首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A combined geochemical, geological and microbiological analysis of an actively biodegrading 24.5 m thick oil column in a Canadian heavy oil reservoir has been carried out. The reservoir properties associated with the cored vertical well are characterised by a 15.75 m thick oil column and an 8.75 m zone of steadily decreasing oil saturation below the oil column, referred to as the oil–water transition zone (OWTZ), grading down into a thin water leg. The oil column exhibits systematic gradients in oil physical properties and hydrocarbon composition and shows variations in biodegradation level throughout the reservoir consistent with the notion that the biodegradation of oil is focussed in a bioreactor zone at the base of the oil column. Through the oil column, the dead oil viscosity measured at 20 °C ranged from 50,000 cP (0.05 McP) at the top of the oil column to 1.4 McP at the oil–OWTZ contact, and continued to increase to 10.5 McP within the OWTZ. The saturated and aromatic hydrocarbons are characterised by systematically decreasing bulk fraction and component concentrations down through the oil column. Different compound classes decreased to levels below their detection limit at different depths within the OWTZ, defining a likely bioreactor extent of over 5 m in depth with, for example, n-alkanes being reduced to their detection limit concentration at the bottom of the oil column/top of the OWTZ, while branched isoprenoid alkanes were not completely degraded until well into the OWTZ.Core samples from the oil column and the lower part of the OWTZ were estimated to contain ca. 104–105 bacterial cells/g, based on qPCR of bacterial 16S rRNA genes, while samples from a narrow interval in the OWTZ immediately below the oil column contained on the order of 106–107 cells/g of sediment. Interestingly, these latter numbers are typical of those observed in active deep subsurface biosphere systems with the notion that microbial activity and abundance in the deep subsurface is elevated at geochemical interfaces. The numbers of organisms are not constant throughout the OWTZ. The highest bacterial abundance and geochemical gradients of, for example, methylphenanthrene biodegradation define a zone near the oil–water contact as likely the most active in terms of biodegradation. The largest bacterial abundances in the upper part of the OWTZ are in line with the trend of bacterial abundance with depth that has emerged from extensive analysis of microbial cells in deep subsurface sediments, implying that in terms of deep biosphere cell abundance, oil reservoirs are similar to other deep subsurface microbial environments. This is puzzling, given the atypical abundance of organic carbon in petroleum reservoirs and may imply a common large scale control on microbial abundance and activity in the deep biosphere, including in oilfields.  相似文献   

2.
A suite of reservoir cores (oil sands) from a single well in Bohai Bay Basin, East China, displayed a progressive increase in petroleum biodegradation extent on the basis of bulk composition and 25-norhopane content. This fits with the proposal that subsurface petroleum biodegradation is dominantly an anaerobic process and usually occurs at the oil–water contact. It is likely that sequential microbial degradation of hydrocarbons under anoxic conditions does not occur in a true stepwise fashion, but is controlled by various factors such as concentration and solubility of hydrocarbons and their diffusion rate to the oil/water contact. In fact, 25-norhopanes were formed prior to the complete elimination of the acyclic, and mono- and bicyclic alkanes. An inverse response of the 22S/(22S + 22R) ratio between each extended 17α(H)-hopane and its corresponding 25-norhopane was observed as severe biodegradation occurred, supporting the proposal that the 25-norhopanes originate from demethylation of hopanes. Field observation revealed that biomarkers without extended alkyl side chains, such as oleanane, gammacerane and β-carotane, have significant resistance to biodegradation and can be used as naturally occurring “internal standards” to evaluate variations in other biomarkers. The results suggest that the quantity of 25-norhopanes showed a minor increase as the hopanes decreased significantly, i.e. only partial hopane conversion to the corresponding 25-norhopanes. Alternative degradation pathways for hopanes might occur in reservoirs, in addition to C-25 demethylation.  相似文献   

