首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The jack-up unit may suffer difficult extraction from soft clay attributed to the large embedment and suction. To ease spudcan extraction, the jetting technique is extensively adopted. The jetting effect on spudcan extraction is investigated with a series of model tests. Firstly, the effectiveness of top jetting is investigated, and it is found that the top jetting is not effective in reducing extraction resistance. Secondly, the efficiency of different jetting procedures are studied. It is revealed that jetting prior to extraction reduces the suction by increasing the excess pore pressure at spudcan base. And the jetting after extraction begins reduces the suction by filling the gap formed under the spudcan with jetting water and eliminating cavitation. Finally, tests with different jetting times, jetting rates, jetting pressures, and jetting nozzle locations and numbers are conducted. It is found that the effect of jetting time converges as it increases. The flow rate of jetting prior to extraction has little effect on jetting efficiency, whereas the flow rate of jetting after the extraction begins has significant influences on the jetting efficiency. Jetting pressure also has great effect on jetting efficiency, and converges as it increases. The closer the nozzles are located to the spudcan edge, the sooner the post-peak extraction resistance decreases. And the jetting efficiency increases with the nozzle number. The findings from the experimental studies can serve as a reference for future studies on the operation and optimization design of a jack-up jetting system.  相似文献   

2.
The interaction between a spudcan and an existing footprint is one of the major concerns during jack-up rig installation. The influence of spudcan-footprint interaction has recently been well addressed by a number of researchers. A lack of investigation exists in mitigating spudcan-footprint interaction issues. In the field, stomping and successive repositioning is conventionally used in installing a rig adjacent to an existing footprint. Water jetting and perforation drilling are also sometimes suggested. This paper reports a measure for easing spudcan-footprint interaction issues, with the efficiency of a spudcan with 4 slots tested through model tests carried out at 1 g on the laboratory floor. The soil conditions tested simulate soft to moderate seabed strength profiles close to the mudline, varying the undrained shear strength. The most critical reinstallation locations of 0.5D and 1D (D = spudcan diameter) and existing footprint depths of 0.33D and 0.66D were investigated. By comparing with a conventional spudcan, the spudcan with slots reduced the induced maximum moment, horizontal force, and horizontal sliding distance by up to 80%, 40%, and 98% respectively. Critically, no additional operations, such as stomping/repositioning, perforation drilling, water jetting, are required to be performed offshore.  相似文献   

3.
The mechanisms of soil structure interaction have drawn much attention in the past years in the installation and operation of jack-up platform. A bionic spudcan produced by biomimetic of egg and snail shell is proposed, and the performance of the penetration and extraction are analyzed by numerical method. The geometric contour of egg and snail shell is measured, and its mathematical model is established respectively. According to the structure of existing spudcan of jack-up platform, three kinds of typical biomimetic spudcan are designed. Furthermore, numerical analysis models of biomimetic spudcan are established respectively to study the soil structure interaction mechanism in the process of penetration and extraction, and contrastive analysis of resistance characteristics are carried out. To conclude, the results show that the biomimetic spudcan facilitates the platform installation, and it is also beneficial to the improvement of the bearing capacity of spudcan.  相似文献   

4.
Results from combined loading experiments dedicated to evaluating the capacity and stiffness of a single footing have significantly improved the understanding of the response of circular shallow foundations. However, due to experimental practicalities, little corroborative evidence is available to confirm predicted behaviour when multiple footings act within a structural system. This paper addresses this concern by presenting the results of a series of experimental tests on a three-legged model jack-up unit founded on soft, heavily overconsolidated clay. The model adopted geometric features representative of a large prototype rig by appropriately scaling leg height, leg separation and flexural stiffness, as well as the ‘spudcan’ footing diameter and profile. Pushover events were considered by subjecting the model jack-up to monotonic horizontal loading at hull level. By measuring loads and displacements at the hull and at each spudcan, the system behaviour of the jack-up could be analysed. Nine separate tests were performed, revealing how load orientation, leg length and preload ratio changed the system capacity and affected the load–displacement paths of the jack-up and spudcan system. The test results are compared with those derived from single spudcan experiments, and are interpreted within the combined load yield surface approach gaining acceptance within the offshore industry.  相似文献   

