首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We report laboratory experiments that investigate the permeability evolution of an anthracite coal as a function of applied stress and pore pressure at room temperature as an analog to other coal types. Experiments are conducted on 2.5 cm diameter, 2.5-5 cm long cylindrical samples at confining stresses of 6 to 12 MPa. Permeability and sorption characteristics are measured by pulse transient methods, together with axial and volumetric strains for both inert (helium (He)) and strongly adsorbing (methane (CH4) and carbon dioxide (CO2)) gases. To explore the interaction of swelling and fracture geometry we measure the evolution of mechanical and transport characteristics for three separate geometries — sample A containing multiple small embedded fractures, sample B containing a single longitudinal through-going fracture and sample C containing a single radial through-going fracture. Experiments are conducted at constant total stress and with varied pore pressure — increases in pore pressure represent concomitant (but not necessarily equivalent) decreases in effective stress. For the samples with embedded fractures (A and C) the permeability first decreases with an increase in pressure (due to swelling and fracture constraint) and then increases near-linearly (due to the over-riding influence of effective stresses). Conversely, this turnaround in permeability from decreasing to increasing with increasing pore pressure is absent in the discretely fractured sample (B) — the influence of the constraint of the connecting fracture bridges in limiting fracture deformation is importantly absent as supported by theoretical considerations. Under water saturated conditions, the initial permeabilities to all gases are nearly two orders of magnitude lower than for dry coal and permeabilities increase with increasing pore pressure for all samples and at all gas pressures. We also find that the sorption capacities and swelling strains are significantly reduced for water saturated samples — maybe identifying the lack of swelling as the primary reason for the lack of permeability decrease. Finally, we report the weakening effects of gas sorption on the strength of coal samples by loading the cores to failure. Results surprisingly show that the strength of the intact coal (sample A) is smaller than that of the axially fractured coal (sample B) due to the extended duration of exposure to CH4 and CO2. Average post-failure particle size for the weakest intact sample (A) is found to be three times larger than that of the sample B, based on the sieve analyses from the samples after failure. We observe that fracture network geometry and saturation state exert important influences on the permeability evolution and strength of coal under in situ conditions.  相似文献   

2.
付宏渊  蒋煌斌  邱祥  姬云鹏 《岩土力学》2020,41(12):3840-3850
为探究不同外部环境因素影响下浅层粉砂质泥岩边坡裂隙渗流特性,采用自主研发的岩体裂隙渗流试验装置,对含6种不同裂隙面粗糙度(JRC)的粉砂质泥岩裂隙试样进行渗流试验,研究了不同低围压和覆水深度下粉砂质泥岩裂隙渗流特性。结果表明:不同覆水深度及JRC下围压与粉砂质泥岩裂隙渗透系数均呈反相关,两者之间关系可用幂函数表征,且渗透系数的降低过程可分为快速降低(围压为0~30 kPa)和缓慢降低(围压为30~50 kPa)两个阶段,CT扫描结果验证了围压增大使得粉砂质泥岩裂隙开度减小是渗透系数随围压增大而减小的主要原因。随围压的增大或覆水深度的减小,不同JRC粉砂质泥岩裂隙渗透系数的离散程度逐渐减小。当围压增至最大,同时覆水深度最小时,JRC对裂隙渗透系数的影响将会被消除。不同围压下,粉砂质泥岩裂隙渗透系数与覆水深度呈正相关,且两者关系可用指数函数表征。推导出了粉砂质泥岩裂隙渗流非线性Izabsh模型,该模型能较好地反映低应力及低流速下粉砂质泥岩裂隙渗流量与压力梯度之间的非线性变化关系,但随围压的增大,该模型的相关性有一定程度的减小。  相似文献   

3.
Field experiments and laboratory studies have shown that swelling of coal takes place upon contact with carbon dioxide at underground pressure and temperature conditions. Understanding this swelling behavior is crucial for predicting the performance of future carbon dioxide sequestration operations in unminable coal seams conducted in association with methane production. Swelling is believed to be related to adsorption on the internal coal surface. Whereas it is well established that moisture influences the sorption capacity of coal, the influence of water on coal swelling is less well-defined. This paper presents the results of laboratory experiments to investigate the effect of moisture on coal swelling in the presence of carbon dioxide, methane and argon. Strain development of an unconfined sample of about 1.0–1.5 mm3 at 40 °C and 8 MPa (and at other pressures) was observed in an optical cell under a microscope as a function of time. Both air dried and moisturized samples were used. Results confirmed different swelling behaviors of coal with different substances: carbon dioxide leads to higher strain than methane, while exposure to argon leads to very little swelling. The experiments on moisturized samples seem to confirm the role of moisture as a competitor to gas molecules for adsorption sites. Adsorption of water could also explain the observed swelling due to water uptake at atmospheric pressure. A re-introduction of carbon dioxide, after intermediate gas release, results in higher strains which indicate a drying effect of the carbon dioxide on the coal. The results of this study show that the role of water cannot be ignored if one wants to understand the fundamental processes that are taking place in enhanced coalbed methane operations.  相似文献   