3.
Although the effects of biodegradation on the composition and physical properties of crude oil have been well studied, effects of in-reservoir petroleum biodegradation on molecular and isotopic compositions of crude oils are not yet clearly understood. The Alberta Basin, in western Canada, is one of the world’s largest petroleum accumulations and constitutes an ideal example of a natural suite of sequentially biodegraded oils. The basin hosts moderately to severely biodegraded petroleum, regionally distributed and in single, more or less continuous, oil columns. In this study, a series of oil samples from the Alberta heavy oil and oil sands provinces, with varying degrees of biodegradation, were analyzed to assess the impact of progressive biodegradation on the molecular and C, H, N, and S isotopic compositions of oils. The results of the molecular characterization of the hydrocarbon fraction of the studied oils show that the oils have suffered biodegradation levels from 2 to 10+ (toward the Alberta–Saskatchewan border) on the Peters and Moldowan scale of biodegradation (abbreviated PM 2 to PM 10) and from tens to hundreds on the Manco scale. Within single reservoirs, increasing biodegradation was observed from top to bottom of the oil columns at all sites studied. The whole oil stable isotopic compositions of the samples varied in the ranges δ13C = −31.2‰ to −29.0‰, δ2H = −147‰ to −133‰, δ15N = 0.3–4.7‰ and δ34S = 0.4–6.4‰. The maximum differences between δ values of samples (Δ) within single oil columns were Δ13C = 1.4‰, Δ2H = 7‰, Δ15N = 1.7‰ and Δ34S = 1.0‰. Regional variations in the isotopic compositions of oil samples from different wells (averaged values from top to bottom) were 1.2‰ for δ13C, 12‰ for δ2H, 4.1‰ for δ15N and 5.5‰ for δ34S and hence generally significantly larger variations were seen than variations observed within single oil columns, especially for N and S. It appears that even severe levels of biodegradation do not cause observable systematic variations in carbon, nitrogen or sulfur isotope composition of whole oils. This indicates that sulfur and nitrogen isotopic compositions may be used in very degraded oils as indicators for oil charge from different source rock facies.  相似文献   

4.
《Applied Geochemistry》1998,13(7):851-859
Emerging acceptance of the limitations of separate phase product recovery has spawned interest in the intrinsic alteration of residual separate phase petroleum products. In this study the geochemical changes in a continuous core through soil containing a separate phase diesel fuel #2 (SPD) in contact with groundwater are investigated. Chemical heterogeneities are shown to exist which can be attributed to weathering, particularly intrinsic biodegradation. The results show that the aliphatic hydrocarbon content is reduced and the δ13C ratio of the aliphatic hydrocarbons increased from top to bottom in the core. Both changes are thought to be due to preferential biodegradation of (isotopically lighter) n-alkanes. A slight increase in the relative abundance of shorter chain n-alkanes (<n-C17) was also observed. The distribution of the dominant aromatic hydrocarbons (C0–C3 alkyl-naphthalenes) is remarkably consistent throughout the core, although naphthalene is depleted below the oil–water interface. In spite of low oil saturation (S0), little or no evidence of biodegradation is noted at the uppermost boundary of the SPD. However, intrinsic biodegradation is evident approximately 0.3 m above the oil–water interface in spite of higher S0. The extent of the chemical changes attributable to biodegradation (described above) gradually increases below the oil–water interface, eventually reaching a maximum at the bottom of the SPD profile (∼1.2 m below the interface) where S0 is again reduced. The relatively higher level of biodegradation observed at and below the oil–water interface may be attributed to the reduced S0 in this zone. An estimate of the mass reduction in diesel fuel between the uppermost and bottommost parts of the core is calculated to be 23% (by weight), due predominantly to the biodegradation of n-alkanes.  相似文献   

5.
Soil organic matter (SOM) is a major pool of the global C cycle and determines soil fertility. The stability of SOM strongly depends on the molecular precursors and structures. Plant residues have been regarded as the dominant precursors, but recent results showed a major contribution of microbial biomass. The fate of microbial biomass constituents has not yet been explored; therefore, we investigated the fate of fatty acids (FA) from 13C labeled Gram-negative bacteria (Escherichia coli) in a model soil study [Kindler, R., Miltner, A., Richnow, H.H., Kästner, M., 2006. Fate of gram negative bacterial biomass in soil—mineralization and contribution to SOM. Soil Biology & Biochemistry 38, 2860–2870]. After 224 days of incubation, the label in the total fatty acids (t-FA) in the soil decreased to 24% and in the phospholipid fatty acids (PLFA) of living microbes to 11% of the initially added amount. Since the bulk C decreased only to 44% in this period, the turnover of FA is clearly higher indicating that other compounds must have a lower turnover. The 13C label in the t-FA reached a stable level after 50 days but the label of the PLFA of the living microbial biomass declined until the end of the experiment. The isotopic enrichment of individual PLFA shows that the biomass derived C was spread across the microbial food web. Modelling of the C fluxes in this experiment indicated that microbial biomass is continuously mineralized after cell death and recycled by other organisms down to the 10% level, whereas the majority of biomass derived residual bulk C (~33%) was stabilized in the non-living SOM pool.  相似文献   