5.
Jack-up units are extensively playing a successful role in drilling engineering around the world, and their safety and efficiency take more and more attraction in both research and engineering practice. An accurate prediction of the spudcan penetration depth is quite instrumental in deciding on whether a jack-up unit is feasible to operate at the site. The prediction of a too large penetration depth may lead to the hesitation or even rejection of a site due to potential difficulties in the subsequent extraction process; the same is true of a too small depth prediction due to the problem of possible instability during operation. However, a deviation between predictive results and final field data usually exists, especially when a strong-over-soft soil is included in the strata. The ultimate decision sometimes to a great extent depends on the practical experience, not the predictive results given by the guideline. It is somewhat risky, but no choice. Therefore, a feasible predictive method for the spudcan penetration depth, especially in strata with strong-over-soft soil profile, is urgently needed by the jack-up industry. In view of this, a comprehensive investigation on methods of predicting spudcan penetration is executed. For types of different soil profiles, predictive methods for spudcan penetration depth are proposed, and the corresponding experiment is also conducted to validate these methods. In addition, to further verify the feasibility of the proposed methods, a practical engineering case encountered in the South China Sea is also presented, and the corresponding numerical and experimental results are also presented and discussed.  相似文献   

6.
海上自升式钻井平台以其造价低廉、便于移动和安装的优势被广泛应用于海洋地质勘察、风电安装和油气开采等领域,其基础类型多为桩靴基础。为了保证平台能在恶劣的海洋环境中安全作业,桩靴基础需要贯入海床以下一定深度以获得足够的承载力。然而,当桩靴基础在上硬下软土层中贯入时可能发生穿刺破坏导致平台损坏甚至倾覆。已有的桩靴穿刺破坏分析方法基于预设的地层参数预测穿刺荷载,由于无法考虑海床中地层及土性的不确定性,其准确性有待提高。将桩靴基础贯入过程中的监测数据与穿刺破坏机理相结合,通过66组离心机模型试验结果表征土体不确定性的影响,发展贝叶斯预测模型,实现了峰值阻力和穿刺深度的实时预测。基于规范推荐的荷载扩展分析法和冲剪系数分析法,建立了适用于规范法的概率模型,采用该模型对上砂下黏土层中桩靴基础的穿刺行为进行了预测,结果表明所提方法的预测精度随着监测数据的增加而提高,预测得到的峰值阻力误差在10%以内。  相似文献   

7.
在自升式平台的预压载过程中,桩靴在层状地基上较易发生“穿刺”现象,很大程度上影响着平台的安全运行。准确地分析桩靴峰值阻力,避免平台桩靴发生“穿刺”是非常重要的。采用极限分析上限定理,合理构建运动许可速度场,从理论上推导了层状地基上桩靴峰值阻力的上限解答。为了进一步验证峰值阻力理论解答的准确性,采用ABAQUS有限元软件构建了“桩靴—弹塑性海床”的三维数值模型,对桩靴贯入海床的过程进行了数值模拟,分析桩靴周围土体的塑性变形演变规律,研究土体的破坏机理。研究结果表明:推导的桩靴峰值阻力上限解答,能够较好地计算层状地基极限承载能力,通过与离心机试验和数值结果对比,计算误差在18%以内;给出的运动许可速度场能够较好地反映桩靴周围土体破坏模式;桩靴阻力达到峰值时,下层软土中的土塞高度约为桩靴直径的0.2倍。  相似文献   

8.
Le  Cong-huan  Li  Yan-e  Huang  Lei  Ren  Jian-yu  Ding  Hong-yan  Zhang  Pu-yang 《中国海洋工程》2021,35(5):779-788
China Ocean Engineering - In the leg-lowering process, the offshore jack-up platform is in a floating state, and the spudcan may collide with the seabed due to the platform motion in waves, thereby...  相似文献   

9.
This paper reports five case histories of jack-up rig installation in layered soil profiles where a dominate feature was a stronger sand layer overlaying a weaker clay layer. In all cases a relatively continuous load-penetration profile was measured during installation of each of the three spudcan foundations. Summary site-investigation data is provided and consisted of mainly torvane, minature vane, unconsolidated undrained triaxial and pocket penetrometer tests for determining undrained shear strength of the clays and blow counts for deriving the relative density of sand. A statistical averaging method recommended in the InSafeJIP guidelines was used to provide the best fit of the undrained shear strength profile in the clay as this then allowed for spudcan load-penetration profiles to be estimated without introduction of user interpretation or bias. Sand properties were taken as provided in the original site-investigation report. Comparisons between load-penetration profiles calculated using the industry-standard ISO guideline, more recently proposed mechanism-based calculation method and three-dimensional large deformation finite element simulations are made with the measured data, leading to valuable insights for practitioners for estimating behaviour of jack-up installations in problematic sand-over-clay soil profiles.  相似文献   

10.
针对某海外项目中可能遇到的钻井平台压载后入泥深度过大和拔桩困难的问题,开展平台优选计算。首先搜集了预定作业井位周围井位的地质勘查资料,利用二次插值法进行作业井位地质勘察数据计算,据此计算了桩脚入泥深度,并根据作业平台结构参数计算了平台的拔桩阻力。为解决平台极限拔桩能力小于拔桩阻力的问题,设计了可控冲桩阀和冲桩系统以消除或减小桩靴底部的吸附力、桩靴侧部土体剪切力和桩靴上部土重。最后将平台拔桩能力与最终拔桩阻力进行对比,给出平台推荐结果。  相似文献   

