献   

19.
The geomagnetic field intensity during Archaean times is evaluated from a palaeomagnetic and chronological study of a dolerite dyke intruded into the 3000 Ma Nuuk Gneisses at Nuuk (64.2°N, 51.7°W), west Greenland. Plagioclase from the dolerite dyke yields a mean K-Ar age of 2752 Ma. Palaeomagnetic directions after thermal demagnetization of the dyke and the gneiss reveal a positive baked-contact test, indicating that the high-temperature-component magnetization of the dyke is primary. Thellier experiments on 12 dyke specimens yield a palaeointensity value of 13.5±4.4 μT. The virtual dipole moment at ca. 2.8 Ga is 1.9±0.6 × 1022 Am2, which is about one-quarter of the present value. The present study and other available data imply that the Earth's magnetic field at 2.7 ∼ 2.8 Ga was characterized by a weak dipole moment and that a fairly strong geomagnetic field similar to the present intensity followed the weak field after ca. 2.6 Ga.  相似文献   

20.
Repeated laboratory-induced weak mechanical shocking ( c .  0.57  kg  m  s1 ) of marine sandstone samples showing drilling-induced remanence, from commercial bore cores from the North Sea and Prudhoe Bay, causes increases in their low-field susceptibility ( χ ) and their ability to acquire an isothermal remanent magnetization (IRM). These enhancements are reduced by some 20 per cent by AF demagnetization in 100  mT. Doubling the intensity of the shock doubles the susceptibilities and IRMs acquired. The susceptibility increase ceases after 300 to 400 shocks for the North Sea samples and 20 to 30 shocks for those from Prudhoe Bay, while the IRM saturates after 800–1000 and 30–50 shocks respectively. Continental, haematite-bearing sandstones from commercial bore cores with no drilling-induced remanence subjected to the same shocks do not show these effects. Differences in the magnetic mineralogy of shocked and unshocked marine samples suggest that the magnetic enhancement is predominantly due to the creation of pyrrhotite by shock-induced irreversible crystallographic changes in iron-bearing sulphides. When shocked during commercial drilling, these new ferromagnetic minerals acquire strong chemical (crystalline) remanences, associated with a wide spectrum of grain sizes, in the magnetic field of the drill string, and these are resistant to both thermal and AF demagnetization. Similar processes are likely in any situation involving the shock of physically metastable iron-bearing minerals, particularly anoxic sediments. A 5  cm non-magnetic collar between the drill stem and crown should drastically reduce the magnetic intensity of this effect under commercial conditions, but would not prevent its occurrence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号