6.
A suite of crude oils and petroleum source rock extracts from the Barrow Sub-basin of Western Australia have been analysed for biological marker compounds by capillary GC-MS, and for volatile hydrocarbons by whole oil capillary GC. These analyses were used to calculate values for twenty-three biomarker parameters in order to assess aspects of source type, maturity, migration and biodegradation of the hydrocarbons.The crude oils had a source in the Upper Jurassic Dingo Claystone formation. These hydrocarbons accumulated in the reservoir sands and in some cases were biodegraded. Several accumulation and biodegradation episodes have been recognised while the basin continued to subside, which resulted in a suite of oils showing marked differences in composition.  相似文献   

7.
Sedimentary organic matter in hydrothermal systems can be altered by high temperature fluids to generate petroleum. The saturated and aromatic fractions of these hydrothermal oils are compositionally similar to conventional oil with the exception that they often contain higher concentrations of polycyclic aromatic hydrocarbons (PAH) as well as substantial mixtures of coeluting organic compounds that produce dramatically rising signal on the baseline of gas chromatograms termed unresolved complex mixtures (UCMs). Little is known about the compounds that compose UCMs and why or how they form. This is in part due to an inability to discriminate between in situ and migrated components that characterize the petroleum generated in hydrothermal systems. However, UCMs are also a product of the limitations imbedded in analytical separation techniques. With the advent of comprehensive two-dimensional gas chromatography (GC × GC), a revision of what should constitute molecular complexity needs to be considered. We address these problems by comparing the molecular compositions of the maltene fractions of three previously published hydrothermal petroleum samples using time of flight-mass spectrometry (GC × GC–ToF-MS) and 12 hydrothermal petroleum samples in cores from three locales using comprehensive two-dimensional gas chromatography with flame ionization detection (GC × GC–FID). The sediment cores were collected from Middle Valley, located off the axis of the Juan de Fuca Ridge, and the Escanaba Trough, along the Gorda Ridge, both in the NE Pacific Ocean, as well as from the Guaymas Basin in the Gulf of California. We define a UCM in GC × GC data to be a condition in which ⩾25% of the detected peaks within a chromatographic area coelute in either the first or second dimension. In turn, complex (CM) and simple mixtures (SM) are defined as having 5–24% and <5% coelution, respectively. All CM and UCMs were dominated by an array of configurational isomers, which becomes increasingly aromatic with higher molecular weight. We relate this to a multi-molecular complexity metric (MCM) by quantitatively comparing the difference in total peak variance and peak density for a GC × GC chromatogram. MCM values correlate with biomarker thermal maturity ratios for the Escanaba Trough and Guaymas Basin samples indicating that molecular complexity in these hydrothermal environments is in part a function of burial temperatures. Partial Least Squares (PLS) linear regression was applied to the total number of peak retention times as a proxy for the bulk molecular differences between each hydrothermal oil sample. Differences in the sample regressions correlate with the thermal maturity and the degree of PAH alkylation, indicating that this technique can be used to assess the degree of oxidative weathering due to dehydrogenation and hydrocarbon cracking. Subtracted chromatograms were then used to quantitatively track all of the individual molecular changes within the pyrolytic regime at Escanaba Trough. These subtracted chromatograms indicate that high molecular weight PAHs are highly mobile in hydrothermal fluids and may represent a phase partitioning that is occurring at greater depths. This phase condenses just below the seafloor to form an UCM in the near surface sediments. Saturated hydrocarbon biomarkers, such as hopanes, steranes and biphytanes are less mobile and more prone to being cracked and/or aromatized prior to migration toward the ocean floor. Together these techniques suggest that the molecular complexity of hydrothermal petroleum maximizes during the early stages of thermal maturation. The diversity of compounds forming these UCMs then decreases with increasing dehydrogenation, dealkylation and condensation reactions associated with elevated thermal stress and exposure to oxidants within the hydrothermal fluids.  相似文献   

8.
The biodegradation of crude oil by microorganisms from well Luo-801, China, was examined in cultures grown under conditions that promoted either methanogenesis or sulfate reduction, at 35 °C and 55 °C. Headspace gas and oil compositions were characterized at 180 d and 540 d. Alkylphenanthrenes are relatively recalcitrant to bacterial attack and the biodegradation of these compounds appeared to be insignificant after 180 d under both conditions, but is evident after 540 d. The depletion of alkylphenanthrenes was monitored through evaluation of the ratio of alkylphenanthrenes to the most bioresistant, analyzed component (C28 20R triaromatic steroid hydrocarbon) and isomer susceptibility also was evaluated by relative abundance comparison within the compound class. The influence of growth temperature varied. Only slight differences in alkylphenanthrene concentrations were observed after 180 d whereas the greater degrees of biodegradation were observed at 35 °C in the methanogenic culture and at 55 °C in the sulfate reducing culture. Overall, higher biodegradation rates occur under sulfate reducing condition, which is consistent with the conclusion that methanogens are generally less able to compete for substrates than sulfate reducers. The biodegradation susceptibility of alkylphenanthrenes decreases with increasing degree of alkylation, i.e., phenanthrene (P) and methylphenanthrenes (MPs) were more easily biodegradable than C2-alkylphenanthrenes (C2-Ps) and C3-alkylphenanthrenes (C3-Ps). Biodegradation selectivity for specific homologues is not striking for the limited time duration of the experiments. However, 3-MP seems slightly more vulnerable than other methylphenanthrene isomers and 1,7-DMP has slightly higher ability to resist biodegradation than the other C2-P isomers. The commonly used thermal maturity parameters derived from methylphenanthrene isomer ratios are altered insignificantly by biodegradation and remain valid for geochemical assessment. This information should be useful for assessing the limits of in situ crude oil biodegradation.  相似文献   