11.
This article presents the results of nonlinear dynamic analyses that explore the effects of directionality and the random nature of ocean waves on the overall structural performance of a sample jack-up platform. A finite-element model is developed which rigorously includes the effects of the material and geometrical nonlinearities in the structure and the nonlinear soil-structure interaction. Two wave theories, NewWave and Constrained NewWave, are adopted to simulate the water surface and water particle kinematics, which are implemented in the numerical model developed. Analyses are performed for both two and three-dimensional wave models, and the results are compared in terms of the deck and spudcan foundation displacements. The results obtained from the analyses indicate that the inclusion of wave spreading can result in reductions in the deck displacements of the sample jack-up platform. The level of reduction is greater when considerable plasticity occurs in the foundation. Furthermore, the probability of failure can be significantly decreased when the wave-spreading effects are included. In addition, it is shown that the effects of wave-spreading on the response and failure of the sample jack-up is increased when wave period is decreased.  相似文献   

12.
Jack-up platforms of the Ocean engineering structures always withstand the vertical gravity loads which are applied to the seabed by spudcan, so it is important to determine the bearing capacity and the penetration depth of the spudcan for its geometry. In fact, it is up to the deformation law and the failure modes of soil surrounding the spudcan which can calculate the ultimate bearing capacity of the spudcan foundation on the soil seabed. By using the finite element analysis software Abaqus, the deformation law of soil around the spudcan is analyzed in detail, and the failure modes of soil surrounding the spudcan foundation are achieved. At the same time, based on the limit equilibrium theory, by use of static permissible slip-line field, the ultimate bearing capacity of the spudcan foundation is analyzed and the lower limit solution is derived theoretically, and the effect of the spudcan angle on the ultimate bearing capacity is investigated. The numerical results are compared with those obtained by the theoretical formulas deduced in this paper. On the basis of the lower limit solutions in this paper, the effect of the spudcan angle on the ultimate bearing capacity is revealed, and a practical bearing capacity formula is given to take the effect of the spudcan angle into consideration.  相似文献   

13.
开发了一种新型平台桩靴,可通过活动板转动实现自升式平台不同阶段桩靴受力面积的灵活变化。基于大变形有限元方法,模拟新型桩靴基础在“砂-黏”地层中的贯入过程,分析了活动板转角、砂层厚度比、摩擦角和黏土层不排水抗剪强度对新型桩靴贯入阻力的影响,并与普通桩靴的贯入响应比较。数值分析中,上覆砂土和下层黏土分别采用摩尔库伦模型和修正Tresca模型进行模拟。结果表明:新型桩靴穿刺时,土层参数对峰值阻力的影响规律与普通桩靴相同,但其峰值阻力随活动板转角的变化而变化,无法直接使用具有等效面积普通桩靴的穿刺预测方法。考虑各项关键影响因素,结合穿刺破坏时的地基破坏模式,基于数值模拟结果提出了适用于新型桩靴的贯入阻力预测公式。  相似文献   

14.
在海洋工程中,移动钻井平台在作业结束后需要转场时,经常会遇到拔桩困难的问题,桩靴底部的吸附力是上拔力的重要组成部分,明确其产生机理及发展规律对于上拔力计算与缓解上拔困难问题有重要意义。通过室内模型试验研究了黏土中桩靴底部真空度对桩靴吸附力产生机理的影响,试验结果表明,桩靴底部真空度的变化对上拔力的影响显著,而桩靴贯入深度和上拔速率会对真空度产生影响。当真空度达到峰值时,桩靴底部吸附力与上拔力几乎同时达到峰值,因此可以通过减小桩靴底部真空度的措施来减小上拔力。根据试验结果,提出了运用真空吸盘理论来计算桩靴底部吸附力的计算公式。所述吸附力计算方法与试验结果进行对比,其误差较小,对工程实践具有一定的参考意义。  相似文献   

15.
何启洪  赖禺  周松望 《海洋工程》2016,34(6):123-130
采用CEL大变形非线性有限元方法并结合非线性地基梁模型对海洋石油941钻井船在番禺10-2平台钻井插桩时对邻近导管架平台群桩的影响进行了分析,并得到以下结论:1)钻井船插桩过程中,桩身最大位移及出现的位置随钻井船插桩深度增加而下移且钻井船插桩位置与群桩距离越近,对桩的影响越大;2)在插桩过程中,桩身最大弯矩出现的位置与桩身最大位移出现的位置一致,而桩身最大剪力出现的位置较桩身最大弯矩出现的位置偏下;3)与没有插桩影响的群桩相比,桩身最大弯矩与桩身最大剪力明显增加。  相似文献   