4.
The X-ray CT based numerical analysis of fracture flow for core samples, recently developed by the authors, was applied to two granite core samples having either a mated artificial or a mated natural fracture at confining pressures of 5 to 50 MPa. A third-generation medical X-ray CT scanner was used to image the samples within a core holder consisting of an aluminum liner and a carbon fiber overwrap. Fracture models (i.e., aperture distributions) were obtained by the CT images, the resolution of which was coarser than the apertures, and a single-phase flow simulation was performed using a local cubic law-based fracture flow model. Numerical results were evaluated by a fracture porosity measurement and a solution displacement experiment using NaCl and NaI aqueous solutions. These numerical results coincided only qualitatively with the experimental results, primarily due to image noise from the aluminum liner of the core holder. Nevertheless, the numerical results revealed flow paths within the fractures and their changes with confining pressure, whereas the experimental results did not provide such results. Different stress-dependencies in the flow paths were observed between the two samples despite the similar stress-dependency in fracture porosity and permeability. The changes in total area of the flow paths with confining pressure coincided qualitatively with changes in breakthrough points in the solution displacement experiment. Although the data is limited, the results of the present study suggest the importance of analyzing fluid flows within naturally fractured core samples under in situ conditions in order to better understand the fracture flow characteristics in a specific field. As demonstrated herein, X-ray CT-based numerical analysis is effective for addressing this concern. Using a multi-phase flow model, as well as a core holder constructed of an engineered plastic, should provide a useful, non-destructive, and non-contaminative X-ray CT-based fracture flow analysis for core samples under in situ conditions in future studies.  相似文献   

5.
This paper presents the development of a discrete fracture model of fully coupled compressible fluid flow, adsorption and geomechanics to investigate the dynamic behaviour of fractures in coal. The model is applied in the study of geological carbon dioxide sequestration and differs from the dual porosity model developed in our previous work, with fractures now represented explicitly using lower-dimensional interface elements. The model consists of the fracture-matrix fluid transport model, the matrix deformation model and the stress-strain model for fracture deformation. A sequential implicit numerical method based on Galerkin finite element is employed to numerically solve the coupled governing equations, and verification is completed using published solutions as benchmarks. To explore the dynamic behaviour of fractures for understanding the process of carbon sequestration in coal, the model is used to investigate the effects of gas injection pressure and composition, adsorption and matrix permeability on the dynamic behaviour of fractures. The numerical results indicate that injecting nonadsorbing gas causes a monotonic increase in fracture aperture; however, the evolution of fracture aperture due to gas adsorption is complex due to the swelling-induced transition from local swelling to macro swelling. The change of fracture aperture is mainly controlled by the normal stress acting on the fracture surface. The fracture aperture initially increases for smaller matrix permeability and then declines after reaching a maximum value. When the local swelling becomes global, fracture aperture starts to rebound. However, when the matrix permeability is larger, the fracture aperture decreases before recovering to a higher value and remaining constant. Gas mixtures containing more carbon dioxide lead to larger closure of fracture aperture compared with those containing more nitrogen.  相似文献   