9.
The mudstones in the third member of the Shahejie Formation (Es3) are the primary source rocks in the Banqiao Depression of Bohai Bay Basin. They are rich in organic matter with Total Organic Carbon (TOC) content up to 3.5%. The sandstones in the Es3 member are the deepest proven hydrocarbon reservoir rocks with measured porosity and permeability values ranging from 3.6% to 32.4% and from 0.01 md to 3283.7 md, respectively. One, two and three-dimensional basin modelling studies were performed to analyse the petroleum generation and migration history of the Es3 member in the Banqiao Depression based on the reconstruction of the burial, thermal and maturity history in order to evaluate the remaining potential of this petroleum province. The modelling results are calibrated with measured vitrinite reflectance (Ro), borehole temperatures and some drilling results of 63 wells in the study area. Calibration of the model with thermal maturity and borehole temperature data indicates that the present-day heat flow in the Banqiao Depression varies from 59.8 mW/m2 to 61.7 mW/m2 and the paleo-heat flow increased from 65 Ma to 50.4 Ma, reached a peak heat-flow values of approximately 75 mW/m2 at 50.4 Ma and then decreased exponentially from 50.4 Ma to present-day. The source rocks of the Es3 member are presently in a stage of oil and condensate generation with maturity from 0.5% to 1.8% Ro and had maturity from 0.5% to 1.25% Ro at the end of the Dongying Formation (Ed) deposition (26 Ma). Oil generation (0.5% Ro) in the Es3 member began from about 37 Ma to 34 Ma and the peak hydrocarbon generation (1.0% Ro) occurred approximately from 30 Ma to 15 Ma. The modelled hydrocarbon expulsion evolution suggested that the timing of hydrocarbon expulsion from the Es3 member source rocks began from 31 Ma to 10 Ma with the peak hydrocarbon expulsion shortly after 26 Ma. Secondary petroleum migration pathways in the Es3 member of the Banqiao Depression are modelled based on the structure surfaces at 26 Ma and present-day, respectively. The migration history modelling results have accurately predicted the petroleum occurrences within the Es3 member of the Banqiao Depression based on the calibration with drilling results of 10 oil-producing wells, one well with oil shows and 52 dry holes. Six favorable zones of oil accumulations in the Es3 member of the Banqiao Depression are identified especially oil accumulation zones I and II due to their proximity to the generative kitchens, short oil migration distances and the presence of a powerful drive force.  相似文献   

10.
The stable carbon isotopic compositions of light hydrocarbon gases adsorbed in near-surface soil and sediments from the Saurashtra basin were characterized for their origin and maturity. Saurashtra is considered geologically prospective for oil and gas reserves; however, a major part of the basin is covered by the Deccan Traps, hindering the exploration of Mesozoic hydrocarbon targets. Surface geochemical prospecting, based on micro-seepage of hydrocarbons from subsurface accumulations, could be advantageous in such areas. In light of this, 150 soil samples were collected from the northwestern part of Saurashtra, around the Jamnagar area, where a thick sedimentary sequence of about 2–3 km exists under 1–1.5 km of Deccan basalt. The concentration of acid desorbed alkane gases from soil samples was found to vary (in ppb) as: methane (C1) = 3–518; ethane (C2) = 0–430; propane (C3) = 0–331; i-butane (iC4) = 0–297; n-butane (nC4) = 2–116; i-pentane (iC5) = 0–31 and n-pentane (nC5) = 0–23, respectively.Fifteen samples with high concentrations of alkane gases were measured for their δ13C1; δ13C2 and δ13C3 compositions using gas chromatography–combustion-isotope ratio mass spectrometry (GC–C-IRMS). The values for methane varied from ? 27 to ? 45.4‰, ethane from ? 20.9 to ? 27.6‰, and propane from ? 20.4 to ? 29.1‰ versus the Vienna PeeDee Belemnite (VPDB). The carbon isotope ratio distribution pattern represents isotopic characteristics pertaining to hydrocarbon gases derived from thermogenic sources. Comparisons of carbon isotopic signatures and compositional variations with the standard carbon isotopic models suggest that hydrocarbon gases found in the shallow depths of the study area are not of bacterial origin but are formed thermally from deeply buried organic matter, likely to be mainly a terrestrial source rock with a partial contribution from a marine source. These gases may have migrated to the near-surface environment, where they represent an admixture of thermally generated hydrocarbon gases from mixed sources and maturity. The maturity scale (δ13C versus Log Ro %) applied to the surface sediment samples of the Jamnagar area indicated the source material to be capable of generating oil and gas. The detection of thermogenic alkane gases in near-surface sediments offers the possibility of hydrocarbons at depth in Saurashtra.  相似文献   