16.
为研究钻井船插桩对邻近平台群桩相互作用的影响,采用耦合欧拉拉格朗日(CEL)方法对桩靴贯入黏土层时邻近群桩中各桩荷载分担比、桩头附加位移及两桩相互作用系数进行了分析。首先通过对缩尺模型试验的数值分析,验证了CEL方法的可行性;然后进一步分析了桩靴贯入黏土层时对邻近群桩相互作用的影响;最后探讨了净间距、桩间距对群桩相互作用的影响。结果表明,在桩靴贯入中,前桩的荷载分担比大于后桩,且桩靴贯入至一定深度后,当净间距越小或桩间距越大时,前桩的荷载分担比越大、后桩的荷载分担比越小,但各桩的荷载分担比随桩靴贯入深度增加时的变化规律不变;净间距越大,桩头附加位移及相互作用系数越小;在桩靴贯入时,由于受群桩遮拦效应的影响,桩头附加位移及相互作用系数随桩间距的变化规律同插桩前有所不同,当桩间距大于3倍桩径时,随桩间距的增加而减小,当桩间距小于3倍桩径时,随桩间距的增加而增大。  相似文献   

17.
复杂土层中自升式平台桩靴安装穿刺预测   总被引:1,自引:1,他引:0  
郑敬宾  胡畔  王栋 《海洋工程》2018,36(3):123-130
由于复杂海洋工程地质条件的普遍性,自升式平台在安装过程中穿刺事故频发,近年来涌现出大量针对自升式平台桩靴基础在复杂土层中穿刺预测方法的研究。为了方便工程设计人员的理解和使用,首先简单介绍这些研究中所采用的技术手段,总结现行规范ISO 19905-1建议的桩靴在复杂土层中贯入阻力的预测方法以及最新文献中提出的新的设计方法,并对规范方法和新方法的优缺点进行了评价。所总结的设计方法针对国内外常见的含穿刺风险的海洋地基形式,包括双层"砂—黏"、三层"硬—软—硬"黏性土、三层"软—硬—软"黏性土、三层"黏—砂—黏"地层以及四层"黏—砂—黏—硬层土"地层。通过对离心机模型试验的预测,对规范方法和新方法的预测精度进行了比较,对比结果显示新方法对桩靴穿刺破坏的预测更为合理精确。  相似文献   

18.
The anti-overturning ability and structure safety of jack-up unit in in-place condition are often affected by environment loads, especially wind load. According to the MODU rule, the projected area method is used for calculating the wind load. However, the calculated results are conservative and not good for structure optimization design. In this paper, a 400 ft jack-up is studied as an example. Based on the wind tunnel test and numerical simulation method, some key points of wind load calculation, such as shielding effect, lift effect and shape coefficient of component, are discussed. The study shows that the points mentioned above, which are ignored in the MODU rule calculation, result in the conservative result.  相似文献   

19.
A series of model tests was conducted in sand to explore the anti-uplift behavior of suction caissons, considering the effects of aspect ratios, load inclination angles and loading positions. This paper emphasizes on analyzing the deformation characteristic and the mechanism of the suction caissons under various loading conditions. The movement modes of the suction caisson are different when the load inclination angle increases from 0° to 90° corresponding to various mooring positions. The pull-out bearing capacity decreases with load inclination angles increasing. When the load inclination angle changes from 0° to 60°, the bearing capacity reduces more significantly than that between inclination angle of 60° and 90°. While the load inclination angle is relatively small, the pull-out capacity of the suction caisson decreases after reaching the peak as the loading position moves downwards. Moreover, the optimum loading position locates between 2/3 and 3/4 of the caisson length. The optimum loading position is at the bottom of the caisson when the load inclination angle exceeds 60°. However, the influence of the loading position on the pull-out capacity of the caisson can be ignored while the load inclination angle equals to 90°. The pull-out bearing capacity increases as the aspect ratio increases but the aspect ratio has no effect on the deformation characteristic of the suction caisson.  相似文献   

20.
Undrained bearing capacity of spudcan under combined loading   总被引:1,自引:0,他引:1  
The bearing capacities of spudcan foundation under pure vertical (V),horizontal (H),moment (M) loading and the combined loading are studied based on a series of three-dimensional finite element analysis.The effects of embedment ratio and soil non-homogeneity on the bearing capacity are investigated in detail.The capacities of spudcan under different pure loading are expressed in non-dimensional bearing capacity factors,which are compared with published results.Ultimate limit states under combined loading are presented by failure envelopes,which are expressed in terms of dimensionless and normalized form in three-dimensional load space.The comparison between the presented failure envelopes and available published numerical results reveals that the size and shape of failure envelopes are dependent on the embedment ratio and the non-homogeneity of the soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号