6.
For the degassing of coal seams, either prior to mining or in un-minable seams to obtain coalbed methane, it is the combination of cleat frequency, aperture, connectivity, stress, and mineral occlusions that control permeability. Unfortunately, many potential coalbeds have limited permeability and are thus marginal for economic methane extraction. Enhanced coalbed methane production, with concurrent CO2 sequestration is also challenging due to limited CO2 injectivity. Microwave energy can, in the absence of confining stress, induce fractures in coal. Here, creation of new fractures and increasing existing cleat apertures via short burst, high-energy microwave energy was evaluated for an isotropically stressed and an unstressed bituminous coal core. A microwave-transparent argon gas pressurized (1000 psi) polycarbonate vessel was constructed to apply isotropic stress simulating ~ 1800 foot depth. Cleat frequency and distribution was determined for the two cores via micro-focused X-ray computed tomography. Evaluation occurred before and after microwave exposure with and without the application of isotropic stress during exposure. Optical microscopy was performed for tomography cleat aperture calibration and also to examine lithotypes influences on fracture: initiation, propagation, frequency, and orientation. It was confirmed that new fractures are induced via high-energy microwave exposure in an unconfined bituminous core and that the aperture increased in existing cleats. Cleat/fracture volume, following microwave exposure increased from 1.8% to 16.1% of the unconfined core volume. For the first time, similar observations of fracture generation and aperture enhancement in coal were also determined for microwave exposure under isotropic stress conditions. An existing cleat aperture, determined from calibrated X-ray computed tomography increased from 0.17 mm to 0.32 mm. The cleat/fracture volume increased from 0.5% to 5.5%. Optical microscopy indicated that fracture initiated likely occurred in at least some cases at fusain microlithotypes. Presumably this was due to the open pore volumes and potential for bulk water presence or steam pressure buildup in these locations. For the major induced fractures, they were mostly horizontal (parallel to the bedding plane) and often contained within lithotype bands. Thus it appears likely that microwaves have the potential to enhance the communication between horizontal wellbore and existing cleat network, in coal seams at depth, for improved gas recovery or CO2 injection.  相似文献   

7.
为了探索煤层顶板中水平井向目标层穿层压裂的裂缝扩展规律,以华北石炭-二叠纪煤田为例,运用断裂力学、损伤力学以及流体力学等经典理论并结合现场实测资料,开展了压裂缝延伸距离与压裂时间时空演化规律的建模与验证。首先,基于原生裂缝特性、渗透特性以及压裂射孔段附加应力等因素,提出了顶板水平井垂向造缝的起裂压力计算公式;其次,在考虑裂缝性煤岩体损伤效应的基础上,引入Dougill损伤因子,将该计算模型拓展为延伸压力计算模型;最后,基于改进的经典PKN裂缝模型和压裂液滤失理论,建立了连续穿层工况下压裂缝延伸距离与压裂施工时间的函数关系。实践验证表明,根据理论模型合理调配时间参数,可以控制穿层裂缝的延伸距离。   相似文献   

8.
Underground borehole drilling usually causes instability in the surrounding coal due to in situ stress redistribution (including stress concentration and stress release). However, the mechanisms of unloading-induced coal strength reduction are still poorly understood. The primary objective of this study is to investigate the effect of confining pressure unloading on soft coal strength reduction for borehole stability analysis. A series of mechanical tests were conducted on both the traditionally and newly reconstituted coal samples under two different experimental stress paths, including conventional uniaxial/triaxial compression and triaxial compression with confining pressure unloading. The unloading stress path was obtained by analyzing the stress redistribution around a borehole, to capture a more accurate coal mechanical response. According to our experimental results, plastic deformation generated before failure under the unloading stress path is smaller than that generated under the conventional loading stress path. Furthermore, the cohesion of the traditionally and newly reconstituted samples diminishes approximately by 44.77 and 29.66%, respectively, with confining pressure unloading, indicating that there is a significant reduction in coal strength due to confining pressure unloading. The mechanism for unloading-induced coal strength reduction comes from confining pressure unloading-induced increase in shear stress on the fracture surface and a decrease in shear strength. This effect increases the shear slipping potential, whose driving force generates tension fractures at both ends of the preexisting fractures.  相似文献   

9.
王伟  方志明  李小春 《岩土力学》2018,39(Z1):251-257
为研究沁水盆地煤样渗透率演化规律,构建了煤样渗透率测定的瞬态压力脉冲法实验装置,使用N2和CO2在实验室开展了3种试验条件的渗透率测定,应用Connell模型对实验结果进行分析,并讨论了模型预测值和实验值之间差别的原因。结果表明,(1)在恒定孔压变围压条件下渗透率随有效应力增大而减小;在等有效应力条件下,渗透率随孔压增大而减少;在恒定围压变孔压条件下,随孔压增大,渗透率呈先减小后变大的趋势。(2)运用Connell模型预测的恒定围压变孔压条件的渗透率值大于实验值,原因可能是由于裂隙压缩性系数和吸附应变系数存在估计误差。通过开展实验室渗透率实验和模型分析,对指导实验室内二氧化碳封存和气体驱替实验及其模拟研究具有借鉴意义。  相似文献   