11.
The detection of microorganisms with potential for biodeterioration and biodegradation in petroleum fields is of great relevance, since these organisms may be related to a decrease in petroleum quality in the reservoirs or damage in the production facilities. In this sense, petroleum formation water and oil samples were collected from the Campos Basin, Brazil, with the aim of isolating microorganisms and evaluating their ability to degrade distinct classes of hydrocarbon biomarkers (9,10-dihydrophenanthrene, phytane, nonadecanoic acid and 5α-cholestane). Twenty eight bacterial isolates were recovered and identified by sequencing their 16S rRNA genes. Biodegradation assays revealed that bacterial metabolism of hydrocarbons occurred through reactions based on oxidation, carbon–carbon bond cleavage and generation of new bonds or by the physical incorporation of hydrocarbons into microbial cell walls. Based on the biodegradation results, selective PCR-based systems were developed for direct detection in petroleum samples of bacterial groups of interest, namely Bacillus spp., Micrococcus spp., Achromobacter xylosoxidans, Dietzia spp. and Bacillus pumilus. Primer sets targeting 16S rRNA genes were designed and their specificity was confirmed in silico (i.e. computational analysis) and in PCR reactions using DNA from reference strains as positive and negative controls. Total DNA from oil was purified and the amplification tests revealed the presence of the target bacteria in the samples, unraveling a significant potential for petroleum deterioration in the reservoirs sampled, once proper conditions are present for hydrocarbon degradation. The application of molecular methods for rapid detection of specific microorganisms in environmental samples would be valuable as a supporting tool for the evaluation of oil quality in production reservoirs.  相似文献   

12.
The organic geochemical methods of hydrocarbon prospecting involve the characterization of sedimentary organic matter in terms of its abundance, source and thermal maturity, which are essential prerequisites for a hydrocarbon source rock. In the present study, evaluation of organic matter in the outcrop shale samples from the Semri and Kaimur Groups of Vindhyan basin was carried out using Rock Eval pyrolysis. Also, the adsorbed low molecular weight hydrocarbons, methane, ethane, propane and butane, were investigated in the near surface soils to infer the generation of hydrocarbons in the Vindhyan basin. The Total Organic Carbon (TOC) content in shales ranges between 0.04% and 1.43%. The S1 (thermally liberated free hydrocarbons) values range between 0.01–0.09 mgHC/gRock (milligram hydrocarbon per gram of rock sample), whereas the S2 (hydrocarbons from cracking of kerogen) show the values between 0.01 and 0.14 mgHC/gRock. Based on the Tmax (temperature at highest yield of S2) and the hydrogen index (HI) correlations, the organic matter is characterized by Type III kerogen. The adsorbed soil gas, CH4 (C1), C2H6 (C2), C3H8 (C3) and nC4H10, (nC4), concentrations measured in the soil samples from the eastern part of Vindhyan basin (Son Valley) vary from 0 to 186 ppb, 0 to 4 ppb, 0 to 5 ppb, and 0 to 1 ppb, respectively. The stable carbon isotope values for the desorbed methane (δ13C1) and ethane (δ13C2) range between −45.7‰ to −25.2‰ and −35.3‰ to −20.19‰ (VPDB), respectively suggesting a thermogenic source for these hydrocarbons. High concentrations of thermogenic hydrocarbons are characteristic of areas around Sagar, Narsinghpur, Katni and Satna in the Son Valley. The light hydrocarbon concentrations (C1–C4) in near surface soils of the western Vindhyan basin around Chambal Valley have been reported to vary between 1–2547 ppb, 1–558 ppb, 1–181 ppb, 1–37 ppb and 1–32 ppb, respectively with high concentrations around Baran-Jhalawar-Bhanpur-Garot regions (Kumar et al., 2006). The light gaseous hydrocarbon anomalies are coincident with the wrench faults (Kota – Dholpur, Ratlam – Shivpuri, Kannod – Damoh, Son Banspur – Rewa wrench) in the Vindhyan basin, which may provide conducive pathways for the migration of the hydrocarbons towards the near surface soils.  相似文献   