10.
以石嘴山矿西翼采区为研究背景,通过三轴应力作用下岩石单裂隙渗流试验、裂隙开度与有效压力关系试验和大尺度岩石表面粗糙度量测试验,结合渗流力学基本理论,揭示了三维应力下单裂隙粗砂岩渗流规律,建立了有效压力、裂隙开度与渗透系数的关系式,以期丰富裂隙岩体渗流的理论研究。  相似文献   

11.
突出危险煤渗透性变化的影响因素探讨   总被引:4,自引:0,他引:4  
王登科  刘建  尹光志  韦立德 《岩土力学》2010,31(11):3469-3474
通过对突出危险煤渗透性试验研究,系统分析了不同围压、不同瓦斯压力和不同应力-应变状态条件下突出煤样的渗透特性,分别建立了突出危险煤的渗透性与围压、瓦斯压力和应力-应变等主要控制因素之间的定性和定量关系,探讨了不同载荷条件下突出危险煤渗透性的控制机制和变化规律。研究结果表明,载荷条件对突出危险煤的渗透性具有重要影响:(1) 在固定瓦斯压力条件下,突出危险煤样的渗透率随围压的增大而减小,且服从指数函数变化规律。(2) 在固定围压条件下,受Klinkenberg效应影响,渗透率与瓦斯压力之间大致呈“V”字型变化;Klikenberg效应发生在瓦斯压力p < 1 MPa的范围内。(3) 在三轴压缩下的应力-应变全过程中,不同载荷条件下突出危险煤样的渗透率-应变曲线变化趋势几乎一致,且都呈“V”字型走势;在微裂隙闭合和弹性变形阶段,煤样渗透率随应力增大而减小;进入屈服阶段后,渗透率达到最小值并在峰值强度到达之前完成反超过程;峰值强度之后渗透率持续增大直至试验结束;煤样渗透率反超后的变化要较反超前变化平缓。  相似文献   

12.
Sequestration of carbon dioxide in unmineable coal seams is an option to reduce carbon dioxide emissions. It is well known that the interaction of carbon dioxide with unconfined coal induces swelling. This paper contributes three-dimensional strain distribution in confined coal at microstructural level using high-resolution X-ray computerized tomography data and image analysis. Swelling and compression/compaction of regions in the coal matrix occurs with CO2 uptake. Normal strain varies between ? 1.15% and 0.93%, ? 3.11% and 0.94%, ? 0.43% and 0.30% along x, y and z axes respectively. Volumetric strain varies between ? 4.25% and 1.25%. The positive strains reported are consistent with typical range for unconstrained swelling. However, the average volumetric strains value (? 0.34%) reflect overall volume reduction. Overall swelling is apparently influenced by the confining stresses. The magnitudes of normal strains are heterogeneous and anisotropic. The swelling vs. compression/compaction observed after CO2 uptake is localized and likely lithotype dependant.  相似文献   

13.
郭德勇  李春娇  张友谊 《地球科学》2014,39(11):1500-1506
为了研究构造煤孔渗变化特性, 利用平顶山矿区原生结构煤和构造煤, 进行了不同围压、温度、湿度和煤体结构类型等条件下孔隙度及渗透率的实验测定, 对煤层孔渗特性在不同条件下的变化趋势进行了分析.结果表明: 围压、温度、湿度和煤体结构类型4种因素对煤的孔隙度和渗透率均有较大影响, 当温度和围压同时作用时, 围压的作用效果大于温度的作用效果.并用Origin软件对部分实验数据进行了数据拟合, 得出原生结构煤和构造煤的渗透率-孔隙度函数关系.   相似文献   