13.
A laboratory study has been conducted to determine the best methods for the detection of C10–C40 hydrocarbons at naturally occurring oil seeps in marine sediments. The results indicate that a commercially available method using n-C6 to extract sediments and gas chromatography–flame ionization detection (GC–FID) to screen the resulting extract is effective at recognizing the presence of migrated hydrocarbons at concentrations from 50 to 5000 ppm. When non-biodegraded, the amount of oil charge is effectively tracked by the sum of n-alkanes in the gas chromatogram. However, once the charge oil becomes biodegraded, with the loss of n-alkanes and isoprenoids, the amount of oil is tracked by the quantification of the unresolved complex mixture (UCM). Gas chromatography–mass spectrometry (GC–MS) was also found to be very effective for the recognition of petroleum related hydrocarbons and results indicate that GC–MS would be a very effective tool for screening samples at concentrations below 50 ppm oil charge.  相似文献   

14.
Hydrous pyrolysis (HP) experiments were used to investigate the petroleum composition and quality of petroleum generated from a Brazilian lacustrine source rock containing Type I kerogen with increasing thermal maturity. The tested sample was of Aptian age from the Araripe Basin (NE-Brazil). The temperatures (280–360 °C) and times (12–132 h) employed in the experiments simulated petroleum generation and expulsion (i.e., oil window) prior to secondary gas generation from the cracking of oil. Results show that similar to other oil prone source rocks, kerogen initially decomposes in part to a polar rich bitumen, which decomposes in part to hydrocarbon rich oil. These two overall reactions overlap with one another and have been recognized in oil shale retorting and natural petroleum generation. During bitumen decomposition to oil, some of the bitumen is converted to pyrobitumen, which results in an increase in the apparent kerogen (i.e., insoluble carbon) content with increasing maturation.The petroleum composition and its quality (i.e., API gravity, gas/oil ratio, C15+ fractions, alkane distribution, and sulfur content) are affected by thermal maturation within the oil window. API gravity, C15+ fractions and gas/oil ratios generated by HP are similar to those of natural petroleum considered to be sourced from similar Brazilian lacustrine source rocks with Type I kerogen of Lower Cretaceous age. API gravity of the HP expelled oils shows a complex relationship with increasing thermal maturation that is most influenced by the expulsion of asphaltenes. C15+ fractions (i.e., saturates, aromatics, resins and asphaltenes) show that expelled oils and bitumen are compositionally separate organic phases with no overlap in composition. Gas/oil ratios (GOR) initially decrease from 508–131 m3/m3 during bitumen generation and remain essentially constant (81–84 m3/m3) to the end of oil generation. This constancy in GOR is different from the continuous increase through the oil window observed in anhydrous pyrolysis experiments. Alkane distributions of the HP expelled oils are similar to those of natural crude oils considered to be sourced from similar Brazilian lacustrine source rocks with Type I kerogen of Lower Cretaceous age. Isoprenoid and n-alkane ratios (i.e., pristane/n-C17 and phytane/n-C18) decrease with increasing thermal maturity as observed in natural crude oils. Pristane/phytane ratios remain constant with increasing thermal maturity through the oil window, with ratios being slightly higher in the expelled oils relative to those in the bitumen. Generated hydrocarbon gases are similar to natural gases associated with crude oils considered to be sourced from similar Brazilian lacustrine source rocks with Type I kerogen of Lower Cretaceous, with the exception of elevated ethane contents. The general overall agreement in composition of natural and hydrous pyrolysis petroleum of lacustrine source rocks observed in this study supports the utility of HP to better characterize petroleum systems and the effects of maturation and expulsion on petroleum composition and quality.  相似文献   

15.
The diversity in landscapes at the Earth’s surface is the result, amongst other things, of the balance (or imbalance) between soil production and erosion. While erosion rates are well constrained, it is only recently that we have been able to quantify rates of soil production. Uranium-series isotopes have been useful to provide such estimates independently of erosion rates. In this study, new U-series isotope are presented data from weathering profiles developed over andesitic parent rock in Puerto Rico, and granitic bedrock in southeastern Australia. The site in Australia is located on a highland plateau, neighbouring a retreating escarpment where soil production rates between 10 and 50 mm/kyr have been determined. The results show that production rates are invariant in these two regions of Australia with values between 15 and 25 mm/kyr for the new site. Andesitic soils show much faster rates, about 200 mm/kyr. Overall, soil production rates determined with U-series isotopes range between 10 and 200 mm/kyr. This is comparable to erosion rates in soil-mantled landscapes, but faster than erosion in cratonic areas and slower than in alpine regions and cultivated areas. This suggests that soil-mantled landscapes maintain soil because they can: there is a balance between production and erosion. Similarly, thick weathering profiles develop in cratonic areas because, despite slow erosion rates, soil production is still significant. Bare landscapes in Alpine regions are probably the result of the inability of soil production to catch up with fast erosion rates, although this needs testing by U-series isotope studies of these regions. Finally, the range of production rates is up to several orders of magnitude lower than erosion rates in cultivated areas, demonstrating quantitatively the fast depletion of soil resources with common agricultural practices.  相似文献   

16.
Deeply buried heavy oils from the Tabei Uplift of the Tarim Basin have been investigated for their source origin, charge and accumulation time, biodegradation, mixing and thermal cracking using biomarkers, carbon isotopic compositions of individual alkanes, fluid inclusion homogenization temperatures and authigenic illite K–Ar radiometric ages. Oil-source correlation suggests that these oils mainly originated from Middle–Upper Ordovician source rocks. Burial history, coupled with fluid inclusion temperatures and K–Ar radiometric ages, suggests that these oils were generated and accumulated in the Late Permian. Biodegradation is the main control on the formation of these heavy oils when they were elevated to shallow depths during the late Hercynian orogeny. A pronounced unresolved complex mixture (UCM) in the gas chromatograms together with the presence of both 25-norhopanes and demethylated tricyclic terpanes in the oils are obvious evidence of biodegradation. The mixing of biodegraded oil with non-biodegraded oil components was indicated by the coexistence of n-alkanes with demethylated terpanes. Such mixing is most likely from the same phase of generation, but with accumulation at slightly different burial depths, as evidenced by overall similar oil maturities regardless of biodegradation level and/or amount of n-alkanes. Although these Ordovician carbonate reservoirs are currently buried to over 6000 m with reservoir temperatures above 160 °C, no significant secondary hydrocarbon generation from source rocks or thermal cracking of reservoired heavy oil occur in the study area. This is because the deep burial occurred only within the last 5 Ma of the Neogene, and there has not been enough heating time for additional reactions within the Middle–Upper Ordovician source rocks and reservoired heavy oils.  相似文献   

17.
An unusual series of C22–C27 monounsaturated sterenes and C24–C30 tetracyclic terpanes (17,21-secohopanes) were detected in relatively high concentrations in an immature evaporitic marl sediment of the Jinxian Sag, Bohai Bay Basin, North China. The site of unsaturation in these novel sterenes is assigned tentatively to the D ring on the basis of mass spectral interpretation, which also distinguishes them from reported unsaturated sterenes. Other hydrocarbon biomarker or stable isotope characteristics are indicative of microbial (e.g. methyl hopanes), phytoplankton or higher plant (depleted δ13C values of isoprenoids and hopanes) inputs and an anoxic carbonate depositional environment (hexacyclic hopanes; tetracyclic terpanes). The hydrocarbon composition showed no obvious biodegradation and the relatively high concentration of unsaturated terpenoids (e.g. gammacerene) and low values of other established maturity parameters (Ts/Tm = 0.23; Ro = 0.44%; Tmax = 417 °C), are consistent with sediments of low maturity. The novel, low molecular weight sterenes and the tetracyclic terpanes may be early diagenetic products of microbial sources in a carbonate environment.  相似文献   

18.
Biodegradation of crude oil causes volumetrically important compositional changes, which lead to significant deterioration in quality, in particular during the early stages of alteration. To better understand these effects we focussed on a detailed assessment of light to moderate levels of alteration. We investigated a suite of 40 crude oil samples from five different petroleum systems to evaluate the extent of alteration occurring in reservoirs. Based on a comprehensive geochemical characterization, five individual crude oil sequences were defined, where compositional variability is mainly due to microbial activity in the reservoir. In particular, samples from the Gullfaks field (offshore Norway) and from a petroleum system offshore Angola illustrate that conventional molecular biodegradation parameters, such as the Pr/n-C17 and Ph/n-C18 alkane ratios are not suitable for defining the extent of biodegradation in petroleum reservoirs. Here, we suggest a new molecular biodegradation parameter, the degradative loss, that can be used to quantify depletion in individual crude oil constituents. The approach allows improved assessment of the extent of biodegradation in crude oil samples by means of the mean degradative loss. It is demonstrated that crude oil quality, as assessed from API gravity, can be predicted directly from the molecular composition of crude oils. Our data clearly indicate that the degradation patterns of light hydrocarbons and n-alkanes differ in different petroleum systems. This suggests that microbial communities are different and therefore generate different molecular degradation patterns which have to be evaluated individually for each system.  相似文献   