14.
It is generally accepted that typical coalbed gases (methane and carbon dioxide) are sorbed (both adsorbed and absorbed) in the coal matrix causing it to swell and resulting in local stress and strain variations in a coalbed confined under overburden pressure. The swelling, interactions of gases within the coal matrix and the resultant changes in the permeability, sorption, gas flow mechanics in the reservoir, and stress state of the coal can impact a number of reservoir-related factors. These include effective production of coalbed methane, degasification of future mining areas by drilling horizontal and vertical degasification wells, injection of CO2 as an enhanced coalbed methane recovery technique, and concurrent CO2 sequestration. Such information can also provide an understanding of the mechanisms behind gas outbursts in underground coal mines.The spatio-temporal volumetric strains in a consolidated Pittsburgh seam coal sample were evaluated while both confining pressure and carbon dioxide (CO2) pore pressure were increased to keep a constant positive effective stress on the sample. The changes internal to the sample were evaluated by maps of density and atomic number determined by dual-energy X-ray computed tomography (X-ray CT). Early-time images, as soon as CO2 was introduced, were also used to calculate the macroporosity in the coal sample. Scanning electron microscopy (SEM) and photographic images of the polished section of the coal sample at X-ray CT image location were used to identify the microlithotypes and microstructures.The CO2 sorption-associated swelling and volumetric strains in consolidated coal under constant effective stress are heterogeneous processes depending on the lithotypes present. In the time scale of the experiment, vitrite showed the highest degree of swelling due to dissolution of CO2, while the clay (kaolinite) and inertite region was compressed in response. The volumetric strains associated with swelling and compression were between ± 15% depending on the location. Although the effective stress on the sample was constant, it varied within the sample as a result of the internal stresses created by gas sorption-related structural changes. SEM images and porosity calculations revealed that the kaolinite and inertite bearing layer was highly porous, which enabled the fastest CO2 uptake and the highest degree of compression.  相似文献   

15.
为解决我国高瓦斯煤层渗透性差导致瓦斯抽采率低的难题,利用超临界二氧化碳强扩散和溶解增透等独特优点,采用自制三轴渗透实验装置,开展不同温度下超临界二氧化碳作用后煤的宏观增透实验,在宏观增透实验基础上进行煤微观扫描成像实验。结果表明:恒定体积应力和孔隙压力条件下,不同温度超临界二氧化碳作用后,煤的渗透率较增透前提高一个数量级,但在二氧化碳的超临界温度范围内,煤的渗透率随温度增加呈负指数变化规律。超临界二氧化碳作用后,煤微观孔隙率较增透前提高两个数量级,随着温度增加,煤微观孔裂隙的演化速率减慢,孔隙率随温度增加呈负指数变化规律。宏微观实验数据同时表明,煤宏观渗透率随微观孔隙率增加而增大。超临界二氧化碳增透过程中,孔隙压力对低渗透煤层的增透效果起主控作用。   相似文献   

16.
考虑应力历史的岩石单裂隙渗流特性试验研究   总被引:1,自引:0,他引:1  
杨金保  冯夏庭  潘鹏志 《岩土力学》2013,34(6):1629-1635
通过开展单裂隙花岗岩不同围压加、卸载和不同水力梯度作用下的渗透试验,研究应力历史对裂隙渗透性能演化的影响。试验结果表明:在围压加载过程中,渗流流量与渗透压差大致呈线性关系;在渗透压差相同的条件下,围压越小,流量越大,随着围压上升,裂隙渗流流量持续减小,但随着围压的进一步增大,流量的减小有减缓的趋势。在围压相同以及渗透压差相同的条件下,单裂隙花岗岩在卸载条件下的渗流特性与加载条件下相比,其渗流流量明显降低,且卸载过程中渗流流量与渗透压差开始偏离线性关系。从试验前、后裂隙面粗糙度系数值的对比可以看出,由于法向应力挤压以及渗流流体的冲蚀作用,试验后裂隙面粗糙度系数明显降低。卸载的过程中,裂隙渗透性能的恢复具有明显的滞后效应,表明在法向应力和流体冲蚀的共同作用下,裂隙产生了不可恢复的非弹性变形。  相似文献   

17.
三轴压缩条件下冻融单裂隙岩样裂缝贯通机制   总被引:1,自引:0,他引:1  
路亚妮  李新平  吴兴宏 《岩土力学》2014,35(6):1579-1584
采用岩石力学伺服试验机,对预制单裂隙模型试样进行冻融循环后的三轴压缩试验,基于冻融循环试验对裂隙岩体的冻融损伤劣化模式进行研究,探讨经历不同冻融循环次数后的裂隙岩样在三轴压缩条件下裂缝的贯通机制。试验发现:裂隙岩体的冻融损伤劣化模式有颗粒散落模式、龟裂模式和沿预制裂隙断裂模式3种;在三轴加载条件下,冻融裂隙岩样的贯通模式呈现拉贯通、剪贯通、压贯通和混合贯通4种;贯通模式和冻融循环次数、围压的大小以及裂隙倾角有关,随着冻融循环次数的增加和围压的升高,岩样表面的破裂线越来越多,导致裂纹的贯通模式由单一贯通转换为混合贯通,在围压为2、6 MPa时,岩样的破坏模式为拉-压贯通,而围压为4 MPa时,岩样主要呈现拉贯通,裂隙倾角为30°的岩样主要贯通模式为拉贯通,裂隙倾角为60°的岩样主要贯通模式为剪贯通。  相似文献   