19.
A gas condensate from well ND1 in the Jizhong Depression of the Bohai Bay Basin, China is characterized by two-dimensional gas chromatography with flame ionization detector (GC × GC–FID) and time-of-flight mass spectrometry (GC × GC–TOFMS). This condensate is sourced from the fourth member of the Shahejie Formation (Es4) but reservoired in the Mesoproterozoic Wumishan Formation carbonate at a depth of 5641–6027 m and the reservoir temperature is 190–201 °C. It is the deepest and the highest temperature discovery in the basin to date. The API gravity of the condensate is 51° and the sulfur content is < 0.04%. A total of 4955 compounds were detected and quantified. Saturated hydrocarbons, aromatic hydrocarbons and non-hydrocarbon account for 94.8%, 5.1% and 0.02% of the condensate mass, respectively. Some long chain alkylated cyclic alkanes, decahydronaphthalenes and diamondoids are tentatively identified in this condensate. The C6–C9 light hydrocarbon parameters show that the gas condensate was generated at relatively high maturity but its generation temperature derived from the dimethylpentane isomer ratio seems far lower than the current reservoir temperature. Some light hydrocarbon parameters indicate evaporative fractionation may also be involved due to multiple-charging and mixing. The diamondoid concentrations and gas oil ratio (GOR) suggest that the ND1 condensate results from 53.3–55% cracking. Since significant liquids remain, the exploration potential of ultra-deep buried hill fields in the Bohai Bay Basin remains high.  相似文献   

20.
This study examined the molecular and isotopic compositions of gases generated from different kerogen types (i.e., Types I/II, II, IIS and III) in Menilite Shales by sequential hydrous pyrolysis experiments. The experiments were designed to simulate gas generation from source rocks at pre-oil-cracking thermal maturities. Initially, rock samples were heated in the presence of liquid water at 330 °C for 72 h to simulate early gas generation dominated by the overall reaction of kerogen decomposition to bitumen. Generated gas and oil were quantitatively collected at the completion of the experiments and the reactor with its rock and water was resealed and heated at 355 °C for 72 h. This condition simulates late petroleum generation in which the dominant overall reaction is bitumen decomposition to oil. This final heating equates to a cumulative thermal maturity of 1.6% Rr, which represents pre-oil-cracking conditions. In addition to the generated gases from these two experiments being characterized individually, they are also summed to characterize a cumulative gas product. These results are compared with natural gases produced from sandstone reservoirs within or directly overlying the Menilite Shales. The experimentally generated gases show no molecular compositions that are distinct for the different kerogen types, but on a total organic carbon (TOC) basis, oil prone kerogens (i.e., Types I/II, II and IIS) generate more hydrocarbon gas than gas prone Type III kerogen. Although the proportionality of methane to ethane in the experimental gases is lower than that observed in the natural gases, the proportionality of ethane to propane and i-butane to n-butane are similar to those observed for the natural gases. δ13C values of the experimentally generated methane, ethane and propane show distinctions among the kerogen types. This distinction is related to the δ13C of the original kerogen, with 13C enriched kerogen generating more 13C enriched hydrocarbon gases than kerogen less enriched in 13C. The typically assumed linear trend for δ13C of methane, ethane and propane versus their reciprocal carbon number for a single sourced natural gas is not observed in the experimental gases. Instead, the so-called “dogleg” trend, exemplified by relatively 13C depleted methane and enriched propane as compared to ethane, is observed for all the kerogen types and at both experimental conditions. Three of the natural gases from the same thrust unit had similar “dogleg” trends indicative of Menilite source rocks with Type III kerogen. These natural gases also contained varying amounts of a microbial gas component that was approximated using the Δδ13C for methane and propane determined from the experiments. These approximations gave microbial methane components that ranged from 13–84%. The high input of microbial gas was reflected in the higher gas:oil ratios for Outer Carpathian production (115–1568 Nm3/t) compared with those determined from the experiments (65–302 Nm3/t). Two natural gas samples in the far western part of the study area had more linear trends that suggest a different organic facies of the Menilite Shales or a completely different source. This situation emphasizes the importance of conducting hydrous pyrolysis on samples representing the complete stratigraphic and lateral extent of potential source rocks in determining specific genetic gas correlations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号