18.
The role of shear dilation as a mechanism of enhancing fluid flow permeability in naturally fractured reservoirs was mainly recognized in the context of hot dry rock (HDR) geothermal reservoir stimulation. Simplified models based on shear slippage only were developed and their applications to evaluate HDR geothermal reservoir stimulation were reported. Research attention is recently focused to adjust this stimulation mechanism for naturally fractured oil and gas reservoirs which reserve vast resources worldwide. This paper develops the overall framework and basic formulations of this stimulation model for oil and gas reservoirs. Major computational modules include: natural fracture simulation, response analysis of stimulated fractures, average permeability estimation for the stimulated reservoir and prediction of an average flow direction. Natural fractures are simulated stochastically by implementing ‘fractal dimension’ concept. Natural fracture propagation and shear displacements are formulated by following computationally efficient approximate approaches interrelating in situ stresses, natural fracture parameters and stimulation pressure developed by fluid injection inside fractures. The average permeability of the stimulated reservoir is formulated as a function of discretized gridblock permeabilities by applying cubic law of fluid flow. The average reservoir elongation, or the flow direction, is expressed as a function of reservoir aspect ratio induced by directional permeability contributions. The natural fracture simulation module is verified by comparing its results with observed microseismic clouds in actual naturally fractured reservoirs. Permeability enhancement and reservoir growth are characterized with respect to stimulation pressure, in situ stresses and natural fracture density applying the model to two example reservoirs. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

19.
Multi-phase flow in fractured rocks plays an important role in any hydrocarbon recovery process, be it for environmental remediation or natural oil and gas extraction. Fractures may form the primary production conduits, and the mass transport at the fracture interfaces with the matrix determines the effectiveness of extraction processes. This paper presents specific evidence for a relationship between fracture apertures and the porosity of the adjoining perpendicular layers in Berea sandstone samples. Measurements of fracture apertures were done with high-resolution Micro-Computed Tomography (MCT) with a voxel resolution of about 0.05 mm in three dimensions. Multi-phase fluid flow experiments were done using a medical CT scanner with a voxel resolution of about 1.00 × 0.25 × 0.25 mm. MCT evidence shows a correlation between aperture and the porosity of the intersected layers. The comparison was made by generating two-dimensional maps of matrix porosity and CT values adjacent to the fracture and of the corresponding fracture apertures. High-porosity layers are lined up with large fracture apertures. Multi-phase fluid experiments provided hydraulic evidence that the high-porosity layers have high permeability. Oil injection into a water-saturated sample was tracked by a sequence of transverse scans near the downstream tip of a fracture. The hydraulic evidence from the two-phase flow experiments also confirms high permeability in fracture strips adjacent to high-porosity and high-permeability layers. The reasons for the relationship between fracture aperture and the properties of the adjacent layers are not fully understood. Some explanation for the physical and hydraulic observations rests in the method of fracturing, fracture propagation, and the lithological characteristics of the rock.  相似文献   

20.
With the development of deep mining in recent years, coal and gas compound dynamic disasters become increasingly serious. In this study, uniaxial and triaxial compression tests were conducted on gas-bearing coals, coal–sandstone combined bodies and coal–mudstone combined bodies and the permeabilities in the triaxial tests were measured simultaneously. The mechanical behavior and seepage characteristics of coals and coal–rock combination bodies under triaxial conditions were compared in details. The results show that the peak strength among three samples is: coal–sandstone combined body > coal–mudstone combined body > coal. If other conditions were held constant, the strength and the elastic modulus of all specimens show that tendency increases with the increment of the confining pressure or with the decrease in the gas pressure. The strength characteristics of all three specimens met the Mohr–Coulomb criterion, and the residual strength has an increasing trend with the increase in confining pressure. The permeability evolutions of gas-bearing coals and coal–rock combination bodies which are determined by the crack propagation in the coals and rocks are not exactly the same. This preliminary study is intended to deepen our understandings of the mechanisms of coal–gas compound dynamic disasters and provide theoretical bases for their predictions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号